2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations prepare_write and/or commit_write are not available on the
45 * Anton Altaparmakov, 16 Feb 2005
48 * - Advisory locking is ignored here.
49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/sched.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/smp_lock.h>
66 #include <linux/swap.h>
67 #include <linux/slab.h>
68 #include <linux/loop.h>
69 #include <linux/compat.h>
70 #include <linux/suspend.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 #include <linux/kthread.h>
77 #include <linux/splice.h>
79 #include <asm/uaccess.h>
81 static LIST_HEAD(loop_devices
);
82 static DEFINE_MUTEX(loop_devices_mutex
);
87 static int transfer_none(struct loop_device
*lo
, int cmd
,
88 struct page
*raw_page
, unsigned raw_off
,
89 struct page
*loop_page
, unsigned loop_off
,
90 int size
, sector_t real_block
)
92 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
93 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
96 memcpy(loop_buf
, raw_buf
, size
);
98 memcpy(raw_buf
, loop_buf
, size
);
100 kunmap_atomic(raw_buf
, KM_USER0
);
101 kunmap_atomic(loop_buf
, KM_USER1
);
106 static int transfer_xor(struct loop_device
*lo
, int cmd
,
107 struct page
*raw_page
, unsigned raw_off
,
108 struct page
*loop_page
, unsigned loop_off
,
109 int size
, sector_t real_block
)
111 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
112 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
113 char *in
, *out
, *key
;
124 key
= lo
->lo_encrypt_key
;
125 keysize
= lo
->lo_encrypt_key_size
;
126 for (i
= 0; i
< size
; i
++)
127 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
129 kunmap_atomic(raw_buf
, KM_USER0
);
130 kunmap_atomic(loop_buf
, KM_USER1
);
135 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
137 if (unlikely(info
->lo_encrypt_key_size
<= 0))
142 static struct loop_func_table none_funcs
= {
143 .number
= LO_CRYPT_NONE
,
144 .transfer
= transfer_none
,
147 static struct loop_func_table xor_funcs
= {
148 .number
= LO_CRYPT_XOR
,
149 .transfer
= transfer_xor
,
153 /* xfer_funcs[0] is special - its release function is never called */
154 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
159 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
161 loff_t size
, offset
, loopsize
;
163 /* Compute loopsize in bytes */
164 size
= i_size_read(file
->f_mapping
->host
);
165 offset
= lo
->lo_offset
;
166 loopsize
= size
- offset
;
167 if (lo
->lo_sizelimit
> 0 && lo
->lo_sizelimit
< loopsize
)
168 loopsize
= lo
->lo_sizelimit
;
171 * Unfortunately, if we want to do I/O on the device,
172 * the number of 512-byte sectors has to fit into a sector_t.
174 return loopsize
>> 9;
178 figure_loop_size(struct loop_device
*lo
)
180 loff_t size
= get_loop_size(lo
, lo
->lo_backing_file
);
181 sector_t x
= (sector_t
)size
;
183 if (unlikely((loff_t
)x
!= size
))
186 set_capacity(lo
->lo_disk
, x
);
191 lo_do_transfer(struct loop_device
*lo
, int cmd
,
192 struct page
*rpage
, unsigned roffs
,
193 struct page
*lpage
, unsigned loffs
,
194 int size
, sector_t rblock
)
196 if (unlikely(!lo
->transfer
))
199 return lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
203 * do_lo_send_aops - helper for writing data to a loop device
205 * This is the fast version for backing filesystems which implement the address
206 * space operations prepare_write and commit_write.
208 static int do_lo_send_aops(struct loop_device
*lo
, struct bio_vec
*bvec
,
209 int bsize
, loff_t pos
, struct page
*page
)
211 struct file
*file
= lo
->lo_backing_file
; /* kudos to NFsckingS */
212 struct address_space
*mapping
= file
->f_mapping
;
213 const struct address_space_operations
*aops
= mapping
->a_ops
;
215 unsigned offset
, bv_offs
;
218 mutex_lock(&mapping
->host
->i_mutex
);
219 index
= pos
>> PAGE_CACHE_SHIFT
;
220 offset
= pos
& ((pgoff_t
)PAGE_CACHE_SIZE
- 1);
221 bv_offs
= bvec
->bv_offset
;
228 IV
= ((sector_t
)index
<< (PAGE_CACHE_SHIFT
- 9))+(offset
>> 9);
229 size
= PAGE_CACHE_SIZE
- offset
;
232 page
= grab_cache_page(mapping
, index
);
235 ret
= aops
->prepare_write(file
, page
, offset
,
238 if (ret
== AOP_TRUNCATED_PAGE
) {
239 page_cache_release(page
);
244 transfer_result
= lo_do_transfer(lo
, WRITE
, page
, offset
,
245 bvec
->bv_page
, bv_offs
, size
, IV
);
246 if (unlikely(transfer_result
)) {
248 * The transfer failed, but we still write the data to
249 * keep prepare/commit calls balanced.
251 printk(KERN_ERR
"loop: transfer error block %llu\n",
252 (unsigned long long)index
);
253 zero_user_page(page
, offset
, size
, KM_USER0
);
255 flush_dcache_page(page
);
256 ret
= aops
->commit_write(file
, page
, offset
,
259 if (ret
== AOP_TRUNCATED_PAGE
) {
260 page_cache_release(page
);
265 if (unlikely(transfer_result
))
273 page_cache_release(page
);
277 mutex_unlock(&mapping
->host
->i_mutex
);
281 page_cache_release(page
);
288 * __do_lo_send_write - helper for writing data to a loop device
290 * This helper just factors out common code between do_lo_send_direct_write()
291 * and do_lo_send_write().
293 static int __do_lo_send_write(struct file
*file
,
294 u8
*buf
, const int len
, loff_t pos
)
297 mm_segment_t old_fs
= get_fs();
300 bw
= file
->f_op
->write(file
, buf
, len
, &pos
);
302 if (likely(bw
== len
))
304 printk(KERN_ERR
"loop: Write error at byte offset %llu, length %i.\n",
305 (unsigned long long)pos
, len
);
312 * do_lo_send_direct_write - helper for writing data to a loop device
314 * This is the fast, non-transforming version for backing filesystems which do
315 * not implement the address space operations prepare_write and commit_write.
316 * It uses the write file operation which should be present on all writeable
319 static int do_lo_send_direct_write(struct loop_device
*lo
,
320 struct bio_vec
*bvec
, int bsize
, loff_t pos
, struct page
*page
)
322 ssize_t bw
= __do_lo_send_write(lo
->lo_backing_file
,
323 kmap(bvec
->bv_page
) + bvec
->bv_offset
,
325 kunmap(bvec
->bv_page
);
331 * do_lo_send_write - helper for writing data to a loop device
333 * This is the slow, transforming version for filesystems which do not
334 * implement the address space operations prepare_write and commit_write. It
335 * uses the write file operation which should be present on all writeable
338 * Using fops->write is slower than using aops->{prepare,commit}_write in the
339 * transforming case because we need to double buffer the data as we cannot do
340 * the transformations in place as we do not have direct access to the
341 * destination pages of the backing file.
343 static int do_lo_send_write(struct loop_device
*lo
, struct bio_vec
*bvec
,
344 int bsize
, loff_t pos
, struct page
*page
)
346 int ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
->bv_page
,
347 bvec
->bv_offset
, bvec
->bv_len
, pos
>> 9);
349 return __do_lo_send_write(lo
->lo_backing_file
,
350 page_address(page
), bvec
->bv_len
,
352 printk(KERN_ERR
"loop: Transfer error at byte offset %llu, "
353 "length %i.\n", (unsigned long long)pos
, bvec
->bv_len
);
359 static int lo_send(struct loop_device
*lo
, struct bio
*bio
, int bsize
,
362 int (*do_lo_send
)(struct loop_device
*, struct bio_vec
*, int, loff_t
,
364 struct bio_vec
*bvec
;
365 struct page
*page
= NULL
;
368 do_lo_send
= do_lo_send_aops
;
369 if (!(lo
->lo_flags
& LO_FLAGS_USE_AOPS
)) {
370 do_lo_send
= do_lo_send_direct_write
;
371 if (lo
->transfer
!= transfer_none
) {
372 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
);
376 do_lo_send
= do_lo_send_write
;
379 bio_for_each_segment(bvec
, bio
, i
) {
380 ret
= do_lo_send(lo
, bvec
, bsize
, pos
, page
);
392 printk(KERN_ERR
"loop: Failed to allocate temporary page for write.\n");
397 struct lo_read_data
{
398 struct loop_device
*lo
;
405 lo_splice_actor(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
406 struct splice_desc
*sd
)
408 struct lo_read_data
*p
= sd
->u
.data
;
409 struct loop_device
*lo
= p
->lo
;
410 struct page
*page
= buf
->page
;
415 ret
= buf
->ops
->confirm(pipe
, buf
);
419 IV
= ((sector_t
) page
->index
<< (PAGE_CACHE_SHIFT
- 9)) +
425 if (lo_do_transfer(lo
, READ
, page
, buf
->offset
, p
->page
, p
->offset
, size
, IV
)) {
426 printk(KERN_ERR
"loop: transfer error block %ld\n",
431 flush_dcache_page(p
->page
);
440 lo_direct_splice_actor(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
442 return __splice_from_pipe(pipe
, sd
, lo_splice_actor
);
446 do_lo_receive(struct loop_device
*lo
,
447 struct bio_vec
*bvec
, int bsize
, loff_t pos
)
449 struct lo_read_data cookie
;
450 struct splice_desc sd
;
455 cookie
.page
= bvec
->bv_page
;
456 cookie
.offset
= bvec
->bv_offset
;
457 cookie
.bsize
= bsize
;
460 sd
.total_len
= bvec
->bv_len
;
465 file
= lo
->lo_backing_file
;
466 retval
= splice_direct_to_actor(file
, &sd
, lo_direct_splice_actor
);
475 lo_receive(struct loop_device
*lo
, struct bio
*bio
, int bsize
, loff_t pos
)
477 struct bio_vec
*bvec
;
480 bio_for_each_segment(bvec
, bio
, i
) {
481 ret
= do_lo_receive(lo
, bvec
, bsize
, pos
);
489 static int do_bio_filebacked(struct loop_device
*lo
, struct bio
*bio
)
494 pos
= ((loff_t
) bio
->bi_sector
<< 9) + lo
->lo_offset
;
495 if (bio_rw(bio
) == WRITE
)
496 ret
= lo_send(lo
, bio
, lo
->lo_blocksize
, pos
);
498 ret
= lo_receive(lo
, bio
, lo
->lo_blocksize
, pos
);
503 * Add bio to back of pending list
505 static void loop_add_bio(struct loop_device
*lo
, struct bio
*bio
)
507 if (lo
->lo_biotail
) {
508 lo
->lo_biotail
->bi_next
= bio
;
509 lo
->lo_biotail
= bio
;
511 lo
->lo_bio
= lo
->lo_biotail
= bio
;
515 * Grab first pending buffer
517 static struct bio
*loop_get_bio(struct loop_device
*lo
)
521 if ((bio
= lo
->lo_bio
)) {
522 if (bio
== lo
->lo_biotail
)
523 lo
->lo_biotail
= NULL
;
524 lo
->lo_bio
= bio
->bi_next
;
531 static int loop_make_request(request_queue_t
*q
, struct bio
*old_bio
)
533 struct loop_device
*lo
= q
->queuedata
;
534 int rw
= bio_rw(old_bio
);
539 BUG_ON(!lo
|| (rw
!= READ
&& rw
!= WRITE
));
541 spin_lock_irq(&lo
->lo_lock
);
542 if (lo
->lo_state
!= Lo_bound
)
544 if (unlikely(rw
== WRITE
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)))
546 loop_add_bio(lo
, old_bio
);
547 wake_up(&lo
->lo_event
);
548 spin_unlock_irq(&lo
->lo_lock
);
552 spin_unlock_irq(&lo
->lo_lock
);
553 bio_io_error(old_bio
, old_bio
->bi_size
);
558 * kick off io on the underlying address space
560 static void loop_unplug(request_queue_t
*q
)
562 struct loop_device
*lo
= q
->queuedata
;
564 clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
);
565 blk_run_address_space(lo
->lo_backing_file
->f_mapping
);
568 struct switch_request
{
570 struct completion wait
;
573 static void do_loop_switch(struct loop_device
*, struct switch_request
*);
575 static inline void loop_handle_bio(struct loop_device
*lo
, struct bio
*bio
)
577 if (unlikely(!bio
->bi_bdev
)) {
578 do_loop_switch(lo
, bio
->bi_private
);
581 int ret
= do_bio_filebacked(lo
, bio
);
582 bio_endio(bio
, bio
->bi_size
, ret
);
587 * worker thread that handles reads/writes to file backed loop devices,
588 * to avoid blocking in our make_request_fn. it also does loop decrypting
589 * on reads for block backed loop, as that is too heavy to do from
590 * b_end_io context where irqs may be disabled.
592 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
593 * calling kthread_stop(). Therefore once kthread_should_stop() is
594 * true, make_request will not place any more requests. Therefore
595 * once kthread_should_stop() is true and lo_bio is NULL, we are
596 * done with the loop.
598 static int loop_thread(void *data
)
600 struct loop_device
*lo
= data
;
604 * loop can be used in an encrypted device,
605 * hence, it mustn't be stopped at all
606 * because it could be indirectly used during suspension
608 current
->flags
|= PF_NOFREEZE
;
610 set_user_nice(current
, -20);
612 while (!kthread_should_stop() || lo
->lo_bio
) {
614 wait_event_interruptible(lo
->lo_event
,
615 lo
->lo_bio
|| kthread_should_stop());
619 spin_lock_irq(&lo
->lo_lock
);
620 bio
= loop_get_bio(lo
);
621 spin_unlock_irq(&lo
->lo_lock
);
624 loop_handle_bio(lo
, bio
);
631 * loop_switch performs the hard work of switching a backing store.
632 * First it needs to flush existing IO, it does this by sending a magic
633 * BIO down the pipe. The completion of this BIO does the actual switch.
635 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
637 struct switch_request w
;
638 struct bio
*bio
= bio_alloc(GFP_KERNEL
, 1);
641 init_completion(&w
.wait
);
643 bio
->bi_private
= &w
;
645 loop_make_request(lo
->lo_queue
, bio
);
646 wait_for_completion(&w
.wait
);
651 * Do the actual switch; called from the BIO completion routine
653 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
655 struct file
*file
= p
->file
;
656 struct file
*old_file
= lo
->lo_backing_file
;
657 struct address_space
*mapping
= file
->f_mapping
;
659 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
660 lo
->lo_backing_file
= file
;
661 lo
->lo_blocksize
= S_ISBLK(mapping
->host
->i_mode
) ?
662 mapping
->host
->i_bdev
->bd_block_size
: PAGE_SIZE
;
663 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
664 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
670 * loop_change_fd switched the backing store of a loopback device to
671 * a new file. This is useful for operating system installers to free up
672 * the original file and in High Availability environments to switch to
673 * an alternative location for the content in case of server meltdown.
674 * This can only work if the loop device is used read-only, and if the
675 * new backing store is the same size and type as the old backing store.
677 static int loop_change_fd(struct loop_device
*lo
, struct file
*lo_file
,
678 struct block_device
*bdev
, unsigned int arg
)
680 struct file
*file
, *old_file
;
685 if (lo
->lo_state
!= Lo_bound
)
688 /* the loop device has to be read-only */
690 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
698 inode
= file
->f_mapping
->host
;
699 old_file
= lo
->lo_backing_file
;
703 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
706 /* new backing store needs to support loop (eg splice_read) */
707 if (!inode
->i_fop
->splice_read
)
710 /* size of the new backing store needs to be the same */
711 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
715 error
= loop_switch(lo
, file
);
728 static inline int is_loop_device(struct file
*file
)
730 struct inode
*i
= file
->f_mapping
->host
;
732 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
735 static int loop_set_fd(struct loop_device
*lo
, struct file
*lo_file
,
736 struct block_device
*bdev
, unsigned int arg
)
738 struct file
*file
, *f
;
740 struct address_space
*mapping
;
741 unsigned lo_blocksize
;
746 /* This is safe, since we have a reference from open(). */
747 __module_get(THIS_MODULE
);
755 if (lo
->lo_state
!= Lo_unbound
)
758 /* Avoid recursion */
760 while (is_loop_device(f
)) {
761 struct loop_device
*l
;
763 if (f
->f_mapping
->host
->i_rdev
== lo_file
->f_mapping
->host
->i_rdev
)
766 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
767 if (l
->lo_state
== Lo_unbound
) {
771 f
= l
->lo_backing_file
;
774 mapping
= file
->f_mapping
;
775 inode
= mapping
->host
;
777 if (!(file
->f_mode
& FMODE_WRITE
))
778 lo_flags
|= LO_FLAGS_READ_ONLY
;
781 if (S_ISREG(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
782 const struct address_space_operations
*aops
= mapping
->a_ops
;
784 * If we can't read - sorry. If we only can't write - well,
785 * it's going to be read-only.
787 if (!file
->f_op
->splice_read
)
789 if (aops
->prepare_write
&& aops
->commit_write
)
790 lo_flags
|= LO_FLAGS_USE_AOPS
;
791 if (!(lo_flags
& LO_FLAGS_USE_AOPS
) && !file
->f_op
->write
)
792 lo_flags
|= LO_FLAGS_READ_ONLY
;
794 lo_blocksize
= S_ISBLK(inode
->i_mode
) ?
795 inode
->i_bdev
->bd_block_size
: PAGE_SIZE
;
802 size
= get_loop_size(lo
, file
);
804 if ((loff_t
)(sector_t
)size
!= size
) {
809 if (!(lo_file
->f_mode
& FMODE_WRITE
))
810 lo_flags
|= LO_FLAGS_READ_ONLY
;
812 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
814 lo
->lo_blocksize
= lo_blocksize
;
815 lo
->lo_device
= bdev
;
816 lo
->lo_flags
= lo_flags
;
817 lo
->lo_backing_file
= file
;
818 lo
->transfer
= transfer_none
;
820 lo
->lo_sizelimit
= 0;
821 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
822 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
824 lo
->lo_bio
= lo
->lo_biotail
= NULL
;
827 * set queue make_request_fn, and add limits based on lower level
830 blk_queue_make_request(lo
->lo_queue
, loop_make_request
);
831 lo
->lo_queue
->queuedata
= lo
;
832 lo
->lo_queue
->unplug_fn
= loop_unplug
;
834 set_capacity(lo
->lo_disk
, size
);
835 bd_set_size(bdev
, size
<< 9);
837 set_blocksize(bdev
, lo_blocksize
);
839 lo
->lo_thread
= kthread_create(loop_thread
, lo
, "loop%d",
841 if (IS_ERR(lo
->lo_thread
)) {
842 error
= PTR_ERR(lo
->lo_thread
);
845 lo
->lo_state
= Lo_bound
;
846 wake_up_process(lo
->lo_thread
);
850 lo
->lo_thread
= NULL
;
851 lo
->lo_device
= NULL
;
852 lo
->lo_backing_file
= NULL
;
854 set_capacity(lo
->lo_disk
, 0);
855 invalidate_bdev(bdev
);
856 bd_set_size(bdev
, 0);
857 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
);
858 lo
->lo_state
= Lo_unbound
;
862 /* This is safe: open() is still holding a reference. */
863 module_put(THIS_MODULE
);
868 loop_release_xfer(struct loop_device
*lo
)
871 struct loop_func_table
*xfer
= lo
->lo_encryption
;
875 err
= xfer
->release(lo
);
877 lo
->lo_encryption
= NULL
;
878 module_put(xfer
->owner
);
884 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
885 const struct loop_info64
*i
)
890 struct module
*owner
= xfer
->owner
;
892 if (!try_module_get(owner
))
895 err
= xfer
->init(lo
, i
);
899 lo
->lo_encryption
= xfer
;
904 static int loop_clr_fd(struct loop_device
*lo
, struct block_device
*bdev
)
906 struct file
*filp
= lo
->lo_backing_file
;
907 gfp_t gfp
= lo
->old_gfp_mask
;
909 if (lo
->lo_state
!= Lo_bound
)
912 if (lo
->lo_refcnt
> 1) /* we needed one fd for the ioctl */
918 spin_lock_irq(&lo
->lo_lock
);
919 lo
->lo_state
= Lo_rundown
;
920 spin_unlock_irq(&lo
->lo_lock
);
922 kthread_stop(lo
->lo_thread
);
924 lo
->lo_backing_file
= NULL
;
926 loop_release_xfer(lo
);
929 lo
->lo_device
= NULL
;
930 lo
->lo_encryption
= NULL
;
932 lo
->lo_sizelimit
= 0;
933 lo
->lo_encrypt_key_size
= 0;
935 lo
->lo_thread
= NULL
;
936 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
937 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
938 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
939 invalidate_bdev(bdev
);
940 set_capacity(lo
->lo_disk
, 0);
941 bd_set_size(bdev
, 0);
942 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
943 lo
->lo_state
= Lo_unbound
;
945 /* This is safe: open() is still holding a reference. */
946 module_put(THIS_MODULE
);
951 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
954 struct loop_func_table
*xfer
;
956 if (lo
->lo_encrypt_key_size
&& lo
->lo_key_owner
!= current
->uid
&&
957 !capable(CAP_SYS_ADMIN
))
959 if (lo
->lo_state
!= Lo_bound
)
961 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
964 err
= loop_release_xfer(lo
);
968 if (info
->lo_encrypt_type
) {
969 unsigned int type
= info
->lo_encrypt_type
;
971 if (type
>= MAX_LO_CRYPT
)
973 xfer
= xfer_funcs
[type
];
979 err
= loop_init_xfer(lo
, xfer
, info
);
983 if (lo
->lo_offset
!= info
->lo_offset
||
984 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
985 lo
->lo_offset
= info
->lo_offset
;
986 lo
->lo_sizelimit
= info
->lo_sizelimit
;
987 if (figure_loop_size(lo
))
991 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
992 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
993 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
994 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
998 lo
->transfer
= xfer
->transfer
;
999 lo
->ioctl
= xfer
->ioctl
;
1001 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1002 lo
->lo_init
[0] = info
->lo_init
[0];
1003 lo
->lo_init
[1] = info
->lo_init
[1];
1004 if (info
->lo_encrypt_key_size
) {
1005 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1006 info
->lo_encrypt_key_size
);
1007 lo
->lo_key_owner
= current
->uid
;
1014 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1016 struct file
*file
= lo
->lo_backing_file
;
1020 if (lo
->lo_state
!= Lo_bound
)
1022 error
= vfs_getattr(file
->f_path
.mnt
, file
->f_path
.dentry
, &stat
);
1025 memset(info
, 0, sizeof(*info
));
1026 info
->lo_number
= lo
->lo_number
;
1027 info
->lo_device
= huge_encode_dev(stat
.dev
);
1028 info
->lo_inode
= stat
.ino
;
1029 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1030 info
->lo_offset
= lo
->lo_offset
;
1031 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1032 info
->lo_flags
= lo
->lo_flags
;
1033 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1034 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1035 info
->lo_encrypt_type
=
1036 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1037 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1038 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1039 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1040 lo
->lo_encrypt_key_size
);
1046 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1048 memset(info64
, 0, sizeof(*info64
));
1049 info64
->lo_number
= info
->lo_number
;
1050 info64
->lo_device
= info
->lo_device
;
1051 info64
->lo_inode
= info
->lo_inode
;
1052 info64
->lo_rdevice
= info
->lo_rdevice
;
1053 info64
->lo_offset
= info
->lo_offset
;
1054 info64
->lo_sizelimit
= 0;
1055 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1056 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1057 info64
->lo_flags
= info
->lo_flags
;
1058 info64
->lo_init
[0] = info
->lo_init
[0];
1059 info64
->lo_init
[1] = info
->lo_init
[1];
1060 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1061 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1063 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1064 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1068 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1070 memset(info
, 0, sizeof(*info
));
1071 info
->lo_number
= info64
->lo_number
;
1072 info
->lo_device
= info64
->lo_device
;
1073 info
->lo_inode
= info64
->lo_inode
;
1074 info
->lo_rdevice
= info64
->lo_rdevice
;
1075 info
->lo_offset
= info64
->lo_offset
;
1076 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1077 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1078 info
->lo_flags
= info64
->lo_flags
;
1079 info
->lo_init
[0] = info64
->lo_init
[0];
1080 info
->lo_init
[1] = info64
->lo_init
[1];
1081 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1082 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1084 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1085 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1087 /* error in case values were truncated */
1088 if (info
->lo_device
!= info64
->lo_device
||
1089 info
->lo_rdevice
!= info64
->lo_rdevice
||
1090 info
->lo_inode
!= info64
->lo_inode
||
1091 info
->lo_offset
!= info64
->lo_offset
)
1098 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1100 struct loop_info info
;
1101 struct loop_info64 info64
;
1103 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1105 loop_info64_from_old(&info
, &info64
);
1106 return loop_set_status(lo
, &info64
);
1110 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1112 struct loop_info64 info64
;
1114 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1116 return loop_set_status(lo
, &info64
);
1120 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1121 struct loop_info info
;
1122 struct loop_info64 info64
;
1128 err
= loop_get_status(lo
, &info64
);
1130 err
= loop_info64_to_old(&info64
, &info
);
1131 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1138 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1139 struct loop_info64 info64
;
1145 err
= loop_get_status(lo
, &info64
);
1146 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1152 static int lo_ioctl(struct inode
* inode
, struct file
* file
,
1153 unsigned int cmd
, unsigned long arg
)
1155 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1158 mutex_lock(&lo
->lo_ctl_mutex
);
1161 err
= loop_set_fd(lo
, file
, inode
->i_bdev
, arg
);
1163 case LOOP_CHANGE_FD
:
1164 err
= loop_change_fd(lo
, file
, inode
->i_bdev
, arg
);
1167 err
= loop_clr_fd(lo
, inode
->i_bdev
);
1169 case LOOP_SET_STATUS
:
1170 err
= loop_set_status_old(lo
, (struct loop_info __user
*) arg
);
1172 case LOOP_GET_STATUS
:
1173 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1175 case LOOP_SET_STATUS64
:
1176 err
= loop_set_status64(lo
, (struct loop_info64 __user
*) arg
);
1178 case LOOP_GET_STATUS64
:
1179 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1182 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1184 mutex_unlock(&lo
->lo_ctl_mutex
);
1188 #ifdef CONFIG_COMPAT
1189 struct compat_loop_info
{
1190 compat_int_t lo_number
; /* ioctl r/o */
1191 compat_dev_t lo_device
; /* ioctl r/o */
1192 compat_ulong_t lo_inode
; /* ioctl r/o */
1193 compat_dev_t lo_rdevice
; /* ioctl r/o */
1194 compat_int_t lo_offset
;
1195 compat_int_t lo_encrypt_type
;
1196 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1197 compat_int_t lo_flags
; /* ioctl r/o */
1198 char lo_name
[LO_NAME_SIZE
];
1199 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1200 compat_ulong_t lo_init
[2];
1205 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1206 * - noinlined to reduce stack space usage in main part of driver
1209 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1210 struct loop_info64
*info64
)
1212 struct compat_loop_info info
;
1214 if (copy_from_user(&info
, arg
, sizeof(info
)))
1217 memset(info64
, 0, sizeof(*info64
));
1218 info64
->lo_number
= info
.lo_number
;
1219 info64
->lo_device
= info
.lo_device
;
1220 info64
->lo_inode
= info
.lo_inode
;
1221 info64
->lo_rdevice
= info
.lo_rdevice
;
1222 info64
->lo_offset
= info
.lo_offset
;
1223 info64
->lo_sizelimit
= 0;
1224 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1225 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1226 info64
->lo_flags
= info
.lo_flags
;
1227 info64
->lo_init
[0] = info
.lo_init
[0];
1228 info64
->lo_init
[1] = info
.lo_init
[1];
1229 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1230 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1232 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1233 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1238 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1239 * - noinlined to reduce stack space usage in main part of driver
1242 loop_info64_to_compat(const struct loop_info64
*info64
,
1243 struct compat_loop_info __user
*arg
)
1245 struct compat_loop_info info
;
1247 memset(&info
, 0, sizeof(info
));
1248 info
.lo_number
= info64
->lo_number
;
1249 info
.lo_device
= info64
->lo_device
;
1250 info
.lo_inode
= info64
->lo_inode
;
1251 info
.lo_rdevice
= info64
->lo_rdevice
;
1252 info
.lo_offset
= info64
->lo_offset
;
1253 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1254 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1255 info
.lo_flags
= info64
->lo_flags
;
1256 info
.lo_init
[0] = info64
->lo_init
[0];
1257 info
.lo_init
[1] = info64
->lo_init
[1];
1258 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1259 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1261 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1262 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1264 /* error in case values were truncated */
1265 if (info
.lo_device
!= info64
->lo_device
||
1266 info
.lo_rdevice
!= info64
->lo_rdevice
||
1267 info
.lo_inode
!= info64
->lo_inode
||
1268 info
.lo_offset
!= info64
->lo_offset
||
1269 info
.lo_init
[0] != info64
->lo_init
[0] ||
1270 info
.lo_init
[1] != info64
->lo_init
[1])
1273 if (copy_to_user(arg
, &info
, sizeof(info
)))
1279 loop_set_status_compat(struct loop_device
*lo
,
1280 const struct compat_loop_info __user
*arg
)
1282 struct loop_info64 info64
;
1285 ret
= loop_info64_from_compat(arg
, &info64
);
1288 return loop_set_status(lo
, &info64
);
1292 loop_get_status_compat(struct loop_device
*lo
,
1293 struct compat_loop_info __user
*arg
)
1295 struct loop_info64 info64
;
1301 err
= loop_get_status(lo
, &info64
);
1303 err
= loop_info64_to_compat(&info64
, arg
);
1307 static long lo_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1309 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1310 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1315 case LOOP_SET_STATUS
:
1316 mutex_lock(&lo
->lo_ctl_mutex
);
1317 err
= loop_set_status_compat(
1318 lo
, (const struct compat_loop_info __user
*) arg
);
1319 mutex_unlock(&lo
->lo_ctl_mutex
);
1321 case LOOP_GET_STATUS
:
1322 mutex_lock(&lo
->lo_ctl_mutex
);
1323 err
= loop_get_status_compat(
1324 lo
, (struct compat_loop_info __user
*) arg
);
1325 mutex_unlock(&lo
->lo_ctl_mutex
);
1328 case LOOP_GET_STATUS64
:
1329 case LOOP_SET_STATUS64
:
1330 arg
= (unsigned long) compat_ptr(arg
);
1332 case LOOP_CHANGE_FD
:
1333 err
= lo_ioctl(inode
, file
, cmd
, arg
);
1344 static int lo_open(struct inode
*inode
, struct file
*file
)
1346 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1348 mutex_lock(&lo
->lo_ctl_mutex
);
1350 mutex_unlock(&lo
->lo_ctl_mutex
);
1355 static int lo_release(struct inode
*inode
, struct file
*file
)
1357 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1359 mutex_lock(&lo
->lo_ctl_mutex
);
1361 mutex_unlock(&lo
->lo_ctl_mutex
);
1366 static struct block_device_operations lo_fops
= {
1367 .owner
= THIS_MODULE
,
1369 .release
= lo_release
,
1371 #ifdef CONFIG_COMPAT
1372 .compat_ioctl
= lo_compat_ioctl
,
1377 * And now the modules code and kernel interface.
1379 static int max_loop
;
1380 module_param(max_loop
, int, 0);
1381 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1382 MODULE_LICENSE("GPL");
1383 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1385 int loop_register_transfer(struct loop_func_table
*funcs
)
1387 unsigned int n
= funcs
->number
;
1389 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1391 xfer_funcs
[n
] = funcs
;
1395 int loop_unregister_transfer(int number
)
1397 unsigned int n
= number
;
1398 struct loop_device
*lo
;
1399 struct loop_func_table
*xfer
;
1401 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1404 xfer_funcs
[n
] = NULL
;
1406 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1407 mutex_lock(&lo
->lo_ctl_mutex
);
1409 if (lo
->lo_encryption
== xfer
)
1410 loop_release_xfer(lo
);
1412 mutex_unlock(&lo
->lo_ctl_mutex
);
1418 EXPORT_SYMBOL(loop_register_transfer
);
1419 EXPORT_SYMBOL(loop_unregister_transfer
);
1421 static struct loop_device
*loop_alloc(int i
)
1423 struct loop_device
*lo
;
1424 struct gendisk
*disk
;
1426 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1430 lo
->lo_queue
= blk_alloc_queue(GFP_KERNEL
);
1434 disk
= lo
->lo_disk
= alloc_disk(1);
1436 goto out_free_queue
;
1438 mutex_init(&lo
->lo_ctl_mutex
);
1440 lo
->lo_thread
= NULL
;
1441 init_waitqueue_head(&lo
->lo_event
);
1442 spin_lock_init(&lo
->lo_lock
);
1443 disk
->major
= LOOP_MAJOR
;
1444 disk
->first_minor
= i
;
1445 disk
->fops
= &lo_fops
;
1446 disk
->private_data
= lo
;
1447 disk
->queue
= lo
->lo_queue
;
1448 sprintf(disk
->disk_name
, "loop%d", i
);
1452 blk_cleanup_queue(lo
->lo_queue
);
1459 static void loop_free(struct loop_device
*lo
)
1461 blk_cleanup_queue(lo
->lo_queue
);
1462 put_disk(lo
->lo_disk
);
1463 list_del(&lo
->lo_list
);
1467 static struct loop_device
*loop_init_one(int i
)
1469 struct loop_device
*lo
;
1471 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1472 if (lo
->lo_number
== i
)
1478 add_disk(lo
->lo_disk
);
1479 list_add_tail(&lo
->lo_list
, &loop_devices
);
1484 static void loop_del_one(struct loop_device
*lo
)
1486 del_gendisk(lo
->lo_disk
);
1490 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1492 struct loop_device
*lo
;
1493 struct kobject
*kobj
;
1495 mutex_lock(&loop_devices_mutex
);
1496 lo
= loop_init_one(dev
& MINORMASK
);
1497 kobj
= lo
? get_disk(lo
->lo_disk
) : ERR_PTR(-ENOMEM
);
1498 mutex_unlock(&loop_devices_mutex
);
1504 static int __init
loop_init(void)
1507 unsigned long range
;
1508 struct loop_device
*lo
, *next
;
1511 * loop module now has a feature to instantiate underlying device
1512 * structure on-demand, provided that there is an access dev node.
1513 * However, this will not work well with user space tool that doesn't
1514 * know about such "feature". In order to not break any existing
1515 * tool, we do the following:
1517 * (1) if max_loop is specified, create that many upfront, and this
1518 * also becomes a hard limit.
1519 * (2) if max_loop is not specified, create 8 loop device on module
1520 * load, user can further extend loop device by create dev node
1521 * themselves and have kernel automatically instantiate actual
1524 if (max_loop
> 1UL << MINORBITS
)
1532 range
= 1UL << MINORBITS
;
1535 if (register_blkdev(LOOP_MAJOR
, "loop"))
1538 for (i
= 0; i
< nr
; i
++) {
1542 list_add_tail(&lo
->lo_list
, &loop_devices
);
1545 /* point of no return */
1547 list_for_each_entry(lo
, &loop_devices
, lo_list
)
1548 add_disk(lo
->lo_disk
);
1550 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
1551 THIS_MODULE
, loop_probe
, NULL
, NULL
);
1553 printk(KERN_INFO
"loop: module loaded\n");
1557 printk(KERN_INFO
"loop: out of memory\n");
1559 list_for_each_entry_safe(lo
, next
, &loop_devices
, lo_list
)
1562 unregister_blkdev(LOOP_MAJOR
, "loop");
1566 static void __exit
loop_exit(void)
1568 unsigned long range
;
1569 struct loop_device
*lo
, *next
;
1571 range
= max_loop
? max_loop
: 1UL << MINORBITS
;
1573 list_for_each_entry_safe(lo
, next
, &loop_devices
, lo_list
)
1576 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
1577 if (unregister_blkdev(LOOP_MAJOR
, "loop"))
1578 printk(KERN_WARNING
"loop: cannot unregister blkdev\n");
1581 module_init(loop_init
);
1582 module_exit(loop_exit
);
1585 static int __init
max_loop_setup(char *str
)
1587 max_loop
= simple_strtol(str
, NULL
, 0);
1591 __setup("max_loop=", max_loop_setup
);