debug: turn ignore_loglevel into an early param
[wrt350n-kernel.git] / include / linux / skbuff.h
blobc618fbf7d173c4974da2adf399edf51a2c5034cc
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* A. Checksumming of received packets by device.
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
74 * B. Checksumming on output.
76 * NONE: skb is checksummed by protocol or csum is not required.
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
93 * Any questions? No questions, good. --ANK
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
104 #endif
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
112 struct net_device *netoutdev;
113 #endif
114 unsigned int mask;
115 unsigned long data[32 / sizeof(unsigned long)];
117 #endif
119 struct sk_buff_head {
120 /* These two members must be first. */
121 struct sk_buff *next;
122 struct sk_buff *prev;
124 __u32 qlen;
125 spinlock_t lock;
128 struct sk_buff;
130 /* To allow 64K frame to be packed as single skb without frag_list */
131 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
133 typedef struct skb_frag_struct skb_frag_t;
135 struct skb_frag_struct {
136 struct page *page;
137 __u32 page_offset;
138 __u32 size;
141 /* This data is invariant across clones and lives at
142 * the end of the header data, ie. at skb->end.
144 struct skb_shared_info {
145 atomic_t dataref;
146 unsigned short nr_frags;
147 unsigned short gso_size;
148 /* Warning: this field is not always filled in (UFO)! */
149 unsigned short gso_segs;
150 unsigned short gso_type;
151 __be32 ip6_frag_id;
152 struct sk_buff *frag_list;
153 skb_frag_t frags[MAX_SKB_FRAGS];
156 /* We divide dataref into two halves. The higher 16 bits hold references
157 * to the payload part of skb->data. The lower 16 bits hold references to
158 * the entire skb->data. A clone of a headerless skb holds the length of
159 * the header in skb->hdr_len.
161 * All users must obey the rule that the skb->data reference count must be
162 * greater than or equal to the payload reference count.
164 * Holding a reference to the payload part means that the user does not
165 * care about modifications to the header part of skb->data.
167 #define SKB_DATAREF_SHIFT 16
168 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
171 enum {
172 SKB_FCLONE_UNAVAILABLE,
173 SKB_FCLONE_ORIG,
174 SKB_FCLONE_CLONE,
177 enum {
178 SKB_GSO_TCPV4 = 1 << 0,
179 SKB_GSO_UDP = 1 << 1,
181 /* This indicates the skb is from an untrusted source. */
182 SKB_GSO_DODGY = 1 << 2,
184 /* This indicates the tcp segment has CWR set. */
185 SKB_GSO_TCP_ECN = 1 << 3,
187 SKB_GSO_TCPV6 = 1 << 4,
190 #if BITS_PER_LONG > 32
191 #define NET_SKBUFF_DATA_USES_OFFSET 1
192 #endif
194 #ifdef NET_SKBUFF_DATA_USES_OFFSET
195 typedef unsigned int sk_buff_data_t;
196 #else
197 typedef unsigned char *sk_buff_data_t;
198 #endif
200 /**
201 * struct sk_buff - socket buffer
202 * @next: Next buffer in list
203 * @prev: Previous buffer in list
204 * @sk: Socket we are owned by
205 * @tstamp: Time we arrived
206 * @dev: Device we arrived on/are leaving by
207 * @transport_header: Transport layer header
208 * @network_header: Network layer header
209 * @mac_header: Link layer header
210 * @dst: destination entry
211 * @sp: the security path, used for xfrm
212 * @cb: Control buffer. Free for use by every layer. Put private vars here
213 * @len: Length of actual data
214 * @data_len: Data length
215 * @mac_len: Length of link layer header
216 * @hdr_len: writable header length of cloned skb
217 * @csum: Checksum (must include start/offset pair)
218 * @csum_start: Offset from skb->head where checksumming should start
219 * @csum_offset: Offset from csum_start where checksum should be stored
220 * @local_df: allow local fragmentation
221 * @cloned: Head may be cloned (check refcnt to be sure)
222 * @nohdr: Payload reference only, must not modify header
223 * @pkt_type: Packet class
224 * @fclone: skbuff clone status
225 * @ip_summed: Driver fed us an IP checksum
226 * @priority: Packet queueing priority
227 * @users: User count - see {datagram,tcp}.c
228 * @protocol: Packet protocol from driver
229 * @truesize: Buffer size
230 * @head: Head of buffer
231 * @data: Data head pointer
232 * @tail: Tail pointer
233 * @end: End pointer
234 * @destructor: Destruct function
235 * @mark: Generic packet mark
236 * @nfct: Associated connection, if any
237 * @ipvs_property: skbuff is owned by ipvs
238 * @nf_trace: netfilter packet trace flag
239 * @nfctinfo: Relationship of this skb to the connection
240 * @nfct_reasm: netfilter conntrack re-assembly pointer
241 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
242 * @iif: ifindex of device we arrived on
243 * @queue_mapping: Queue mapping for multiqueue devices
244 * @tc_index: Traffic control index
245 * @tc_verd: traffic control verdict
246 * @dma_cookie: a cookie to one of several possible DMA operations
247 * done by skb DMA functions
248 * @secmark: security marking
251 struct sk_buff {
252 /* These two members must be first. */
253 struct sk_buff *next;
254 struct sk_buff *prev;
256 struct sock *sk;
257 ktime_t tstamp;
258 struct net_device *dev;
260 struct dst_entry *dst;
261 struct sec_path *sp;
264 * This is the control buffer. It is free to use for every
265 * layer. Please put your private variables there. If you
266 * want to keep them across layers you have to do a skb_clone()
267 * first. This is owned by whoever has the skb queued ATM.
269 char cb[48];
271 unsigned int len,
272 data_len;
273 __u16 mac_len,
274 hdr_len;
275 union {
276 __wsum csum;
277 struct {
278 __u16 csum_start;
279 __u16 csum_offset;
282 __u32 priority;
283 __u8 local_df:1,
284 cloned:1,
285 ip_summed:2,
286 nohdr:1,
287 nfctinfo:3;
288 __u8 pkt_type:3,
289 fclone:2,
290 ipvs_property:1,
291 peeked:1,
292 nf_trace:1;
293 __be16 protocol;
295 void (*destructor)(struct sk_buff *skb);
296 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
297 struct nf_conntrack *nfct;
298 struct sk_buff *nfct_reasm;
299 #endif
300 #ifdef CONFIG_BRIDGE_NETFILTER
301 struct nf_bridge_info *nf_bridge;
302 #endif
304 int iif;
305 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
306 __u16 queue_mapping;
307 #endif
308 #ifdef CONFIG_NET_SCHED
309 __u16 tc_index; /* traffic control index */
310 #ifdef CONFIG_NET_CLS_ACT
311 __u16 tc_verd; /* traffic control verdict */
312 #endif
313 #endif
314 /* 2 byte hole */
316 #ifdef CONFIG_NET_DMA
317 dma_cookie_t dma_cookie;
318 #endif
319 #ifdef CONFIG_NETWORK_SECMARK
320 __u32 secmark;
321 #endif
323 __u32 mark;
325 sk_buff_data_t transport_header;
326 sk_buff_data_t network_header;
327 sk_buff_data_t mac_header;
328 /* These elements must be at the end, see alloc_skb() for details. */
329 sk_buff_data_t tail;
330 sk_buff_data_t end;
331 unsigned char *head,
332 *data;
333 unsigned int truesize;
334 atomic_t users;
337 #ifdef __KERNEL__
339 * Handling routines are only of interest to the kernel
341 #include <linux/slab.h>
343 #include <asm/system.h>
345 extern void kfree_skb(struct sk_buff *skb);
346 extern void __kfree_skb(struct sk_buff *skb);
347 extern struct sk_buff *__alloc_skb(unsigned int size,
348 gfp_t priority, int fclone, int node);
349 static inline struct sk_buff *alloc_skb(unsigned int size,
350 gfp_t priority)
352 return __alloc_skb(size, priority, 0, -1);
355 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
356 gfp_t priority)
358 return __alloc_skb(size, priority, 1, -1);
361 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
362 extern struct sk_buff *skb_clone(struct sk_buff *skb,
363 gfp_t priority);
364 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
365 gfp_t priority);
366 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
367 gfp_t gfp_mask);
368 extern int pskb_expand_head(struct sk_buff *skb,
369 int nhead, int ntail,
370 gfp_t gfp_mask);
371 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
372 unsigned int headroom);
373 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
374 int newheadroom, int newtailroom,
375 gfp_t priority);
376 extern int skb_to_sgvec(struct sk_buff *skb,
377 struct scatterlist *sg, int offset,
378 int len);
379 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
380 struct sk_buff **trailer);
381 extern int skb_pad(struct sk_buff *skb, int pad);
382 #define dev_kfree_skb(a) kfree_skb(a)
383 extern void skb_over_panic(struct sk_buff *skb, int len,
384 void *here);
385 extern void skb_under_panic(struct sk_buff *skb, int len,
386 void *here);
387 extern void skb_truesize_bug(struct sk_buff *skb);
389 static inline void skb_truesize_check(struct sk_buff *skb)
391 int len = sizeof(struct sk_buff) + skb->len;
393 if (unlikely((int)skb->truesize < len))
394 skb_truesize_bug(skb);
397 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
398 int getfrag(void *from, char *to, int offset,
399 int len,int odd, struct sk_buff *skb),
400 void *from, int length);
402 struct skb_seq_state
404 __u32 lower_offset;
405 __u32 upper_offset;
406 __u32 frag_idx;
407 __u32 stepped_offset;
408 struct sk_buff *root_skb;
409 struct sk_buff *cur_skb;
410 __u8 *frag_data;
413 extern void skb_prepare_seq_read(struct sk_buff *skb,
414 unsigned int from, unsigned int to,
415 struct skb_seq_state *st);
416 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
417 struct skb_seq_state *st);
418 extern void skb_abort_seq_read(struct skb_seq_state *st);
420 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
421 unsigned int to, struct ts_config *config,
422 struct ts_state *state);
424 #ifdef NET_SKBUFF_DATA_USES_OFFSET
425 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
427 return skb->head + skb->end;
429 #else
430 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
432 return skb->end;
434 #endif
436 /* Internal */
437 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
440 * skb_queue_empty - check if a queue is empty
441 * @list: queue head
443 * Returns true if the queue is empty, false otherwise.
445 static inline int skb_queue_empty(const struct sk_buff_head *list)
447 return list->next == (struct sk_buff *)list;
451 * skb_get - reference buffer
452 * @skb: buffer to reference
454 * Makes another reference to a socket buffer and returns a pointer
455 * to the buffer.
457 static inline struct sk_buff *skb_get(struct sk_buff *skb)
459 atomic_inc(&skb->users);
460 return skb;
464 * If users == 1, we are the only owner and are can avoid redundant
465 * atomic change.
469 * skb_cloned - is the buffer a clone
470 * @skb: buffer to check
472 * Returns true if the buffer was generated with skb_clone() and is
473 * one of multiple shared copies of the buffer. Cloned buffers are
474 * shared data so must not be written to under normal circumstances.
476 static inline int skb_cloned(const struct sk_buff *skb)
478 return skb->cloned &&
479 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
483 * skb_header_cloned - is the header a clone
484 * @skb: buffer to check
486 * Returns true if modifying the header part of the buffer requires
487 * the data to be copied.
489 static inline int skb_header_cloned(const struct sk_buff *skb)
491 int dataref;
493 if (!skb->cloned)
494 return 0;
496 dataref = atomic_read(&skb_shinfo(skb)->dataref);
497 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
498 return dataref != 1;
502 * skb_header_release - release reference to header
503 * @skb: buffer to operate on
505 * Drop a reference to the header part of the buffer. This is done
506 * by acquiring a payload reference. You must not read from the header
507 * part of skb->data after this.
509 static inline void skb_header_release(struct sk_buff *skb)
511 BUG_ON(skb->nohdr);
512 skb->nohdr = 1;
513 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
517 * skb_shared - is the buffer shared
518 * @skb: buffer to check
520 * Returns true if more than one person has a reference to this
521 * buffer.
523 static inline int skb_shared(const struct sk_buff *skb)
525 return atomic_read(&skb->users) != 1;
529 * skb_share_check - check if buffer is shared and if so clone it
530 * @skb: buffer to check
531 * @pri: priority for memory allocation
533 * If the buffer is shared the buffer is cloned and the old copy
534 * drops a reference. A new clone with a single reference is returned.
535 * If the buffer is not shared the original buffer is returned. When
536 * being called from interrupt status or with spinlocks held pri must
537 * be GFP_ATOMIC.
539 * NULL is returned on a memory allocation failure.
541 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
542 gfp_t pri)
544 might_sleep_if(pri & __GFP_WAIT);
545 if (skb_shared(skb)) {
546 struct sk_buff *nskb = skb_clone(skb, pri);
547 kfree_skb(skb);
548 skb = nskb;
550 return skb;
554 * Copy shared buffers into a new sk_buff. We effectively do COW on
555 * packets to handle cases where we have a local reader and forward
556 * and a couple of other messy ones. The normal one is tcpdumping
557 * a packet thats being forwarded.
561 * skb_unshare - make a copy of a shared buffer
562 * @skb: buffer to check
563 * @pri: priority for memory allocation
565 * If the socket buffer is a clone then this function creates a new
566 * copy of the data, drops a reference count on the old copy and returns
567 * the new copy with the reference count at 1. If the buffer is not a clone
568 * the original buffer is returned. When called with a spinlock held or
569 * from interrupt state @pri must be %GFP_ATOMIC
571 * %NULL is returned on a memory allocation failure.
573 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
574 gfp_t pri)
576 might_sleep_if(pri & __GFP_WAIT);
577 if (skb_cloned(skb)) {
578 struct sk_buff *nskb = skb_copy(skb, pri);
579 kfree_skb(skb); /* Free our shared copy */
580 skb = nskb;
582 return skb;
586 * skb_peek
587 * @list_: list to peek at
589 * Peek an &sk_buff. Unlike most other operations you _MUST_
590 * be careful with this one. A peek leaves the buffer on the
591 * list and someone else may run off with it. You must hold
592 * the appropriate locks or have a private queue to do this.
594 * Returns %NULL for an empty list or a pointer to the head element.
595 * The reference count is not incremented and the reference is therefore
596 * volatile. Use with caution.
598 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
600 struct sk_buff *list = ((struct sk_buff *)list_)->next;
601 if (list == (struct sk_buff *)list_)
602 list = NULL;
603 return list;
607 * skb_peek_tail
608 * @list_: list to peek at
610 * Peek an &sk_buff. Unlike most other operations you _MUST_
611 * be careful with this one. A peek leaves the buffer on the
612 * list and someone else may run off with it. You must hold
613 * the appropriate locks or have a private queue to do this.
615 * Returns %NULL for an empty list or a pointer to the tail element.
616 * The reference count is not incremented and the reference is therefore
617 * volatile. Use with caution.
619 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
621 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
622 if (list == (struct sk_buff *)list_)
623 list = NULL;
624 return list;
628 * skb_queue_len - get queue length
629 * @list_: list to measure
631 * Return the length of an &sk_buff queue.
633 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
635 return list_->qlen;
639 * This function creates a split out lock class for each invocation;
640 * this is needed for now since a whole lot of users of the skb-queue
641 * infrastructure in drivers have different locking usage (in hardirq)
642 * than the networking core (in softirq only). In the long run either the
643 * network layer or drivers should need annotation to consolidate the
644 * main types of usage into 3 classes.
646 static inline void skb_queue_head_init(struct sk_buff_head *list)
648 spin_lock_init(&list->lock);
649 list->prev = list->next = (struct sk_buff *)list;
650 list->qlen = 0;
653 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
654 struct lock_class_key *class)
656 skb_queue_head_init(list);
657 lockdep_set_class(&list->lock, class);
661 * Insert an sk_buff at the start of a list.
663 * The "__skb_xxxx()" functions are the non-atomic ones that
664 * can only be called with interrupts disabled.
668 * __skb_queue_after - queue a buffer at the list head
669 * @list: list to use
670 * @prev: place after this buffer
671 * @newsk: buffer to queue
673 * Queue a buffer int the middle of a list. This function takes no locks
674 * and you must therefore hold required locks before calling it.
676 * A buffer cannot be placed on two lists at the same time.
678 static inline void __skb_queue_after(struct sk_buff_head *list,
679 struct sk_buff *prev,
680 struct sk_buff *newsk)
682 struct sk_buff *next;
683 list->qlen++;
685 next = prev->next;
686 newsk->next = next;
687 newsk->prev = prev;
688 next->prev = prev->next = newsk;
692 * __skb_queue_head - queue a buffer at the list head
693 * @list: list to use
694 * @newsk: buffer to queue
696 * Queue a buffer at the start of a list. This function takes no locks
697 * and you must therefore hold required locks before calling it.
699 * A buffer cannot be placed on two lists at the same time.
701 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
702 static inline void __skb_queue_head(struct sk_buff_head *list,
703 struct sk_buff *newsk)
705 __skb_queue_after(list, (struct sk_buff *)list, newsk);
709 * __skb_queue_tail - queue a buffer at the list tail
710 * @list: list to use
711 * @newsk: buffer to queue
713 * Queue a buffer at the end of a list. This function takes no locks
714 * and you must therefore hold required locks before calling it.
716 * A buffer cannot be placed on two lists at the same time.
718 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
719 static inline void __skb_queue_tail(struct sk_buff_head *list,
720 struct sk_buff *newsk)
722 struct sk_buff *prev, *next;
724 list->qlen++;
725 next = (struct sk_buff *)list;
726 prev = next->prev;
727 newsk->next = next;
728 newsk->prev = prev;
729 next->prev = prev->next = newsk;
734 * __skb_dequeue - remove from the head of the queue
735 * @list: list to dequeue from
737 * Remove the head of the list. This function does not take any locks
738 * so must be used with appropriate locks held only. The head item is
739 * returned or %NULL if the list is empty.
741 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
742 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
744 struct sk_buff *next, *prev, *result;
746 prev = (struct sk_buff *) list;
747 next = prev->next;
748 result = NULL;
749 if (next != prev) {
750 result = next;
751 next = next->next;
752 list->qlen--;
753 next->prev = prev;
754 prev->next = next;
755 result->next = result->prev = NULL;
757 return result;
762 * Insert a packet on a list.
764 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
765 static inline void __skb_insert(struct sk_buff *newsk,
766 struct sk_buff *prev, struct sk_buff *next,
767 struct sk_buff_head *list)
769 newsk->next = next;
770 newsk->prev = prev;
771 next->prev = prev->next = newsk;
772 list->qlen++;
776 * Place a packet after a given packet in a list.
778 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
779 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
781 __skb_insert(newsk, old, old->next, list);
785 * remove sk_buff from list. _Must_ be called atomically, and with
786 * the list known..
788 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
789 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
791 struct sk_buff *next, *prev;
793 list->qlen--;
794 next = skb->next;
795 prev = skb->prev;
796 skb->next = skb->prev = NULL;
797 next->prev = prev;
798 prev->next = next;
802 /* XXX: more streamlined implementation */
805 * __skb_dequeue_tail - remove from the tail of the queue
806 * @list: list to dequeue from
808 * Remove the tail of the list. This function does not take any locks
809 * so must be used with appropriate locks held only. The tail item is
810 * returned or %NULL if the list is empty.
812 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
813 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
815 struct sk_buff *skb = skb_peek_tail(list);
816 if (skb)
817 __skb_unlink(skb, list);
818 return skb;
822 static inline int skb_is_nonlinear(const struct sk_buff *skb)
824 return skb->data_len;
827 static inline unsigned int skb_headlen(const struct sk_buff *skb)
829 return skb->len - skb->data_len;
832 static inline int skb_pagelen(const struct sk_buff *skb)
834 int i, len = 0;
836 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
837 len += skb_shinfo(skb)->frags[i].size;
838 return len + skb_headlen(skb);
841 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
842 struct page *page, int off, int size)
844 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
846 frag->page = page;
847 frag->page_offset = off;
848 frag->size = size;
849 skb_shinfo(skb)->nr_frags = i + 1;
852 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
853 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
854 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
856 #ifdef NET_SKBUFF_DATA_USES_OFFSET
857 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
859 return skb->head + skb->tail;
862 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
864 skb->tail = skb->data - skb->head;
867 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
869 skb_reset_tail_pointer(skb);
870 skb->tail += offset;
872 #else /* NET_SKBUFF_DATA_USES_OFFSET */
873 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
875 return skb->tail;
878 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
880 skb->tail = skb->data;
883 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
885 skb->tail = skb->data + offset;
888 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
891 * Add data to an sk_buff
893 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
895 unsigned char *tmp = skb_tail_pointer(skb);
896 SKB_LINEAR_ASSERT(skb);
897 skb->tail += len;
898 skb->len += len;
899 return tmp;
903 * skb_put - add data to a buffer
904 * @skb: buffer to use
905 * @len: amount of data to add
907 * This function extends the used data area of the buffer. If this would
908 * exceed the total buffer size the kernel will panic. A pointer to the
909 * first byte of the extra data is returned.
911 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
913 unsigned char *tmp = skb_tail_pointer(skb);
914 SKB_LINEAR_ASSERT(skb);
915 skb->tail += len;
916 skb->len += len;
917 if (unlikely(skb->tail > skb->end))
918 skb_over_panic(skb, len, current_text_addr());
919 return tmp;
922 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
924 skb->data -= len;
925 skb->len += len;
926 return skb->data;
930 * skb_push - add data to the start of a buffer
931 * @skb: buffer to use
932 * @len: amount of data to add
934 * This function extends the used data area of the buffer at the buffer
935 * start. If this would exceed the total buffer headroom the kernel will
936 * panic. A pointer to the first byte of the extra data is returned.
938 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
940 skb->data -= len;
941 skb->len += len;
942 if (unlikely(skb->data<skb->head))
943 skb_under_panic(skb, len, current_text_addr());
944 return skb->data;
947 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
949 skb->len -= len;
950 BUG_ON(skb->len < skb->data_len);
951 return skb->data += len;
955 * skb_pull - remove data from the start of a buffer
956 * @skb: buffer to use
957 * @len: amount of data to remove
959 * This function removes data from the start of a buffer, returning
960 * the memory to the headroom. A pointer to the next data in the buffer
961 * is returned. Once the data has been pulled future pushes will overwrite
962 * the old data.
964 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
966 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
969 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
971 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
973 if (len > skb_headlen(skb) &&
974 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
975 return NULL;
976 skb->len -= len;
977 return skb->data += len;
980 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
982 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
985 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
987 if (likely(len <= skb_headlen(skb)))
988 return 1;
989 if (unlikely(len > skb->len))
990 return 0;
991 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
995 * skb_headroom - bytes at buffer head
996 * @skb: buffer to check
998 * Return the number of bytes of free space at the head of an &sk_buff.
1000 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1002 return skb->data - skb->head;
1006 * skb_tailroom - bytes at buffer end
1007 * @skb: buffer to check
1009 * Return the number of bytes of free space at the tail of an sk_buff
1011 static inline int skb_tailroom(const struct sk_buff *skb)
1013 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1017 * skb_reserve - adjust headroom
1018 * @skb: buffer to alter
1019 * @len: bytes to move
1021 * Increase the headroom of an empty &sk_buff by reducing the tail
1022 * room. This is only allowed for an empty buffer.
1024 static inline void skb_reserve(struct sk_buff *skb, int len)
1026 skb->data += len;
1027 skb->tail += len;
1030 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1031 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1033 return skb->head + skb->transport_header;
1036 static inline void skb_reset_transport_header(struct sk_buff *skb)
1038 skb->transport_header = skb->data - skb->head;
1041 static inline void skb_set_transport_header(struct sk_buff *skb,
1042 const int offset)
1044 skb_reset_transport_header(skb);
1045 skb->transport_header += offset;
1048 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1050 return skb->head + skb->network_header;
1053 static inline void skb_reset_network_header(struct sk_buff *skb)
1055 skb->network_header = skb->data - skb->head;
1058 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1060 skb_reset_network_header(skb);
1061 skb->network_header += offset;
1064 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1066 return skb->head + skb->mac_header;
1069 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1071 return skb->mac_header != ~0U;
1074 static inline void skb_reset_mac_header(struct sk_buff *skb)
1076 skb->mac_header = skb->data - skb->head;
1079 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1081 skb_reset_mac_header(skb);
1082 skb->mac_header += offset;
1085 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1087 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1089 return skb->transport_header;
1092 static inline void skb_reset_transport_header(struct sk_buff *skb)
1094 skb->transport_header = skb->data;
1097 static inline void skb_set_transport_header(struct sk_buff *skb,
1098 const int offset)
1100 skb->transport_header = skb->data + offset;
1103 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1105 return skb->network_header;
1108 static inline void skb_reset_network_header(struct sk_buff *skb)
1110 skb->network_header = skb->data;
1113 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1115 skb->network_header = skb->data + offset;
1118 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1120 return skb->mac_header;
1123 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1125 return skb->mac_header != NULL;
1128 static inline void skb_reset_mac_header(struct sk_buff *skb)
1130 skb->mac_header = skb->data;
1133 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1135 skb->mac_header = skb->data + offset;
1137 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1139 static inline int skb_transport_offset(const struct sk_buff *skb)
1141 return skb_transport_header(skb) - skb->data;
1144 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1146 return skb->transport_header - skb->network_header;
1149 static inline int skb_network_offset(const struct sk_buff *skb)
1151 return skb_network_header(skb) - skb->data;
1155 * CPUs often take a performance hit when accessing unaligned memory
1156 * locations. The actual performance hit varies, it can be small if the
1157 * hardware handles it or large if we have to take an exception and fix it
1158 * in software.
1160 * Since an ethernet header is 14 bytes network drivers often end up with
1161 * the IP header at an unaligned offset. The IP header can be aligned by
1162 * shifting the start of the packet by 2 bytes. Drivers should do this
1163 * with:
1165 * skb_reserve(NET_IP_ALIGN);
1167 * The downside to this alignment of the IP header is that the DMA is now
1168 * unaligned. On some architectures the cost of an unaligned DMA is high
1169 * and this cost outweighs the gains made by aligning the IP header.
1171 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1172 * to be overridden.
1174 #ifndef NET_IP_ALIGN
1175 #define NET_IP_ALIGN 2
1176 #endif
1179 * The networking layer reserves some headroom in skb data (via
1180 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1181 * the header has to grow. In the default case, if the header has to grow
1182 * 16 bytes or less we avoid the reallocation.
1184 * Unfortunately this headroom changes the DMA alignment of the resulting
1185 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1186 * on some architectures. An architecture can override this value,
1187 * perhaps setting it to a cacheline in size (since that will maintain
1188 * cacheline alignment of the DMA). It must be a power of 2.
1190 * Various parts of the networking layer expect at least 16 bytes of
1191 * headroom, you should not reduce this.
1193 #ifndef NET_SKB_PAD
1194 #define NET_SKB_PAD 16
1195 #endif
1197 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1199 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1201 if (unlikely(skb->data_len)) {
1202 WARN_ON(1);
1203 return;
1205 skb->len = len;
1206 skb_set_tail_pointer(skb, len);
1210 * skb_trim - remove end from a buffer
1211 * @skb: buffer to alter
1212 * @len: new length
1214 * Cut the length of a buffer down by removing data from the tail. If
1215 * the buffer is already under the length specified it is not modified.
1216 * The skb must be linear.
1218 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1220 if (skb->len > len)
1221 __skb_trim(skb, len);
1225 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1227 if (skb->data_len)
1228 return ___pskb_trim(skb, len);
1229 __skb_trim(skb, len);
1230 return 0;
1233 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1235 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1239 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1240 * @skb: buffer to alter
1241 * @len: new length
1243 * This is identical to pskb_trim except that the caller knows that
1244 * the skb is not cloned so we should never get an error due to out-
1245 * of-memory.
1247 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1249 int err = pskb_trim(skb, len);
1250 BUG_ON(err);
1254 * skb_orphan - orphan a buffer
1255 * @skb: buffer to orphan
1257 * If a buffer currently has an owner then we call the owner's
1258 * destructor function and make the @skb unowned. The buffer continues
1259 * to exist but is no longer charged to its former owner.
1261 static inline void skb_orphan(struct sk_buff *skb)
1263 if (skb->destructor)
1264 skb->destructor(skb);
1265 skb->destructor = NULL;
1266 skb->sk = NULL;
1270 * __skb_queue_purge - empty a list
1271 * @list: list to empty
1273 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1274 * the list and one reference dropped. This function does not take the
1275 * list lock and the caller must hold the relevant locks to use it.
1277 extern void skb_queue_purge(struct sk_buff_head *list);
1278 static inline void __skb_queue_purge(struct sk_buff_head *list)
1280 struct sk_buff *skb;
1281 while ((skb = __skb_dequeue(list)) != NULL)
1282 kfree_skb(skb);
1286 * __dev_alloc_skb - allocate an skbuff for receiving
1287 * @length: length to allocate
1288 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1290 * Allocate a new &sk_buff and assign it a usage count of one. The
1291 * buffer has unspecified headroom built in. Users should allocate
1292 * the headroom they think they need without accounting for the
1293 * built in space. The built in space is used for optimisations.
1295 * %NULL is returned if there is no free memory.
1297 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1298 gfp_t gfp_mask)
1300 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1301 if (likely(skb))
1302 skb_reserve(skb, NET_SKB_PAD);
1303 return skb;
1307 * dev_alloc_skb - allocate an skbuff for receiving
1308 * @length: length to allocate
1310 * Allocate a new &sk_buff and assign it a usage count of one. The
1311 * buffer has unspecified headroom built in. Users should allocate
1312 * the headroom they think they need without accounting for the
1313 * built in space. The built in space is used for optimisations.
1315 * %NULL is returned if there is no free memory. Although this function
1316 * allocates memory it can be called from an interrupt.
1318 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1320 return __dev_alloc_skb(length, GFP_ATOMIC);
1323 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1324 unsigned int length, gfp_t gfp_mask);
1327 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1328 * @dev: network device to receive on
1329 * @length: length to allocate
1331 * Allocate a new &sk_buff and assign it a usage count of one. The
1332 * buffer has unspecified headroom built in. Users should allocate
1333 * the headroom they think they need without accounting for the
1334 * built in space. The built in space is used for optimisations.
1336 * %NULL is returned if there is no free memory. Although this function
1337 * allocates memory it can be called from an interrupt.
1339 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1340 unsigned int length)
1342 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1346 * skb_clone_writable - is the header of a clone writable
1347 * @skb: buffer to check
1348 * @len: length up to which to write
1350 * Returns true if modifying the header part of the cloned buffer
1351 * does not requires the data to be copied.
1353 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1355 return !skb_header_cloned(skb) &&
1356 skb_headroom(skb) + len <= skb->hdr_len;
1359 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1360 int cloned)
1362 int delta = 0;
1364 if (headroom < NET_SKB_PAD)
1365 headroom = NET_SKB_PAD;
1366 if (headroom > skb_headroom(skb))
1367 delta = headroom - skb_headroom(skb);
1369 if (delta || cloned)
1370 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1371 GFP_ATOMIC);
1372 return 0;
1376 * skb_cow - copy header of skb when it is required
1377 * @skb: buffer to cow
1378 * @headroom: needed headroom
1380 * If the skb passed lacks sufficient headroom or its data part
1381 * is shared, data is reallocated. If reallocation fails, an error
1382 * is returned and original skb is not changed.
1384 * The result is skb with writable area skb->head...skb->tail
1385 * and at least @headroom of space at head.
1387 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1389 return __skb_cow(skb, headroom, skb_cloned(skb));
1393 * skb_cow_head - skb_cow but only making the head writable
1394 * @skb: buffer to cow
1395 * @headroom: needed headroom
1397 * This function is identical to skb_cow except that we replace the
1398 * skb_cloned check by skb_header_cloned. It should be used when
1399 * you only need to push on some header and do not need to modify
1400 * the data.
1402 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1404 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1408 * skb_padto - pad an skbuff up to a minimal size
1409 * @skb: buffer to pad
1410 * @len: minimal length
1412 * Pads up a buffer to ensure the trailing bytes exist and are
1413 * blanked. If the buffer already contains sufficient data it
1414 * is untouched. Otherwise it is extended. Returns zero on
1415 * success. The skb is freed on error.
1418 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1420 unsigned int size = skb->len;
1421 if (likely(size >= len))
1422 return 0;
1423 return skb_pad(skb, len-size);
1426 static inline int skb_add_data(struct sk_buff *skb,
1427 char __user *from, int copy)
1429 const int off = skb->len;
1431 if (skb->ip_summed == CHECKSUM_NONE) {
1432 int err = 0;
1433 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1434 copy, 0, &err);
1435 if (!err) {
1436 skb->csum = csum_block_add(skb->csum, csum, off);
1437 return 0;
1439 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1440 return 0;
1442 __skb_trim(skb, off);
1443 return -EFAULT;
1446 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1447 struct page *page, int off)
1449 if (i) {
1450 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1452 return page == frag->page &&
1453 off == frag->page_offset + frag->size;
1455 return 0;
1458 static inline int __skb_linearize(struct sk_buff *skb)
1460 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1464 * skb_linearize - convert paged skb to linear one
1465 * @skb: buffer to linarize
1467 * If there is no free memory -ENOMEM is returned, otherwise zero
1468 * is returned and the old skb data released.
1470 static inline int skb_linearize(struct sk_buff *skb)
1472 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1476 * skb_linearize_cow - make sure skb is linear and writable
1477 * @skb: buffer to process
1479 * If there is no free memory -ENOMEM is returned, otherwise zero
1480 * is returned and the old skb data released.
1482 static inline int skb_linearize_cow(struct sk_buff *skb)
1484 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1485 __skb_linearize(skb) : 0;
1489 * skb_postpull_rcsum - update checksum for received skb after pull
1490 * @skb: buffer to update
1491 * @start: start of data before pull
1492 * @len: length of data pulled
1494 * After doing a pull on a received packet, you need to call this to
1495 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1496 * CHECKSUM_NONE so that it can be recomputed from scratch.
1499 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1500 const void *start, unsigned int len)
1502 if (skb->ip_summed == CHECKSUM_COMPLETE)
1503 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1506 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1509 * pskb_trim_rcsum - trim received skb and update checksum
1510 * @skb: buffer to trim
1511 * @len: new length
1513 * This is exactly the same as pskb_trim except that it ensures the
1514 * checksum of received packets are still valid after the operation.
1517 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1519 if (likely(len >= skb->len))
1520 return 0;
1521 if (skb->ip_summed == CHECKSUM_COMPLETE)
1522 skb->ip_summed = CHECKSUM_NONE;
1523 return __pskb_trim(skb, len);
1526 #define skb_queue_walk(queue, skb) \
1527 for (skb = (queue)->next; \
1528 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1529 skb = skb->next)
1531 #define skb_queue_walk_safe(queue, skb, tmp) \
1532 for (skb = (queue)->next, tmp = skb->next; \
1533 skb != (struct sk_buff *)(queue); \
1534 skb = tmp, tmp = skb->next)
1536 #define skb_queue_reverse_walk(queue, skb) \
1537 for (skb = (queue)->prev; \
1538 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1539 skb = skb->prev)
1542 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1543 int *peeked, int *err);
1544 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1545 int noblock, int *err);
1546 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1547 struct poll_table_struct *wait);
1548 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1549 int offset, struct iovec *to,
1550 int size);
1551 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1552 int hlen,
1553 struct iovec *iov);
1554 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1555 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1556 unsigned int flags);
1557 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1558 int len, __wsum csum);
1559 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1560 void *to, int len);
1561 extern int skb_store_bits(struct sk_buff *skb, int offset,
1562 const void *from, int len);
1563 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1564 int offset, u8 *to, int len,
1565 __wsum csum);
1566 extern int skb_splice_bits(struct sk_buff *skb,
1567 unsigned int offset,
1568 struct pipe_inode_info *pipe,
1569 unsigned int len,
1570 unsigned int flags);
1571 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1572 extern void skb_split(struct sk_buff *skb,
1573 struct sk_buff *skb1, const u32 len);
1575 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1577 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1578 int len, void *buffer)
1580 int hlen = skb_headlen(skb);
1582 if (hlen - offset >= len)
1583 return skb->data + offset;
1585 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1586 return NULL;
1588 return buffer;
1591 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1592 void *to,
1593 const unsigned int len)
1595 memcpy(to, skb->data, len);
1598 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1599 const int offset, void *to,
1600 const unsigned int len)
1602 memcpy(to, skb->data + offset, len);
1605 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1606 const void *from,
1607 const unsigned int len)
1609 memcpy(skb->data, from, len);
1612 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1613 const int offset,
1614 const void *from,
1615 const unsigned int len)
1617 memcpy(skb->data + offset, from, len);
1620 extern void skb_init(void);
1623 * skb_get_timestamp - get timestamp from a skb
1624 * @skb: skb to get stamp from
1625 * @stamp: pointer to struct timeval to store stamp in
1627 * Timestamps are stored in the skb as offsets to a base timestamp.
1628 * This function converts the offset back to a struct timeval and stores
1629 * it in stamp.
1631 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1633 *stamp = ktime_to_timeval(skb->tstamp);
1636 static inline void __net_timestamp(struct sk_buff *skb)
1638 skb->tstamp = ktime_get_real();
1641 static inline ktime_t net_timedelta(ktime_t t)
1643 return ktime_sub(ktime_get_real(), t);
1646 static inline ktime_t net_invalid_timestamp(void)
1648 return ktime_set(0, 0);
1651 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1652 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1654 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1656 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1660 * skb_checksum_complete - Calculate checksum of an entire packet
1661 * @skb: packet to process
1663 * This function calculates the checksum over the entire packet plus
1664 * the value of skb->csum. The latter can be used to supply the
1665 * checksum of a pseudo header as used by TCP/UDP. It returns the
1666 * checksum.
1668 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1669 * this function can be used to verify that checksum on received
1670 * packets. In that case the function should return zero if the
1671 * checksum is correct. In particular, this function will return zero
1672 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1673 * hardware has already verified the correctness of the checksum.
1675 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1677 return skb_csum_unnecessary(skb) ?
1678 0 : __skb_checksum_complete(skb);
1681 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1682 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1683 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1685 if (nfct && atomic_dec_and_test(&nfct->use))
1686 nf_conntrack_destroy(nfct);
1688 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1690 if (nfct)
1691 atomic_inc(&nfct->use);
1693 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1695 if (skb)
1696 atomic_inc(&skb->users);
1698 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1700 if (skb)
1701 kfree_skb(skb);
1703 #endif
1704 #ifdef CONFIG_BRIDGE_NETFILTER
1705 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1707 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1708 kfree(nf_bridge);
1710 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1712 if (nf_bridge)
1713 atomic_inc(&nf_bridge->use);
1715 #endif /* CONFIG_BRIDGE_NETFILTER */
1716 static inline void nf_reset(struct sk_buff *skb)
1718 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1719 nf_conntrack_put(skb->nfct);
1720 skb->nfct = NULL;
1721 nf_conntrack_put_reasm(skb->nfct_reasm);
1722 skb->nfct_reasm = NULL;
1723 #endif
1724 #ifdef CONFIG_BRIDGE_NETFILTER
1725 nf_bridge_put(skb->nf_bridge);
1726 skb->nf_bridge = NULL;
1727 #endif
1730 /* Note: This doesn't put any conntrack and bridge info in dst. */
1731 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1733 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1734 dst->nfct = src->nfct;
1735 nf_conntrack_get(src->nfct);
1736 dst->nfctinfo = src->nfctinfo;
1737 dst->nfct_reasm = src->nfct_reasm;
1738 nf_conntrack_get_reasm(src->nfct_reasm);
1739 #endif
1740 #ifdef CONFIG_BRIDGE_NETFILTER
1741 dst->nf_bridge = src->nf_bridge;
1742 nf_bridge_get(src->nf_bridge);
1743 #endif
1746 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1748 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1749 nf_conntrack_put(dst->nfct);
1750 nf_conntrack_put_reasm(dst->nfct_reasm);
1751 #endif
1752 #ifdef CONFIG_BRIDGE_NETFILTER
1753 nf_bridge_put(dst->nf_bridge);
1754 #endif
1755 __nf_copy(dst, src);
1758 #ifdef CONFIG_NETWORK_SECMARK
1759 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1761 to->secmark = from->secmark;
1764 static inline void skb_init_secmark(struct sk_buff *skb)
1766 skb->secmark = 0;
1768 #else
1769 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1772 static inline void skb_init_secmark(struct sk_buff *skb)
1774 #endif
1776 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1778 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1779 skb->queue_mapping = queue_mapping;
1780 #endif
1783 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1785 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1786 return skb->queue_mapping;
1787 #else
1788 return 0;
1789 #endif
1792 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1794 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1795 to->queue_mapping = from->queue_mapping;
1796 #endif
1799 static inline int skb_is_gso(const struct sk_buff *skb)
1801 return skb_shinfo(skb)->gso_size;
1804 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1806 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1809 static inline void skb_forward_csum(struct sk_buff *skb)
1811 /* Unfortunately we don't support this one. Any brave souls? */
1812 if (skb->ip_summed == CHECKSUM_COMPLETE)
1813 skb->ip_summed = CHECKSUM_NONE;
1816 #endif /* __KERNEL__ */
1817 #endif /* _LINUX_SKBUFF_H */