4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
9 * This is the core of the buffer management. Each
10 * CPU buffer is processed and entered into the
11 * global event buffer. Such processing is necessary
12 * in several circumstances, mentioned below.
14 * The processing does the job of converting the
15 * transitory EIP value into a persistent dentry/offset
16 * value that the profiler can record at its leisure.
18 * See fs/dcookies.c for a description of the dentry/offset
23 #include <linux/workqueue.h>
24 #include <linux/notifier.h>
25 #include <linux/dcookies.h>
26 #include <linux/profile.h>
27 #include <linux/module.h>
29 #include <linux/oprofile.h>
30 #include <linux/sched.h>
32 #include "oprofile_stats.h"
33 #include "event_buffer.h"
34 #include "cpu_buffer.h"
35 #include "buffer_sync.h"
37 static LIST_HEAD(dying_tasks
);
38 static LIST_HEAD(dead_tasks
);
39 static cpumask_t marked_cpus
= CPU_MASK_NONE
;
40 static DEFINE_SPINLOCK(task_mortuary
);
41 static void process_task_mortuary(void);
44 /* Take ownership of the task struct and place it on the
45 * list for processing. Only after two full buffer syncs
46 * does the task eventually get freed, because by then
47 * we are sure we will not reference it again.
48 * Can be invoked from softirq via RCU callback due to
49 * call_rcu() of the task struct, hence the _irqsave.
51 static int task_free_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
54 struct task_struct
* task
= data
;
55 spin_lock_irqsave(&task_mortuary
, flags
);
56 list_add(&task
->tasks
, &dying_tasks
);
57 spin_unlock_irqrestore(&task_mortuary
, flags
);
62 /* The task is on its way out. A sync of the buffer means we can catch
63 * any remaining samples for this task.
65 static int task_exit_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
67 /* To avoid latency problems, we only process the current CPU,
68 * hoping that most samples for the task are on this CPU
70 sync_buffer(raw_smp_processor_id());
75 /* The task is about to try a do_munmap(). We peek at what it's going to
76 * do, and if it's an executable region, process the samples first, so
77 * we don't lose any. This does not have to be exact, it's a QoI issue
80 static int munmap_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
82 unsigned long addr
= (unsigned long)data
;
83 struct mm_struct
* mm
= current
->mm
;
84 struct vm_area_struct
* mpnt
;
86 down_read(&mm
->mmap_sem
);
88 mpnt
= find_vma(mm
, addr
);
89 if (mpnt
&& mpnt
->vm_file
&& (mpnt
->vm_flags
& VM_EXEC
)) {
90 up_read(&mm
->mmap_sem
);
91 /* To avoid latency problems, we only process the current CPU,
92 * hoping that most samples for the task are on this CPU
94 sync_buffer(raw_smp_processor_id());
98 up_read(&mm
->mmap_sem
);
103 /* We need to be told about new modules so we don't attribute to a previously
104 * loaded module, or drop the samples on the floor.
106 static int module_load_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
108 #ifdef CONFIG_MODULES
109 if (val
!= MODULE_STATE_COMING
)
112 /* FIXME: should we process all CPU buffers ? */
113 mutex_lock(&buffer_mutex
);
114 add_event_entry(ESCAPE_CODE
);
115 add_event_entry(MODULE_LOADED_CODE
);
116 mutex_unlock(&buffer_mutex
);
122 static struct notifier_block task_free_nb
= {
123 .notifier_call
= task_free_notify
,
126 static struct notifier_block task_exit_nb
= {
127 .notifier_call
= task_exit_notify
,
130 static struct notifier_block munmap_nb
= {
131 .notifier_call
= munmap_notify
,
134 static struct notifier_block module_load_nb
= {
135 .notifier_call
= module_load_notify
,
139 static void end_sync(void)
142 /* make sure we don't leak task structs */
143 process_task_mortuary();
144 process_task_mortuary();
154 err
= task_handoff_register(&task_free_nb
);
157 err
= profile_event_register(PROFILE_TASK_EXIT
, &task_exit_nb
);
160 err
= profile_event_register(PROFILE_MUNMAP
, &munmap_nb
);
163 err
= register_module_notifier(&module_load_nb
);
170 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
172 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
174 task_handoff_unregister(&task_free_nb
);
183 unregister_module_notifier(&module_load_nb
);
184 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
185 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
186 task_handoff_unregister(&task_free_nb
);
191 /* Optimisation. We can manage without taking the dcookie sem
192 * because we cannot reach this code without at least one
193 * dcookie user still being registered (namely, the reader
194 * of the event buffer). */
195 static inline unsigned long fast_get_dcookie(struct path
*path
)
197 unsigned long cookie
;
199 if (path
->dentry
->d_cookie
)
200 return (unsigned long)path
->dentry
;
201 get_dcookie(path
, &cookie
);
206 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
207 * which corresponds loosely to "application name". This is
208 * not strictly necessary but allows oprofile to associate
209 * shared-library samples with particular applications
211 static unsigned long get_exec_dcookie(struct mm_struct
* mm
)
213 unsigned long cookie
= NO_COOKIE
;
214 struct vm_area_struct
* vma
;
219 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
222 if (!(vma
->vm_flags
& VM_EXECUTABLE
))
224 cookie
= fast_get_dcookie(&vma
->vm_file
->f_path
);
233 /* Convert the EIP value of a sample into a persistent dentry/offset
234 * pair that can then be added to the global event buffer. We make
235 * sure to do this lookup before a mm->mmap modification happens so
236 * we don't lose track.
238 static unsigned long lookup_dcookie(struct mm_struct
* mm
, unsigned long addr
, off_t
* offset
)
240 unsigned long cookie
= NO_COOKIE
;
241 struct vm_area_struct
* vma
;
243 for (vma
= find_vma(mm
, addr
); vma
; vma
= vma
->vm_next
) {
245 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
249 cookie
= fast_get_dcookie(&vma
->vm_file
->f_path
);
250 *offset
= (vma
->vm_pgoff
<< PAGE_SHIFT
) + addr
-
253 /* must be an anonymous map */
261 cookie
= INVALID_COOKIE
;
267 static unsigned long last_cookie
= INVALID_COOKIE
;
269 static void add_cpu_switch(int i
)
271 add_event_entry(ESCAPE_CODE
);
272 add_event_entry(CPU_SWITCH_CODE
);
274 last_cookie
= INVALID_COOKIE
;
277 static void add_kernel_ctx_switch(unsigned int in_kernel
)
279 add_event_entry(ESCAPE_CODE
);
281 add_event_entry(KERNEL_ENTER_SWITCH_CODE
);
283 add_event_entry(KERNEL_EXIT_SWITCH_CODE
);
287 add_user_ctx_switch(struct task_struct
const * task
, unsigned long cookie
)
289 add_event_entry(ESCAPE_CODE
);
290 add_event_entry(CTX_SWITCH_CODE
);
291 add_event_entry(task
->pid
);
292 add_event_entry(cookie
);
293 /* Another code for daemon back-compat */
294 add_event_entry(ESCAPE_CODE
);
295 add_event_entry(CTX_TGID_CODE
);
296 add_event_entry(task
->tgid
);
300 static void add_cookie_switch(unsigned long cookie
)
302 add_event_entry(ESCAPE_CODE
);
303 add_event_entry(COOKIE_SWITCH_CODE
);
304 add_event_entry(cookie
);
308 static void add_trace_begin(void)
310 add_event_entry(ESCAPE_CODE
);
311 add_event_entry(TRACE_BEGIN_CODE
);
315 static void add_sample_entry(unsigned long offset
, unsigned long event
)
317 add_event_entry(offset
);
318 add_event_entry(event
);
322 static int add_us_sample(struct mm_struct
* mm
, struct op_sample
* s
)
324 unsigned long cookie
;
327 cookie
= lookup_dcookie(mm
, s
->eip
, &offset
);
329 if (cookie
== INVALID_COOKIE
) {
330 atomic_inc(&oprofile_stats
.sample_lost_no_mapping
);
334 if (cookie
!= last_cookie
) {
335 add_cookie_switch(cookie
);
336 last_cookie
= cookie
;
339 add_sample_entry(offset
, s
->event
);
345 /* Add a sample to the global event buffer. If possible the
346 * sample is converted into a persistent dentry/offset pair
347 * for later lookup from userspace.
350 add_sample(struct mm_struct
* mm
, struct op_sample
* s
, int in_kernel
)
353 add_sample_entry(s
->eip
, s
->event
);
356 return add_us_sample(mm
, s
);
358 atomic_inc(&oprofile_stats
.sample_lost_no_mm
);
364 static void release_mm(struct mm_struct
* mm
)
368 up_read(&mm
->mmap_sem
);
373 static struct mm_struct
* take_tasks_mm(struct task_struct
* task
)
375 struct mm_struct
* mm
= get_task_mm(task
);
377 down_read(&mm
->mmap_sem
);
382 static inline int is_code(unsigned long val
)
384 return val
== ESCAPE_CODE
;
388 /* "acquire" as many cpu buffer slots as we can */
389 static unsigned long get_slots(struct oprofile_cpu_buffer
* b
)
391 unsigned long head
= b
->head_pos
;
392 unsigned long tail
= b
->tail_pos
;
395 * Subtle. This resets the persistent last_task
396 * and in_kernel values used for switching notes.
397 * BUT, there is a small window between reading
398 * head_pos, and this call, that means samples
399 * can appear at the new head position, but not
400 * be prefixed with the notes for switching
401 * kernel mode or a task switch. This small hole
402 * can lead to mis-attribution or samples where
403 * we don't know if it's in the kernel or not,
404 * at the start of an event buffer.
411 return head
+ (b
->buffer_size
- tail
);
415 static void increment_tail(struct oprofile_cpu_buffer
* b
)
417 unsigned long new_tail
= b
->tail_pos
+ 1;
421 if (new_tail
< b
->buffer_size
)
422 b
->tail_pos
= new_tail
;
428 /* Move tasks along towards death. Any tasks on dead_tasks
429 * will definitely have no remaining references in any
430 * CPU buffers at this point, because we use two lists,
431 * and to have reached the list, it must have gone through
432 * one full sync already.
434 static void process_task_mortuary(void)
437 LIST_HEAD(local_dead_tasks
);
438 struct task_struct
* task
;
439 struct task_struct
* ttask
;
441 spin_lock_irqsave(&task_mortuary
, flags
);
443 list_splice_init(&dead_tasks
, &local_dead_tasks
);
444 list_splice_init(&dying_tasks
, &dead_tasks
);
446 spin_unlock_irqrestore(&task_mortuary
, flags
);
448 list_for_each_entry_safe(task
, ttask
, &local_dead_tasks
, tasks
) {
449 list_del(&task
->tasks
);
455 static void mark_done(int cpu
)
459 cpu_set(cpu
, marked_cpus
);
461 for_each_online_cpu(i
) {
462 if (!cpu_isset(i
, marked_cpus
))
466 /* All CPUs have been processed at least once,
467 * we can process the mortuary once
469 process_task_mortuary();
471 cpus_clear(marked_cpus
);
475 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
476 * traversal, the code switch to sb_sample_start at first kernel enter/exit
477 * switch so we need a fifth state and some special handling in sync_buffer()
486 /* Sync one of the CPU's buffers into the global event buffer.
487 * Here we need to go through each batch of samples punctuated
488 * by context switch notes, taking the task's mmap_sem and doing
489 * lookup in task->mm->mmap to convert EIP into dcookie/offset
492 void sync_buffer(int cpu
)
494 struct oprofile_cpu_buffer
* cpu_buf
= &cpu_buffer
[cpu
];
495 struct mm_struct
*mm
= NULL
;
496 struct task_struct
* new;
497 unsigned long cookie
= 0;
500 sync_buffer_state state
= sb_buffer_start
;
501 unsigned long available
;
503 mutex_lock(&buffer_mutex
);
507 /* Remember, only we can modify tail_pos */
509 available
= get_slots(cpu_buf
);
511 for (i
= 0; i
< available
; ++i
) {
512 struct op_sample
* s
= &cpu_buf
->buffer
[cpu_buf
->tail_pos
];
514 if (is_code(s
->eip
)) {
515 if (s
->event
<= CPU_IS_KERNEL
) {
516 /* kernel/userspace switch */
517 in_kernel
= s
->event
;
518 if (state
== sb_buffer_start
)
519 state
= sb_sample_start
;
520 add_kernel_ctx_switch(s
->event
);
521 } else if (s
->event
== CPU_TRACE_BEGIN
) {
525 struct mm_struct
* oldmm
= mm
;
527 /* userspace context switch */
528 new = (struct task_struct
*)s
->event
;
531 mm
= take_tasks_mm(new);
533 cookie
= get_exec_dcookie(mm
);
534 add_user_ctx_switch(new, cookie
);
537 if (state
>= sb_bt_start
&&
538 !add_sample(mm
, s
, in_kernel
)) {
539 if (state
== sb_bt_start
) {
540 state
= sb_bt_ignore
;
541 atomic_inc(&oprofile_stats
.bt_lost_no_mapping
);
546 increment_tail(cpu_buf
);
552 mutex_unlock(&buffer_mutex
);