2 * Driver for SiS7019 Audio Accelerator
4 * Copyright (C) 2004-2007, David Dillow
5 * Written by David Dillow <dave@thedillows.org>
6 * Inspired by the Trident 4D-WaveDX/NX driver.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, version 2.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/time.h>
27 #include <linux/moduleparam.h>
28 #include <linux/interrupt.h>
29 #include <linux/delay.h>
30 #include <sound/core.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/initval.h>
35 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
36 MODULE_DESCRIPTION("SiS7019");
37 MODULE_LICENSE("GPL");
38 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
40 static int index
= SNDRV_DEFAULT_IDX1
; /* Index 0-MAX */
41 static char *id
= SNDRV_DEFAULT_STR1
; /* ID for this card */
42 static int enable
= 1;
44 module_param(index
, int, 0444);
45 MODULE_PARM_DESC(index
, "Index value for SiS7019 Audio Accelerator.");
46 module_param(id
, charp
, 0444);
47 MODULE_PARM_DESC(id
, "ID string for SiS7019 Audio Accelerator.");
48 module_param(enable
, bool, 0444);
49 MODULE_PARM_DESC(enable
, "Enable SiS7019 Audio Accelerator.");
51 static struct pci_device_id snd_sis7019_ids
[] = {
52 { PCI_DEVICE(PCI_VENDOR_ID_SI
, 0x7019) },
56 MODULE_DEVICE_TABLE(pci
, snd_sis7019_ids
);
58 /* There are three timing modes for the voices.
60 * For both playback and capture, when the buffer is one or two periods long,
61 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
62 * to let us know when the periods have ended.
64 * When performing playback with more than two periods per buffer, we set
65 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
66 * reach it. We then update the offset and continue on until we are
67 * interrupted for the next period.
69 * Capture channels do not have a SSO, so we allocate a playback channel to
70 * use as a timer for the capture periods. We use the SSO on the playback
71 * channel to clock out virtual periods, and adjust the virtual period length
72 * to maintain synchronization. This algorithm came from the Trident driver.
74 * FIXME: It'd be nice to make use of some of the synth features in the
75 * hardware, but a woeful lack of documentation is a significant roadblock.
79 #define VOICE_IN_USE 1
80 #define VOICE_CAPTURE 2
81 #define VOICE_SSO_TIMING 4
82 #define VOICE_SYNC_TIMING 8
90 struct snd_pcm_substream
*substream
;
92 void __iomem
*ctrl_base
;
93 void __iomem
*wave_base
;
94 void __iomem
*sync_base
;
98 /* We need four pages to store our wave parameters during a suspend. If
99 * we're not doing power management, we still need to allocate a page
100 * for the silence buffer.
103 #define SIS_SUSPEND_PAGES 4
105 #define SIS_SUSPEND_PAGES 1
109 unsigned long ioport
;
110 void __iomem
*ioaddr
;
116 struct snd_card
*card
;
117 struct snd_ac97
*ac97
[3];
119 /* Protect against more than one thread hitting the AC97
120 * registers (in a more polite manner than pounding the hardware
123 struct mutex ac97_mutex
;
125 /* voice_lock protects allocation/freeing of the voice descriptions
127 spinlock_t voice_lock
;
129 struct voice voices
[64];
130 struct voice capture_voice
;
132 /* Allocate pages to store the internal wave state during
133 * suspends. When we're operating, this can be used as a silence
134 * buffer for a timing channel.
136 void *suspend_state
[SIS_SUSPEND_PAGES
];
139 dma_addr_t silence_dma_addr
;
142 #define SIS_PRIMARY_CODEC_PRESENT 0x0001
143 #define SIS_SECONDARY_CODEC_PRESENT 0x0002
144 #define SIS_TERTIARY_CODEC_PRESENT 0x0004
146 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
147 * documented range of 8-0xfff8 samples. Given that they are 0-based,
148 * that places our period/buffer range at 9-0xfff9 samples. That makes the
149 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
150 * max samples / min samples gives us the max periods in a buffer.
152 * We'll add a constraint upon open that limits the period and buffer sample
153 * size to values that are legal for the hardware.
155 static struct snd_pcm_hardware sis_playback_hw_info
= {
156 .info
= (SNDRV_PCM_INFO_MMAP
|
157 SNDRV_PCM_INFO_MMAP_VALID
|
158 SNDRV_PCM_INFO_INTERLEAVED
|
159 SNDRV_PCM_INFO_BLOCK_TRANSFER
|
160 SNDRV_PCM_INFO_SYNC_START
|
161 SNDRV_PCM_INFO_RESUME
),
162 .formats
= (SNDRV_PCM_FMTBIT_S8
| SNDRV_PCM_FMTBIT_U8
|
163 SNDRV_PCM_FMTBIT_S16_LE
| SNDRV_PCM_FMTBIT_U16_LE
),
164 .rates
= SNDRV_PCM_RATE_8000_48000
| SNDRV_PCM_RATE_CONTINUOUS
,
169 .buffer_bytes_max
= (0xfff9 * 4),
170 .period_bytes_min
= 9,
171 .period_bytes_max
= (0xfff9 * 4),
173 .periods_max
= (0xfff9 / 9),
176 static struct snd_pcm_hardware sis_capture_hw_info
= {
177 .info
= (SNDRV_PCM_INFO_MMAP
|
178 SNDRV_PCM_INFO_MMAP_VALID
|
179 SNDRV_PCM_INFO_INTERLEAVED
|
180 SNDRV_PCM_INFO_BLOCK_TRANSFER
|
181 SNDRV_PCM_INFO_SYNC_START
|
182 SNDRV_PCM_INFO_RESUME
),
183 .formats
= (SNDRV_PCM_FMTBIT_S8
| SNDRV_PCM_FMTBIT_U8
|
184 SNDRV_PCM_FMTBIT_S16_LE
| SNDRV_PCM_FMTBIT_U16_LE
),
185 .rates
= SNDRV_PCM_RATE_48000
,
190 .buffer_bytes_max
= (0xfff9 * 4),
191 .period_bytes_min
= 9,
192 .period_bytes_max
= (0xfff9 * 4),
194 .periods_max
= (0xfff9 / 9),
197 static void sis_update_sso(struct voice
*voice
, u16 period
)
199 void __iomem
*base
= voice
->ctrl_base
;
201 voice
->sso
+= period
;
202 if (voice
->sso
>= voice
->buffer_size
)
203 voice
->sso
-= voice
->buffer_size
;
205 /* Enforce the documented hardware minimum offset */
209 /* The SSO is in the upper 16 bits of the register. */
210 writew(voice
->sso
& 0xffff, base
+ SIS_PLAY_DMA_SSO_ESO
+ 2);
213 static void sis_update_voice(struct voice
*voice
)
215 if (voice
->flags
& VOICE_SSO_TIMING
) {
216 sis_update_sso(voice
, voice
->period_size
);
217 } else if (voice
->flags
& VOICE_SYNC_TIMING
) {
220 /* If we've not hit the end of the virtual period, update
221 * our records and keep going.
223 if (voice
->vperiod
> voice
->period_size
) {
224 voice
->vperiod
-= voice
->period_size
;
225 if (voice
->vperiod
< voice
->period_size
)
226 sis_update_sso(voice
, voice
->vperiod
);
228 sis_update_sso(voice
, voice
->period_size
);
232 /* Calculate our relative offset between the target and
233 * the actual CSO value. Since we're operating in a loop,
234 * if the value is more than half way around, we can
235 * consider ourselves wrapped.
237 sync
= voice
->sync_cso
;
238 sync
-= readw(voice
->sync_base
+ SIS_CAPTURE_DMA_FORMAT_CSO
);
239 if (sync
> (voice
->sync_buffer_size
/ 2))
240 sync
-= voice
->sync_buffer_size
;
242 /* If sync is positive, then we interrupted too early, and
243 * we'll need to come back in a few samples and try again.
244 * There's a minimum wait, as it takes some time for the DMA
245 * engine to startup, etc...
250 sis_update_sso(voice
, sync
);
254 /* Ok, we interrupted right on time, or (hopefully) just
255 * a bit late. We'll adjst our next waiting period based
256 * on how close we got.
258 * We need to stay just behind the actual channel to ensure
259 * it really is past a period when we get our interrupt --
260 * otherwise we'll fall into the early code above and have
261 * a minimum wait time, which makes us quite late here,
262 * eating into the user's time to refresh the buffer, esp.
263 * if using small periods.
265 * If we're less than 9 samples behind, we're on target.
268 voice
->vperiod
= voice
->sync_period_size
+ 1;
270 voice
->vperiod
= voice
->sync_period_size
- 4;
272 if (voice
->vperiod
< voice
->buffer_size
) {
273 sis_update_sso(voice
, voice
->vperiod
);
276 sis_update_sso(voice
, voice
->period_size
);
278 sync
= voice
->sync_cso
+ voice
->sync_period_size
;
279 if (sync
>= voice
->sync_buffer_size
)
280 sync
-= voice
->sync_buffer_size
;
281 voice
->sync_cso
= sync
;
284 snd_pcm_period_elapsed(voice
->substream
);
287 static void sis_voice_irq(u32 status
, struct voice
*voice
)
295 sis_update_voice(voice
);
300 static irqreturn_t
sis_interrupt(int irq
, void *dev
)
302 struct sis7019
*sis
= dev
;
303 unsigned long io
= sis
->ioport
;
307 /* We only use the DMA interrupts, and we don't enable any other
308 * source of interrupts. But, it is possible to see an interupt
309 * status that didn't actually interrupt us, so eliminate anything
310 * we're not expecting to avoid falsely claiming an IRQ, and an
311 * ensuing endless loop.
313 intr
= inl(io
+ SIS_GISR
);
314 intr
&= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS
|
315 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS
;
320 status
= inl(io
+ SIS_PISR_A
);
322 sis_voice_irq(status
, sis
->voices
);
323 outl(status
, io
+ SIS_PISR_A
);
326 status
= inl(io
+ SIS_PISR_B
);
328 sis_voice_irq(status
, &sis
->voices
[32]);
329 outl(status
, io
+ SIS_PISR_B
);
332 status
= inl(io
+ SIS_RISR
);
334 voice
= &sis
->capture_voice
;
336 snd_pcm_period_elapsed(voice
->substream
);
338 outl(status
, io
+ SIS_RISR
);
341 outl(intr
, io
+ SIS_GISR
);
342 intr
= inl(io
+ SIS_GISR
);
343 intr
&= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS
|
344 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS
;
350 static u32
sis_rate_to_delta(unsigned int rate
)
354 /* This was copied from the trident driver, but it seems its gotten
355 * around a bit... nevertheless, it works well.
357 * We special case 44100 and 8000 since rounding with the equation
358 * does not give us an accurate enough value. For 11025 and 22050
359 * the equation gives us the best answer. All other frequencies will
360 * also use the equation. JDW
364 else if (rate
== 8000)
366 else if (rate
== 48000)
369 delta
= (((rate
<< 12) + 24000) / 48000) & 0x0000ffff;
373 static void __sis_map_silence(struct sis7019
*sis
)
375 /* Helper function: must hold sis->voice_lock on entry */
376 if (!sis
->silence_users
)
377 sis
->silence_dma_addr
= pci_map_single(sis
->pci
,
378 sis
->suspend_state
[0],
379 4096, PCI_DMA_TODEVICE
);
380 sis
->silence_users
++;
383 static void __sis_unmap_silence(struct sis7019
*sis
)
385 /* Helper function: must hold sis->voice_lock on entry */
386 sis
->silence_users
--;
387 if (!sis
->silence_users
)
388 pci_unmap_single(sis
->pci
, sis
->silence_dma_addr
, 4096,
392 static void sis_free_voice(struct sis7019
*sis
, struct voice
*voice
)
396 spin_lock_irqsave(&sis
->voice_lock
, flags
);
398 __sis_unmap_silence(sis
);
399 voice
->timing
->flags
&= ~(VOICE_IN_USE
| VOICE_SSO_TIMING
|
401 voice
->timing
= NULL
;
403 voice
->flags
&= ~(VOICE_IN_USE
| VOICE_SSO_TIMING
| VOICE_SYNC_TIMING
);
404 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
407 static struct voice
*__sis_alloc_playback_voice(struct sis7019
*sis
)
409 /* Must hold the voice_lock on entry */
413 for (i
= 0; i
< 64; i
++) {
414 voice
= &sis
->voices
[i
];
415 if (voice
->flags
& VOICE_IN_USE
)
417 voice
->flags
|= VOICE_IN_USE
;
426 static struct voice
*sis_alloc_playback_voice(struct sis7019
*sis
)
431 spin_lock_irqsave(&sis
->voice_lock
, flags
);
432 voice
= __sis_alloc_playback_voice(sis
);
433 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
438 static int sis_alloc_timing_voice(struct snd_pcm_substream
*substream
,
439 struct snd_pcm_hw_params
*hw_params
)
441 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
442 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
443 struct voice
*voice
= runtime
->private_data
;
444 unsigned int period_size
, buffer_size
;
448 /* If there are one or two periods per buffer, we don't need a
449 * timing voice, as we can use the capture channel's interrupts
450 * to clock out the periods.
452 period_size
= params_period_size(hw_params
);
453 buffer_size
= params_buffer_size(hw_params
);
454 needed
= (period_size
!= buffer_size
&&
455 period_size
!= (buffer_size
/ 2));
457 if (needed
&& !voice
->timing
) {
458 spin_lock_irqsave(&sis
->voice_lock
, flags
);
459 voice
->timing
= __sis_alloc_playback_voice(sis
);
461 __sis_map_silence(sis
);
462 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
465 voice
->timing
->substream
= substream
;
466 } else if (!needed
&& voice
->timing
) {
467 sis_free_voice(sis
, voice
);
468 voice
->timing
= NULL
;
474 static int sis_playback_open(struct snd_pcm_substream
*substream
)
476 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
477 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
480 voice
= sis_alloc_playback_voice(sis
);
484 voice
->substream
= substream
;
485 runtime
->private_data
= voice
;
486 runtime
->hw
= sis_playback_hw_info
;
487 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_PERIOD_SIZE
,
489 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
491 snd_pcm_set_sync(substream
);
495 static int sis_substream_close(struct snd_pcm_substream
*substream
)
497 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
498 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
499 struct voice
*voice
= runtime
->private_data
;
501 sis_free_voice(sis
, voice
);
505 static int sis_playback_hw_params(struct snd_pcm_substream
*substream
,
506 struct snd_pcm_hw_params
*hw_params
)
508 return snd_pcm_lib_malloc_pages(substream
,
509 params_buffer_bytes(hw_params
));
512 static int sis_hw_free(struct snd_pcm_substream
*substream
)
514 return snd_pcm_lib_free_pages(substream
);
517 static int sis_pcm_playback_prepare(struct snd_pcm_substream
*substream
)
519 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
520 struct voice
*voice
= runtime
->private_data
;
521 void __iomem
*ctrl_base
= voice
->ctrl_base
;
522 void __iomem
*wave_base
= voice
->wave_base
;
523 u32 format
, dma_addr
, control
, sso_eso
, delta
, reg
;
526 /* We rely on the PCM core to ensure that the parameters for this
527 * substream do not change on us while we're programming the HW.
530 if (snd_pcm_format_width(runtime
->format
) == 8)
531 format
|= SIS_PLAY_DMA_FORMAT_8BIT
;
532 if (!snd_pcm_format_signed(runtime
->format
))
533 format
|= SIS_PLAY_DMA_FORMAT_UNSIGNED
;
534 if (runtime
->channels
== 1)
535 format
|= SIS_PLAY_DMA_FORMAT_MONO
;
537 /* The baseline setup is for a single period per buffer, and
538 * we add bells and whistles as needed from there.
540 dma_addr
= runtime
->dma_addr
;
541 leo
= runtime
->buffer_size
- 1;
542 control
= leo
| SIS_PLAY_DMA_LOOP
| SIS_PLAY_DMA_INTR_AT_LEO
;
545 if (runtime
->period_size
== (runtime
->buffer_size
/ 2)) {
546 control
|= SIS_PLAY_DMA_INTR_AT_MLP
;
547 } else if (runtime
->period_size
!= runtime
->buffer_size
) {
548 voice
->flags
|= VOICE_SSO_TIMING
;
549 voice
->sso
= runtime
->period_size
- 1;
550 voice
->period_size
= runtime
->period_size
;
551 voice
->buffer_size
= runtime
->buffer_size
;
553 control
&= ~SIS_PLAY_DMA_INTR_AT_LEO
;
554 control
|= SIS_PLAY_DMA_INTR_AT_SSO
;
555 sso_eso
|= (runtime
->period_size
- 1) << 16;
558 delta
= sis_rate_to_delta(runtime
->rate
);
560 /* Ok, we're ready to go, set up the channel.
562 writel(format
, ctrl_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
563 writel(dma_addr
, ctrl_base
+ SIS_PLAY_DMA_BASE
);
564 writel(control
, ctrl_base
+ SIS_PLAY_DMA_CONTROL
);
565 writel(sso_eso
, ctrl_base
+ SIS_PLAY_DMA_SSO_ESO
);
567 for (reg
= 0; reg
< SIS_WAVE_SIZE
; reg
+= 4)
568 writel(0, wave_base
+ reg
);
570 writel(SIS_WAVE_GENERAL_WAVE_VOLUME
, wave_base
+ SIS_WAVE_GENERAL
);
571 writel(delta
<< 16, wave_base
+ SIS_WAVE_GENERAL_ARTICULATION
);
572 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE
|
573 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE
|
574 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE
,
575 wave_base
+ SIS_WAVE_CHANNEL_CONTROL
);
577 /* Force PCI writes to post. */
583 static int sis_pcm_trigger(struct snd_pcm_substream
*substream
, int cmd
)
585 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
586 unsigned long io
= sis
->ioport
;
587 struct snd_pcm_substream
*s
;
592 u32 play
[2] = { 0, 0 };
594 /* No locks needed, as the PCM core will hold the locks on the
595 * substreams, and the HW will only start/stop the indicated voices
596 * without changing the state of the others.
599 case SNDRV_PCM_TRIGGER_START
:
600 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE
:
601 case SNDRV_PCM_TRIGGER_RESUME
:
604 case SNDRV_PCM_TRIGGER_STOP
:
605 case SNDRV_PCM_TRIGGER_PAUSE_PUSH
:
606 case SNDRV_PCM_TRIGGER_SUSPEND
:
613 snd_pcm_group_for_each_entry(s
, substream
) {
614 /* Make sure it is for us... */
615 chip
= snd_pcm_substream_chip(s
);
619 voice
= s
->runtime
->private_data
;
620 if (voice
->flags
& VOICE_CAPTURE
) {
621 record
|= 1 << voice
->num
;
622 voice
= voice
->timing
;
625 /* voice could be NULL if this a recording stream, and it
626 * doesn't have an external timing channel.
629 play
[voice
->num
/ 32] |= 1 << (voice
->num
& 0x1f);
631 snd_pcm_trigger_done(s
, substream
);
636 outl(record
, io
+ SIS_RECORD_START_REG
);
638 outl(play
[0], io
+ SIS_PLAY_START_A_REG
);
640 outl(play
[1], io
+ SIS_PLAY_START_B_REG
);
643 outl(record
, io
+ SIS_RECORD_STOP_REG
);
645 outl(play
[0], io
+ SIS_PLAY_STOP_A_REG
);
647 outl(play
[1], io
+ SIS_PLAY_STOP_B_REG
);
652 static snd_pcm_uframes_t
sis_pcm_pointer(struct snd_pcm_substream
*substream
)
654 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
655 struct voice
*voice
= runtime
->private_data
;
658 cso
= readl(voice
->ctrl_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
663 static int sis_capture_open(struct snd_pcm_substream
*substream
)
665 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
666 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
667 struct voice
*voice
= &sis
->capture_voice
;
670 /* FIXME: The driver only supports recording from one channel
671 * at the moment, but it could support more.
673 spin_lock_irqsave(&sis
->voice_lock
, flags
);
674 if (voice
->flags
& VOICE_IN_USE
)
677 voice
->flags
|= VOICE_IN_USE
;
678 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
683 voice
->substream
= substream
;
684 runtime
->private_data
= voice
;
685 runtime
->hw
= sis_capture_hw_info
;
686 runtime
->hw
.rates
= sis
->ac97
[0]->rates
[AC97_RATES_ADC
];
687 snd_pcm_limit_hw_rates(runtime
);
688 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_PERIOD_SIZE
,
690 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
692 snd_pcm_set_sync(substream
);
696 static int sis_capture_hw_params(struct snd_pcm_substream
*substream
,
697 struct snd_pcm_hw_params
*hw_params
)
699 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
702 rc
= snd_ac97_set_rate(sis
->ac97
[0], AC97_PCM_LR_ADC_RATE
,
703 params_rate(hw_params
));
707 rc
= snd_pcm_lib_malloc_pages(substream
,
708 params_buffer_bytes(hw_params
));
712 rc
= sis_alloc_timing_voice(substream
, hw_params
);
718 static void sis_prepare_timing_voice(struct voice
*voice
,
719 struct snd_pcm_substream
*substream
)
721 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
722 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
723 struct voice
*timing
= voice
->timing
;
724 void __iomem
*play_base
= timing
->ctrl_base
;
725 void __iomem
*wave_base
= timing
->wave_base
;
726 u16 buffer_size
, period_size
;
727 u32 format
, control
, sso_eso
, delta
;
728 u32 vperiod
, sso
, reg
;
730 /* Set our initial buffer and period as large as we can given a
731 * single page of silence.
733 buffer_size
= 4096 / runtime
->channels
;
734 buffer_size
/= snd_pcm_format_size(runtime
->format
, 1);
735 period_size
= buffer_size
;
737 /* Initially, we want to interrupt just a bit behind the end of
738 * the period we're clocking out. 10 samples seems to give a good
741 * We want to spread our interrupts throughout the virtual period,
742 * so that we don't end up with two interrupts back to back at the
743 * end -- this helps minimize the effects of any jitter. Adjust our
744 * clocking period size so that the last period is at least a fourth
747 * This is all moot if we don't need to use virtual periods.
749 vperiod
= runtime
->period_size
+ 10;
750 if (vperiod
> period_size
) {
751 u16 tail
= vperiod
% period_size
;
752 u16 quarter_period
= period_size
/ 4;
754 if (tail
&& tail
< quarter_period
) {
755 u16 loops
= vperiod
/ period_size
;
757 tail
= quarter_period
- tail
;
763 sso
= period_size
- 1;
765 /* The initial period will fit inside the buffer, so we
766 * don't need to use virtual periods -- disable them.
768 period_size
= runtime
->period_size
;
773 /* The interrupt handler implements the timing syncronization, so
776 timing
->flags
|= VOICE_SYNC_TIMING
;
777 timing
->sync_base
= voice
->ctrl_base
;
778 timing
->sync_cso
= runtime
->period_size
- 1;
779 timing
->sync_period_size
= runtime
->period_size
;
780 timing
->sync_buffer_size
= runtime
->buffer_size
;
781 timing
->period_size
= period_size
;
782 timing
->buffer_size
= buffer_size
;
784 timing
->vperiod
= vperiod
;
786 /* Using unsigned samples with the all-zero silence buffer
787 * forces the output to the lower rail, killing playback.
788 * So ignore unsigned vs signed -- it doesn't change the timing.
791 if (snd_pcm_format_width(runtime
->format
) == 8)
792 format
= SIS_CAPTURE_DMA_FORMAT_8BIT
;
793 if (runtime
->channels
== 1)
794 format
|= SIS_CAPTURE_DMA_FORMAT_MONO
;
796 control
= timing
->buffer_size
- 1;
797 control
|= SIS_PLAY_DMA_LOOP
| SIS_PLAY_DMA_INTR_AT_SSO
;
798 sso_eso
= timing
->buffer_size
- 1;
799 sso_eso
|= timing
->sso
<< 16;
801 delta
= sis_rate_to_delta(runtime
->rate
);
803 /* We've done the math, now configure the channel.
805 writel(format
, play_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
806 writel(sis
->silence_dma_addr
, play_base
+ SIS_PLAY_DMA_BASE
);
807 writel(control
, play_base
+ SIS_PLAY_DMA_CONTROL
);
808 writel(sso_eso
, play_base
+ SIS_PLAY_DMA_SSO_ESO
);
810 for (reg
= 0; reg
< SIS_WAVE_SIZE
; reg
+= 4)
811 writel(0, wave_base
+ reg
);
813 writel(SIS_WAVE_GENERAL_WAVE_VOLUME
, wave_base
+ SIS_WAVE_GENERAL
);
814 writel(delta
<< 16, wave_base
+ SIS_WAVE_GENERAL_ARTICULATION
);
815 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE
|
816 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE
|
817 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE
,
818 wave_base
+ SIS_WAVE_CHANNEL_CONTROL
);
821 static int sis_pcm_capture_prepare(struct snd_pcm_substream
*substream
)
823 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
824 struct voice
*voice
= runtime
->private_data
;
825 void __iomem
*rec_base
= voice
->ctrl_base
;
826 u32 format
, dma_addr
, control
;
829 /* We rely on the PCM core to ensure that the parameters for this
830 * substream do not change on us while we're programming the HW.
833 if (snd_pcm_format_width(runtime
->format
) == 8)
834 format
= SIS_CAPTURE_DMA_FORMAT_8BIT
;
835 if (!snd_pcm_format_signed(runtime
->format
))
836 format
|= SIS_CAPTURE_DMA_FORMAT_UNSIGNED
;
837 if (runtime
->channels
== 1)
838 format
|= SIS_CAPTURE_DMA_FORMAT_MONO
;
840 dma_addr
= runtime
->dma_addr
;
841 leo
= runtime
->buffer_size
- 1;
842 control
= leo
| SIS_CAPTURE_DMA_LOOP
;
844 /* If we've got more than two periods per buffer, then we have
845 * use a timing voice to clock out the periods. Otherwise, we can
846 * use the capture channel's interrupts.
849 sis_prepare_timing_voice(voice
, substream
);
851 control
|= SIS_CAPTURE_DMA_INTR_AT_LEO
;
852 if (runtime
->period_size
!= runtime
->buffer_size
)
853 control
|= SIS_CAPTURE_DMA_INTR_AT_MLP
;
856 writel(format
, rec_base
+ SIS_CAPTURE_DMA_FORMAT_CSO
);
857 writel(dma_addr
, rec_base
+ SIS_CAPTURE_DMA_BASE
);
858 writel(control
, rec_base
+ SIS_CAPTURE_DMA_CONTROL
);
860 /* Force the writes to post. */
866 static struct snd_pcm_ops sis_playback_ops
= {
867 .open
= sis_playback_open
,
868 .close
= sis_substream_close
,
869 .ioctl
= snd_pcm_lib_ioctl
,
870 .hw_params
= sis_playback_hw_params
,
871 .hw_free
= sis_hw_free
,
872 .prepare
= sis_pcm_playback_prepare
,
873 .trigger
= sis_pcm_trigger
,
874 .pointer
= sis_pcm_pointer
,
877 static struct snd_pcm_ops sis_capture_ops
= {
878 .open
= sis_capture_open
,
879 .close
= sis_substream_close
,
880 .ioctl
= snd_pcm_lib_ioctl
,
881 .hw_params
= sis_capture_hw_params
,
882 .hw_free
= sis_hw_free
,
883 .prepare
= sis_pcm_capture_prepare
,
884 .trigger
= sis_pcm_trigger
,
885 .pointer
= sis_pcm_pointer
,
888 static int __devinit
sis_pcm_create(struct sis7019
*sis
)
893 /* We have 64 voices, and the driver currently records from
894 * only one channel, though that could change in the future.
896 rc
= snd_pcm_new(sis
->card
, "SiS7019", 0, 64, 1, &pcm
);
900 pcm
->private_data
= sis
;
901 strcpy(pcm
->name
, "SiS7019");
904 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &sis_playback_ops
);
905 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_CAPTURE
, &sis_capture_ops
);
907 /* Try to preallocate some memory, but it's not the end of the
908 * world if this fails.
910 snd_pcm_lib_preallocate_pages_for_all(pcm
, SNDRV_DMA_TYPE_DEV
,
911 snd_dma_pci_data(sis
->pci
), 64*1024, 128*1024);
916 static unsigned short sis_ac97_rw(struct sis7019
*sis
, int codec
, u32 cmd
)
918 unsigned long io
= sis
->ioport
;
919 unsigned short val
= 0xffff;
923 const static u16 codec_ready
[3] = {
924 SIS_AC97_STATUS_CODEC_READY
,
925 SIS_AC97_STATUS_CODEC2_READY
,
926 SIS_AC97_STATUS_CODEC3_READY
,
929 rdy
= codec_ready
[codec
];
932 /* Get the AC97 semaphore -- software first, so we don't spin
933 * pounding out IO reads on the hardware semaphore...
935 mutex_lock(&sis
->ac97_mutex
);
938 while ((inw(io
+ SIS_AC97_SEMA
) & SIS_AC97_SEMA_BUSY
) && --count
)
944 /* ... and wait for any outstanding commands to complete ...
948 status
= inw(io
+ SIS_AC97_STATUS
);
949 if ((status
& rdy
) && !(status
& SIS_AC97_STATUS_BUSY
))
958 /* ... before sending our command and waiting for it to finish ...
960 outl(cmd
, io
+ SIS_AC97_CMD
);
964 while ((inw(io
+ SIS_AC97_STATUS
) & SIS_AC97_STATUS_BUSY
) && --count
)
967 /* ... and reading the results (if any).
969 val
= inl(io
+ SIS_AC97_CMD
) >> 16;
972 outl(SIS_AC97_SEMA_RELEASE
, io
+ SIS_AC97_SEMA
);
974 mutex_unlock(&sis
->ac97_mutex
);
977 printk(KERN_ERR
"sis7019: ac97 codec %d timeout cmd 0x%08x\n",
984 static void sis_ac97_write(struct snd_ac97
*ac97
, unsigned short reg
,
987 const static u32 cmd
[3] = {
988 SIS_AC97_CMD_CODEC_WRITE
,
989 SIS_AC97_CMD_CODEC2_WRITE
,
990 SIS_AC97_CMD_CODEC3_WRITE
,
992 sis_ac97_rw(ac97
->private_data
, ac97
->num
,
993 (val
<< 16) | (reg
<< 8) | cmd
[ac97
->num
]);
996 static unsigned short sis_ac97_read(struct snd_ac97
*ac97
, unsigned short reg
)
998 const static u32 cmd
[3] = {
999 SIS_AC97_CMD_CODEC_READ
,
1000 SIS_AC97_CMD_CODEC2_READ
,
1001 SIS_AC97_CMD_CODEC3_READ
,
1003 return sis_ac97_rw(ac97
->private_data
, ac97
->num
,
1004 (reg
<< 8) | cmd
[ac97
->num
]);
1007 static int __devinit
sis_mixer_create(struct sis7019
*sis
)
1009 struct snd_ac97_bus
*bus
;
1010 struct snd_ac97_template ac97
;
1011 static struct snd_ac97_bus_ops ops
= {
1012 .write
= sis_ac97_write
,
1013 .read
= sis_ac97_read
,
1017 memset(&ac97
, 0, sizeof(ac97
));
1018 ac97
.private_data
= sis
;
1020 rc
= snd_ac97_bus(sis
->card
, 0, &ops
, NULL
, &bus
);
1021 if (!rc
&& sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1022 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[0]);
1024 if (!rc
&& (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
))
1025 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[1]);
1027 if (!rc
&& (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
))
1028 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[2]);
1030 /* If we return an error here, then snd_card_free() should
1031 * free up any ac97 codecs that got created, as well as the bus.
1036 static void sis_free_suspend(struct sis7019
*sis
)
1040 for (i
= 0; i
< SIS_SUSPEND_PAGES
; i
++)
1041 kfree(sis
->suspend_state
[i
]);
1044 static int sis_chip_free(struct sis7019
*sis
)
1046 /* Reset the chip, and disable all interrputs.
1048 outl(SIS_GCR_SOFTWARE_RESET
, sis
->ioport
+ SIS_GCR
);
1050 outl(0, sis
->ioport
+ SIS_GCR
);
1051 outl(0, sis
->ioport
+ SIS_GIER
);
1053 /* Now, free everything we allocated.
1056 free_irq(sis
->irq
, sis
);
1059 iounmap(sis
->ioaddr
);
1061 pci_release_regions(sis
->pci
);
1062 pci_disable_device(sis
->pci
);
1064 sis_free_suspend(sis
);
1068 static int sis_dev_free(struct snd_device
*dev
)
1070 struct sis7019
*sis
= dev
->device_data
;
1071 return sis_chip_free(sis
);
1074 static int sis_chip_init(struct sis7019
*sis
)
1076 unsigned long io
= sis
->ioport
;
1077 void __iomem
*ioaddr
= sis
->ioaddr
;
1082 /* Reset the audio controller
1084 outl(SIS_GCR_SOFTWARE_RESET
, io
+ SIS_GCR
);
1086 outl(0, io
+ SIS_GCR
);
1088 /* Get the AC-link semaphore, and reset the codecs
1091 while ((inw(io
+ SIS_AC97_SEMA
) & SIS_AC97_SEMA_BUSY
) && --count
)
1097 outl(SIS_AC97_CMD_CODEC_COLD_RESET
, io
+ SIS_AC97_CMD
);
1101 while ((inw(io
+ SIS_AC97_STATUS
) & SIS_AC97_STATUS_BUSY
) && --count
)
1104 /* Now that we've finished the reset, find out what's attached.
1106 status
= inl(io
+ SIS_AC97_STATUS
);
1107 if (status
& SIS_AC97_STATUS_CODEC_READY
)
1108 sis
->codecs_present
|= SIS_PRIMARY_CODEC_PRESENT
;
1109 if (status
& SIS_AC97_STATUS_CODEC2_READY
)
1110 sis
->codecs_present
|= SIS_SECONDARY_CODEC_PRESENT
;
1111 if (status
& SIS_AC97_STATUS_CODEC3_READY
)
1112 sis
->codecs_present
|= SIS_TERTIARY_CODEC_PRESENT
;
1114 /* All done, let go of the semaphore, and check for errors
1116 outl(SIS_AC97_SEMA_RELEASE
, io
+ SIS_AC97_SEMA
);
1117 if (!sis
->codecs_present
|| !count
)
1120 /* Let the hardware know that the audio driver is alive,
1121 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1122 * record channels. We're going to want to use Variable Rate Audio
1123 * for recording, to avoid needlessly resampling from 48kHZ.
1125 outl(SIS_AC97_CONF_AUDIO_ALIVE
, io
+ SIS_AC97_CONF
);
1126 outl(SIS_AC97_CONF_AUDIO_ALIVE
| SIS_AC97_CONF_PCM_LR_ENABLE
|
1127 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE
|
1128 SIS_AC97_CONF_PCM_CAP_LR_ENABLE
|
1129 SIS_AC97_CONF_CODEC_VRA_ENABLE
, io
+ SIS_AC97_CONF
);
1131 /* All AC97 PCM slots should be sourced from sub-mixer 0.
1133 outl(0, io
+ SIS_AC97_PSR
);
1135 /* There is only one valid DMA setup for a PCI environment.
1137 outl(SIS_DMA_CSR_PCI_SETTINGS
, io
+ SIS_DMA_CSR
);
1139 /* Reset the syncronization groups for all of the channels
1140 * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
1141 * we'll need to change how we handle these. Until then, we just
1142 * assign sub-mixer 0 to all playback channels, and avoid any
1143 * attenuation on the audio.
1145 outl(0, io
+ SIS_PLAY_SYNC_GROUP_A
);
1146 outl(0, io
+ SIS_PLAY_SYNC_GROUP_B
);
1147 outl(0, io
+ SIS_PLAY_SYNC_GROUP_C
);
1148 outl(0, io
+ SIS_PLAY_SYNC_GROUP_D
);
1149 outl(0, io
+ SIS_MIXER_SYNC_GROUP
);
1151 for (i
= 0; i
< 64; i
++) {
1152 writel(i
, SIS_MIXER_START_ADDR(ioaddr
, i
));
1153 writel(SIS_MIXER_RIGHT_NO_ATTEN
| SIS_MIXER_LEFT_NO_ATTEN
|
1154 SIS_MIXER_DEST_0
, SIS_MIXER_ADDR(ioaddr
, i
));
1157 /* Don't attenuate any audio set for the wave amplifier.
1159 * FIXME: Maximum attenuation is set for the music amp, which will
1160 * need to change if we start using the synth engine.
1162 outl(0xffff0000, io
+ SIS_WEVCR
);
1164 /* Ensure that the wave engine is in normal operating mode.
1166 outl(0, io
+ SIS_WECCR
);
1168 /* Go ahead and enable the DMA interrupts. They won't go live
1169 * until we start a channel.
1171 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE
|
1172 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE
, io
+ SIS_GIER
);
1178 static int sis_suspend(struct pci_dev
*pci
, pm_message_t state
)
1180 struct snd_card
*card
= pci_get_drvdata(pci
);
1181 struct sis7019
*sis
= card
->private_data
;
1182 void __iomem
*ioaddr
= sis
->ioaddr
;
1185 snd_power_change_state(card
, SNDRV_CTL_POWER_D3hot
);
1186 snd_pcm_suspend_all(sis
->pcm
);
1187 if (sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1188 snd_ac97_suspend(sis
->ac97
[0]);
1189 if (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
)
1190 snd_ac97_suspend(sis
->ac97
[1]);
1191 if (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
)
1192 snd_ac97_suspend(sis
->ac97
[2]);
1194 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1196 if (sis
->irq
>= 0) {
1197 synchronize_irq(sis
->irq
);
1198 free_irq(sis
->irq
, sis
);
1202 /* Save the internal state away
1204 for (i
= 0; i
< 4; i
++) {
1205 memcpy_fromio(sis
->suspend_state
[i
], ioaddr
, 4096);
1209 pci_disable_device(pci
);
1210 pci_save_state(pci
);
1211 pci_set_power_state(pci
, pci_choose_state(pci
, state
));
1215 static int sis_resume(struct pci_dev
*pci
)
1217 struct snd_card
*card
= pci_get_drvdata(pci
);
1218 struct sis7019
*sis
= card
->private_data
;
1219 void __iomem
*ioaddr
= sis
->ioaddr
;
1222 pci_set_power_state(pci
, PCI_D0
);
1223 pci_restore_state(pci
);
1225 if (pci_enable_device(pci
) < 0) {
1226 printk(KERN_ERR
"sis7019: unable to re-enable device\n");
1230 if (sis_chip_init(sis
)) {
1231 printk(KERN_ERR
"sis7019: unable to re-init controller\n");
1235 if (request_irq(pci
->irq
, sis_interrupt
, IRQF_DISABLED
|IRQF_SHARED
,
1236 card
->shortname
, sis
)) {
1237 printk(KERN_ERR
"sis7019: unable to regain IRQ %d\n", pci
->irq
);
1241 /* Restore saved state, then clear out the page we use for the
1244 for (i
= 0; i
< 4; i
++) {
1245 memcpy_toio(ioaddr
, sis
->suspend_state
[i
], 4096);
1249 memset(sis
->suspend_state
[0], 0, 4096);
1251 sis
->irq
= pci
->irq
;
1252 pci_set_master(pci
);
1254 if (sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1255 snd_ac97_resume(sis
->ac97
[0]);
1256 if (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
)
1257 snd_ac97_resume(sis
->ac97
[1]);
1258 if (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
)
1259 snd_ac97_resume(sis
->ac97
[2]);
1261 snd_power_change_state(card
, SNDRV_CTL_POWER_D0
);
1265 snd_card_disconnect(card
);
1268 #endif /* CONFIG_PM */
1270 static int sis_alloc_suspend(struct sis7019
*sis
)
1274 /* We need 16K to store the internal wave engine state during a
1275 * suspend, but we don't need it to be contiguous, so play nice
1276 * with the memory system. We'll also use this area for a silence
1279 for (i
= 0; i
< SIS_SUSPEND_PAGES
; i
++) {
1280 sis
->suspend_state
[i
] = kmalloc(4096, GFP_KERNEL
);
1281 if (!sis
->suspend_state
[i
])
1284 memset(sis
->suspend_state
[0], 0, 4096);
1289 static int __devinit
sis_chip_create(struct snd_card
*card
,
1290 struct pci_dev
*pci
)
1292 struct sis7019
*sis
= card
->private_data
;
1293 struct voice
*voice
;
1294 static struct snd_device_ops ops
= {
1295 .dev_free
= sis_dev_free
,
1300 rc
= pci_enable_device(pci
);
1304 if (pci_set_dma_mask(pci
, DMA_30BIT_MASK
) < 0) {
1305 printk(KERN_ERR
"sis7019: architecture does not support "
1306 "30-bit PCI busmaster DMA");
1307 goto error_out_enabled
;
1310 memset(sis
, 0, sizeof(*sis
));
1311 mutex_init(&sis
->ac97_mutex
);
1312 spin_lock_init(&sis
->voice_lock
);
1316 sis
->ioport
= pci_resource_start(pci
, 0);
1318 rc
= pci_request_regions(pci
, "SiS7019");
1320 printk(KERN_ERR
"sis7019: unable request regions\n");
1321 goto error_out_enabled
;
1325 sis
->ioaddr
= ioremap_nocache(pci_resource_start(pci
, 1), 0x4000);
1327 printk(KERN_ERR
"sis7019: unable to remap MMIO, aborting\n");
1328 goto error_out_cleanup
;
1331 rc
= sis_alloc_suspend(sis
);
1333 printk(KERN_ERR
"sis7019: unable to allocate state storage\n");
1334 goto error_out_cleanup
;
1337 rc
= sis_chip_init(sis
);
1339 goto error_out_cleanup
;
1341 if (request_irq(pci
->irq
, sis_interrupt
, IRQF_DISABLED
|IRQF_SHARED
,
1342 card
->shortname
, sis
)) {
1343 printk(KERN_ERR
"unable to allocate irq %d\n", sis
->irq
);
1344 goto error_out_cleanup
;
1347 sis
->irq
= pci
->irq
;
1348 pci_set_master(pci
);
1350 for (i
= 0; i
< 64; i
++) {
1351 voice
= &sis
->voices
[i
];
1353 voice
->ctrl_base
= SIS_PLAY_DMA_ADDR(sis
->ioaddr
, i
);
1354 voice
->wave_base
= SIS_WAVE_ADDR(sis
->ioaddr
, i
);
1357 voice
= &sis
->capture_voice
;
1358 voice
->flags
= VOICE_CAPTURE
;
1359 voice
->num
= SIS_CAPTURE_CHAN_AC97_PCM_IN
;
1360 voice
->ctrl_base
= SIS_CAPTURE_DMA_ADDR(sis
->ioaddr
, voice
->num
);
1362 rc
= snd_device_new(card
, SNDRV_DEV_LOWLEVEL
, sis
, &ops
);
1364 goto error_out_cleanup
;
1366 snd_card_set_dev(card
, &pci
->dev
);
1374 pci_disable_device(pci
);
1380 static int __devinit
snd_sis7019_probe(struct pci_dev
*pci
,
1381 const struct pci_device_id
*pci_id
)
1383 struct snd_card
*card
;
1384 struct sis7019
*sis
;
1392 card
= snd_card_new(index
, id
, THIS_MODULE
, sizeof(*sis
));
1396 strcpy(card
->driver
, "SiS7019");
1397 strcpy(card
->shortname
, "SiS7019");
1398 rc
= sis_chip_create(card
, pci
);
1400 goto card_error_out
;
1402 sis
= card
->private_data
;
1404 rc
= sis_mixer_create(sis
);
1406 goto card_error_out
;
1408 rc
= sis_pcm_create(sis
);
1410 goto card_error_out
;
1412 snprintf(card
->longname
, sizeof(card
->longname
),
1413 "%s Audio Accelerator with %s at 0x%lx, irq %d",
1414 card
->shortname
, snd_ac97_get_short_name(sis
->ac97
[0]),
1415 sis
->ioport
, sis
->irq
);
1417 rc
= snd_card_register(card
);
1419 goto card_error_out
;
1421 pci_set_drvdata(pci
, card
);
1425 snd_card_free(card
);
1431 static void __devexit
snd_sis7019_remove(struct pci_dev
*pci
)
1433 snd_card_free(pci_get_drvdata(pci
));
1434 pci_set_drvdata(pci
, NULL
);
1437 static struct pci_driver sis7019_driver
= {
1439 .id_table
= snd_sis7019_ids
,
1440 .probe
= snd_sis7019_probe
,
1441 .remove
= __devexit_p(snd_sis7019_remove
),
1444 .suspend
= sis_suspend
,
1445 .resume
= sis_resume
,
1449 static int __init
sis7019_init(void)
1451 return pci_register_driver(&sis7019_driver
);
1454 static void __exit
sis7019_exit(void)
1456 pci_unregister_driver(&sis7019_driver
);
1459 module_init(sis7019_init
);
1460 module_exit(sis7019_exit
);