slub page alloc fallback: Enable interrupts for GFP_WAIT.
[wrt350n-kernel.git] / include / linux / mmzone.h
blob8d8d1977736e01c05e48c7c0d3172c30a29bf427
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <asm/atomic.h>
19 #include <asm/page.h>
21 /* Free memory management - zoned buddy allocator. */
22 #ifndef CONFIG_FORCE_MAX_ZONEORDER
23 #define MAX_ORDER 11
24 #else
25 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
26 #endif
27 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
30 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
31 * costly to service. That is between allocation orders which should
32 * coelesce naturally under reasonable reclaim pressure and those which
33 * will not.
35 #define PAGE_ALLOC_COSTLY_ORDER 3
37 #define MIGRATE_UNMOVABLE 0
38 #define MIGRATE_RECLAIMABLE 1
39 #define MIGRATE_MOVABLE 2
40 #define MIGRATE_RESERVE 3
41 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
42 #define MIGRATE_TYPES 5
44 #define for_each_migratetype_order(order, type) \
45 for (order = 0; order < MAX_ORDER; order++) \
46 for (type = 0; type < MIGRATE_TYPES; type++)
48 extern int page_group_by_mobility_disabled;
50 static inline int get_pageblock_migratetype(struct page *page)
52 if (unlikely(page_group_by_mobility_disabled))
53 return MIGRATE_UNMOVABLE;
55 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
58 struct free_area {
59 struct list_head free_list[MIGRATE_TYPES];
60 unsigned long nr_free;
63 struct pglist_data;
66 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
67 * So add a wild amount of padding here to ensure that they fall into separate
68 * cachelines. There are very few zone structures in the machine, so space
69 * consumption is not a concern here.
71 #if defined(CONFIG_SMP)
72 struct zone_padding {
73 char x[0];
74 } ____cacheline_internodealigned_in_smp;
75 #define ZONE_PADDING(name) struct zone_padding name;
76 #else
77 #define ZONE_PADDING(name)
78 #endif
80 enum zone_stat_item {
81 /* First 128 byte cacheline (assuming 64 bit words) */
82 NR_FREE_PAGES,
83 NR_INACTIVE,
84 NR_ACTIVE,
85 NR_ANON_PAGES, /* Mapped anonymous pages */
86 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
87 only modified from process context */
88 NR_FILE_PAGES,
89 NR_FILE_DIRTY,
90 NR_WRITEBACK,
91 /* Second 128 byte cacheline */
92 NR_SLAB_RECLAIMABLE,
93 NR_SLAB_UNRECLAIMABLE,
94 NR_PAGETABLE, /* used for pagetables */
95 NR_UNSTABLE_NFS, /* NFS unstable pages */
96 NR_BOUNCE,
97 NR_VMSCAN_WRITE,
98 #ifdef CONFIG_NUMA
99 NUMA_HIT, /* allocated in intended node */
100 NUMA_MISS, /* allocated in non intended node */
101 NUMA_FOREIGN, /* was intended here, hit elsewhere */
102 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
103 NUMA_LOCAL, /* allocation from local node */
104 NUMA_OTHER, /* allocation from other node */
105 #endif
106 NR_VM_ZONE_STAT_ITEMS };
108 struct per_cpu_pages {
109 int count; /* number of pages in the list */
110 int high; /* high watermark, emptying needed */
111 int batch; /* chunk size for buddy add/remove */
112 struct list_head list; /* the list of pages */
115 struct per_cpu_pageset {
116 struct per_cpu_pages pcp;
117 #ifdef CONFIG_NUMA
118 s8 expire;
119 #endif
120 #ifdef CONFIG_SMP
121 s8 stat_threshold;
122 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
123 #endif
124 } ____cacheline_aligned_in_smp;
126 #ifdef CONFIG_NUMA
127 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
128 #else
129 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
130 #endif
132 enum zone_type {
133 #ifdef CONFIG_ZONE_DMA
135 * ZONE_DMA is used when there are devices that are not able
136 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
137 * carve out the portion of memory that is needed for these devices.
138 * The range is arch specific.
140 * Some examples
142 * Architecture Limit
143 * ---------------------------
144 * parisc, ia64, sparc <4G
145 * s390 <2G
146 * arm Various
147 * alpha Unlimited or 0-16MB.
149 * i386, x86_64 and multiple other arches
150 * <16M.
152 ZONE_DMA,
153 #endif
154 #ifdef CONFIG_ZONE_DMA32
156 * x86_64 needs two ZONE_DMAs because it supports devices that are
157 * only able to do DMA to the lower 16M but also 32 bit devices that
158 * can only do DMA areas below 4G.
160 ZONE_DMA32,
161 #endif
163 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
164 * performed on pages in ZONE_NORMAL if the DMA devices support
165 * transfers to all addressable memory.
167 ZONE_NORMAL,
168 #ifdef CONFIG_HIGHMEM
170 * A memory area that is only addressable by the kernel through
171 * mapping portions into its own address space. This is for example
172 * used by i386 to allow the kernel to address the memory beyond
173 * 900MB. The kernel will set up special mappings (page
174 * table entries on i386) for each page that the kernel needs to
175 * access.
177 ZONE_HIGHMEM,
178 #endif
179 ZONE_MOVABLE,
180 MAX_NR_ZONES
184 * When a memory allocation must conform to specific limitations (such
185 * as being suitable for DMA) the caller will pass in hints to the
186 * allocator in the gfp_mask, in the zone modifier bits. These bits
187 * are used to select a priority ordered list of memory zones which
188 * match the requested limits. See gfp_zone() in include/linux/gfp.h
192 * Count the active zones. Note that the use of defined(X) outside
193 * #if and family is not necessarily defined so ensure we cannot use
194 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
196 #define __ZONE_COUNT ( \
197 defined(CONFIG_ZONE_DMA) \
198 + defined(CONFIG_ZONE_DMA32) \
199 + 1 \
200 + defined(CONFIG_HIGHMEM) \
201 + 1 \
203 #if __ZONE_COUNT < 2
204 #define ZONES_SHIFT 0
205 #elif __ZONE_COUNT <= 2
206 #define ZONES_SHIFT 1
207 #elif __ZONE_COUNT <= 4
208 #define ZONES_SHIFT 2
209 #else
210 #error ZONES_SHIFT -- too many zones configured adjust calculation
211 #endif
212 #undef __ZONE_COUNT
214 struct zone {
215 /* Fields commonly accessed by the page allocator */
216 unsigned long pages_min, pages_low, pages_high;
218 * We don't know if the memory that we're going to allocate will be freeable
219 * or/and it will be released eventually, so to avoid totally wasting several
220 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
221 * to run OOM on the lower zones despite there's tons of freeable ram
222 * on the higher zones). This array is recalculated at runtime if the
223 * sysctl_lowmem_reserve_ratio sysctl changes.
225 unsigned long lowmem_reserve[MAX_NR_ZONES];
227 #ifdef CONFIG_NUMA
228 int node;
230 * zone reclaim becomes active if more unmapped pages exist.
232 unsigned long min_unmapped_pages;
233 unsigned long min_slab_pages;
234 struct per_cpu_pageset *pageset[NR_CPUS];
235 #else
236 struct per_cpu_pageset pageset[NR_CPUS];
237 #endif
239 * free areas of different sizes
241 spinlock_t lock;
242 #ifdef CONFIG_MEMORY_HOTPLUG
243 /* see spanned/present_pages for more description */
244 seqlock_t span_seqlock;
245 #endif
246 struct free_area free_area[MAX_ORDER];
248 #ifndef CONFIG_SPARSEMEM
250 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
251 * In SPARSEMEM, this map is stored in struct mem_section
253 unsigned long *pageblock_flags;
254 #endif /* CONFIG_SPARSEMEM */
257 ZONE_PADDING(_pad1_)
259 /* Fields commonly accessed by the page reclaim scanner */
260 spinlock_t lru_lock;
261 struct list_head active_list;
262 struct list_head inactive_list;
263 unsigned long nr_scan_active;
264 unsigned long nr_scan_inactive;
265 unsigned long pages_scanned; /* since last reclaim */
266 unsigned long flags; /* zone flags, see below */
268 /* Zone statistics */
269 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
272 * prev_priority holds the scanning priority for this zone. It is
273 * defined as the scanning priority at which we achieved our reclaim
274 * target at the previous try_to_free_pages() or balance_pgdat()
275 * invokation.
277 * We use prev_priority as a measure of how much stress page reclaim is
278 * under - it drives the swappiness decision: whether to unmap mapped
279 * pages.
281 * Access to both this field is quite racy even on uniprocessor. But
282 * it is expected to average out OK.
284 int prev_priority;
287 ZONE_PADDING(_pad2_)
288 /* Rarely used or read-mostly fields */
291 * wait_table -- the array holding the hash table
292 * wait_table_hash_nr_entries -- the size of the hash table array
293 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
295 * The purpose of all these is to keep track of the people
296 * waiting for a page to become available and make them
297 * runnable again when possible. The trouble is that this
298 * consumes a lot of space, especially when so few things
299 * wait on pages at a given time. So instead of using
300 * per-page waitqueues, we use a waitqueue hash table.
302 * The bucket discipline is to sleep on the same queue when
303 * colliding and wake all in that wait queue when removing.
304 * When something wakes, it must check to be sure its page is
305 * truly available, a la thundering herd. The cost of a
306 * collision is great, but given the expected load of the
307 * table, they should be so rare as to be outweighed by the
308 * benefits from the saved space.
310 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
311 * primary users of these fields, and in mm/page_alloc.c
312 * free_area_init_core() performs the initialization of them.
314 wait_queue_head_t * wait_table;
315 unsigned long wait_table_hash_nr_entries;
316 unsigned long wait_table_bits;
319 * Discontig memory support fields.
321 struct pglist_data *zone_pgdat;
322 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
323 unsigned long zone_start_pfn;
326 * zone_start_pfn, spanned_pages and present_pages are all
327 * protected by span_seqlock. It is a seqlock because it has
328 * to be read outside of zone->lock, and it is done in the main
329 * allocator path. But, it is written quite infrequently.
331 * The lock is declared along with zone->lock because it is
332 * frequently read in proximity to zone->lock. It's good to
333 * give them a chance of being in the same cacheline.
335 unsigned long spanned_pages; /* total size, including holes */
336 unsigned long present_pages; /* amount of memory (excluding holes) */
339 * rarely used fields:
341 const char *name;
342 } ____cacheline_internodealigned_in_smp;
344 typedef enum {
345 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
346 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
347 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
348 } zone_flags_t;
350 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
352 set_bit(flag, &zone->flags);
355 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
357 return test_and_set_bit(flag, &zone->flags);
360 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
362 clear_bit(flag, &zone->flags);
365 static inline int zone_is_all_unreclaimable(const struct zone *zone)
367 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
370 static inline int zone_is_reclaim_locked(const struct zone *zone)
372 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
375 static inline int zone_is_oom_locked(const struct zone *zone)
377 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
381 * The "priority" of VM scanning is how much of the queues we will scan in one
382 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
383 * queues ("queue_length >> 12") during an aging round.
385 #define DEF_PRIORITY 12
387 /* Maximum number of zones on a zonelist */
388 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
390 #ifdef CONFIG_NUMA
393 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
394 * allocations to a single node for GFP_THISNODE.
396 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
397 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
399 #define MAX_ZONELISTS (2 * MAX_NR_ZONES)
403 * We cache key information from each zonelist for smaller cache
404 * footprint when scanning for free pages in get_page_from_freelist().
406 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
407 * up short of free memory since the last time (last_fullzone_zap)
408 * we zero'd fullzones.
409 * 2) The array z_to_n[] maps each zone in the zonelist to its node
410 * id, so that we can efficiently evaluate whether that node is
411 * set in the current tasks mems_allowed.
413 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
414 * indexed by a zones offset in the zonelist zones[] array.
416 * The get_page_from_freelist() routine does two scans. During the
417 * first scan, we skip zones whose corresponding bit in 'fullzones'
418 * is set or whose corresponding node in current->mems_allowed (which
419 * comes from cpusets) is not set. During the second scan, we bypass
420 * this zonelist_cache, to ensure we look methodically at each zone.
422 * Once per second, we zero out (zap) fullzones, forcing us to
423 * reconsider nodes that might have regained more free memory.
424 * The field last_full_zap is the time we last zapped fullzones.
426 * This mechanism reduces the amount of time we waste repeatedly
427 * reexaming zones for free memory when they just came up low on
428 * memory momentarilly ago.
430 * The zonelist_cache struct members logically belong in struct
431 * zonelist. However, the mempolicy zonelists constructed for
432 * MPOL_BIND are intentionally variable length (and usually much
433 * shorter). A general purpose mechanism for handling structs with
434 * multiple variable length members is more mechanism than we want
435 * here. We resort to some special case hackery instead.
437 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
438 * part because they are shorter), so we put the fixed length stuff
439 * at the front of the zonelist struct, ending in a variable length
440 * zones[], as is needed by MPOL_BIND.
442 * Then we put the optional zonelist cache on the end of the zonelist
443 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
444 * the fixed length portion at the front of the struct. This pointer
445 * both enables us to find the zonelist cache, and in the case of
446 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
447 * to know that the zonelist cache is not there.
449 * The end result is that struct zonelists come in two flavors:
450 * 1) The full, fixed length version, shown below, and
451 * 2) The custom zonelists for MPOL_BIND.
452 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
454 * Even though there may be multiple CPU cores on a node modifying
455 * fullzones or last_full_zap in the same zonelist_cache at the same
456 * time, we don't lock it. This is just hint data - if it is wrong now
457 * and then, the allocator will still function, perhaps a bit slower.
461 struct zonelist_cache {
462 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
463 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
464 unsigned long last_full_zap; /* when last zap'd (jiffies) */
466 #else
467 #define MAX_ZONELISTS MAX_NR_ZONES
468 struct zonelist_cache;
469 #endif
472 * One allocation request operates on a zonelist. A zonelist
473 * is a list of zones, the first one is the 'goal' of the
474 * allocation, the other zones are fallback zones, in decreasing
475 * priority.
477 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
478 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
481 struct zonelist {
482 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
483 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
484 #ifdef CONFIG_NUMA
485 struct zonelist_cache zlcache; // optional ...
486 #endif
489 #ifdef CONFIG_NUMA
491 * Only custom zonelists like MPOL_BIND need to be filtered as part of
492 * policies. As described in the comment for struct zonelist_cache, these
493 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
494 * that to determine if the zonelists needs to be filtered or not.
496 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
498 return !zonelist->zlcache_ptr;
500 #else
501 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
503 return 0;
505 #endif /* CONFIG_NUMA */
507 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
508 struct node_active_region {
509 unsigned long start_pfn;
510 unsigned long end_pfn;
511 int nid;
513 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
515 #ifndef CONFIG_DISCONTIGMEM
516 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
517 extern struct page *mem_map;
518 #endif
521 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
522 * (mostly NUMA machines?) to denote a higher-level memory zone than the
523 * zone denotes.
525 * On NUMA machines, each NUMA node would have a pg_data_t to describe
526 * it's memory layout.
528 * Memory statistics and page replacement data structures are maintained on a
529 * per-zone basis.
531 struct bootmem_data;
532 typedef struct pglist_data {
533 struct zone node_zones[MAX_NR_ZONES];
534 struct zonelist node_zonelists[MAX_ZONELISTS];
535 int nr_zones;
536 #ifdef CONFIG_FLAT_NODE_MEM_MAP
537 struct page *node_mem_map;
538 #endif
539 struct bootmem_data *bdata;
540 #ifdef CONFIG_MEMORY_HOTPLUG
542 * Must be held any time you expect node_start_pfn, node_present_pages
543 * or node_spanned_pages stay constant. Holding this will also
544 * guarantee that any pfn_valid() stays that way.
546 * Nests above zone->lock and zone->size_seqlock.
548 spinlock_t node_size_lock;
549 #endif
550 unsigned long node_start_pfn;
551 unsigned long node_present_pages; /* total number of physical pages */
552 unsigned long node_spanned_pages; /* total size of physical page
553 range, including holes */
554 int node_id;
555 wait_queue_head_t kswapd_wait;
556 struct task_struct *kswapd;
557 int kswapd_max_order;
558 } pg_data_t;
560 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
561 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
562 #ifdef CONFIG_FLAT_NODE_MEM_MAP
563 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
564 #else
565 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
566 #endif
567 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
569 #include <linux/memory_hotplug.h>
571 void get_zone_counts(unsigned long *active, unsigned long *inactive,
572 unsigned long *free);
573 void build_all_zonelists(void);
574 void wakeup_kswapd(struct zone *zone, int order);
575 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
576 int classzone_idx, int alloc_flags);
577 enum memmap_context {
578 MEMMAP_EARLY,
579 MEMMAP_HOTPLUG,
581 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
582 unsigned long size,
583 enum memmap_context context);
585 #ifdef CONFIG_HAVE_MEMORY_PRESENT
586 void memory_present(int nid, unsigned long start, unsigned long end);
587 #else
588 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
589 #endif
591 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
592 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
593 #endif
596 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
598 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
600 static inline int populated_zone(struct zone *zone)
602 return (!!zone->present_pages);
605 extern int movable_zone;
607 static inline int zone_movable_is_highmem(void)
609 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
610 return movable_zone == ZONE_HIGHMEM;
611 #else
612 return 0;
613 #endif
616 static inline int is_highmem_idx(enum zone_type idx)
618 #ifdef CONFIG_HIGHMEM
619 return (idx == ZONE_HIGHMEM ||
620 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
621 #else
622 return 0;
623 #endif
626 static inline int is_normal_idx(enum zone_type idx)
628 return (idx == ZONE_NORMAL);
632 * is_highmem - helper function to quickly check if a struct zone is a
633 * highmem zone or not. This is an attempt to keep references
634 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
635 * @zone - pointer to struct zone variable
637 static inline int is_highmem(struct zone *zone)
639 #ifdef CONFIG_HIGHMEM
640 int zone_idx = zone - zone->zone_pgdat->node_zones;
641 return zone_idx == ZONE_HIGHMEM ||
642 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
643 #else
644 return 0;
645 #endif
648 static inline int is_normal(struct zone *zone)
650 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
653 static inline int is_dma32(struct zone *zone)
655 #ifdef CONFIG_ZONE_DMA32
656 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
657 #else
658 return 0;
659 #endif
662 static inline int is_dma(struct zone *zone)
664 #ifdef CONFIG_ZONE_DMA
665 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
666 #else
667 return 0;
668 #endif
671 /* These two functions are used to setup the per zone pages min values */
672 struct ctl_table;
673 struct file;
674 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
675 void __user *, size_t *, loff_t *);
676 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
677 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
678 void __user *, size_t *, loff_t *);
679 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
680 void __user *, size_t *, loff_t *);
681 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
682 struct file *, void __user *, size_t *, loff_t *);
683 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
684 struct file *, void __user *, size_t *, loff_t *);
686 extern int numa_zonelist_order_handler(struct ctl_table *, int,
687 struct file *, void __user *, size_t *, loff_t *);
688 extern char numa_zonelist_order[];
689 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
691 #include <linux/topology.h>
692 /* Returns the number of the current Node. */
693 #ifndef numa_node_id
694 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
695 #endif
697 #ifndef CONFIG_NEED_MULTIPLE_NODES
699 extern struct pglist_data contig_page_data;
700 #define NODE_DATA(nid) (&contig_page_data)
701 #define NODE_MEM_MAP(nid) mem_map
702 #define MAX_NODES_SHIFT 1
704 #else /* CONFIG_NEED_MULTIPLE_NODES */
706 #include <asm/mmzone.h>
708 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
710 extern struct pglist_data *first_online_pgdat(void);
711 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
712 extern struct zone *next_zone(struct zone *zone);
715 * for_each_pgdat - helper macro to iterate over all nodes
716 * @pgdat - pointer to a pg_data_t variable
718 #define for_each_online_pgdat(pgdat) \
719 for (pgdat = first_online_pgdat(); \
720 pgdat; \
721 pgdat = next_online_pgdat(pgdat))
723 * for_each_zone - helper macro to iterate over all memory zones
724 * @zone - pointer to struct zone variable
726 * The user only needs to declare the zone variable, for_each_zone
727 * fills it in.
729 #define for_each_zone(zone) \
730 for (zone = (first_online_pgdat())->node_zones; \
731 zone; \
732 zone = next_zone(zone))
734 #ifdef CONFIG_SPARSEMEM
735 #include <asm/sparsemem.h>
736 #endif
738 #if BITS_PER_LONG == 32
740 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
741 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
743 #define FLAGS_RESERVED 9
745 #elif BITS_PER_LONG == 64
747 * with 64 bit flags field, there's plenty of room.
749 #define FLAGS_RESERVED 32
751 #else
753 #error BITS_PER_LONG not defined
755 #endif
757 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
758 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
759 #define early_pfn_to_nid(nid) (0UL)
760 #endif
762 #ifdef CONFIG_FLATMEM
763 #define pfn_to_nid(pfn) (0)
764 #endif
766 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
767 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
769 #ifdef CONFIG_SPARSEMEM
772 * SECTION_SHIFT #bits space required to store a section #
774 * PA_SECTION_SHIFT physical address to/from section number
775 * PFN_SECTION_SHIFT pfn to/from section number
777 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
779 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
780 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
782 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
784 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
785 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
787 #define SECTION_BLOCKFLAGS_BITS \
788 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
790 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
791 #error Allocator MAX_ORDER exceeds SECTION_SIZE
792 #endif
794 struct page;
795 struct mem_section {
797 * This is, logically, a pointer to an array of struct
798 * pages. However, it is stored with some other magic.
799 * (see sparse.c::sparse_init_one_section())
801 * Additionally during early boot we encode node id of
802 * the location of the section here to guide allocation.
803 * (see sparse.c::memory_present())
805 * Making it a UL at least makes someone do a cast
806 * before using it wrong.
808 unsigned long section_mem_map;
810 /* See declaration of similar field in struct zone */
811 unsigned long *pageblock_flags;
814 #ifdef CONFIG_SPARSEMEM_EXTREME
815 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
816 #else
817 #define SECTIONS_PER_ROOT 1
818 #endif
820 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
821 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
822 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
824 #ifdef CONFIG_SPARSEMEM_EXTREME
825 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
826 #else
827 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
828 #endif
830 static inline struct mem_section *__nr_to_section(unsigned long nr)
832 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
833 return NULL;
834 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
836 extern int __section_nr(struct mem_section* ms);
839 * We use the lower bits of the mem_map pointer to store
840 * a little bit of information. There should be at least
841 * 3 bits here due to 32-bit alignment.
843 #define SECTION_MARKED_PRESENT (1UL<<0)
844 #define SECTION_HAS_MEM_MAP (1UL<<1)
845 #define SECTION_MAP_LAST_BIT (1UL<<2)
846 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
847 #define SECTION_NID_SHIFT 2
849 static inline struct page *__section_mem_map_addr(struct mem_section *section)
851 unsigned long map = section->section_mem_map;
852 map &= SECTION_MAP_MASK;
853 return (struct page *)map;
856 static inline int present_section(struct mem_section *section)
858 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
861 static inline int present_section_nr(unsigned long nr)
863 return present_section(__nr_to_section(nr));
866 static inline int valid_section(struct mem_section *section)
868 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
871 static inline int valid_section_nr(unsigned long nr)
873 return valid_section(__nr_to_section(nr));
876 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
878 return __nr_to_section(pfn_to_section_nr(pfn));
881 static inline int pfn_valid(unsigned long pfn)
883 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
884 return 0;
885 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
888 static inline int pfn_present(unsigned long pfn)
890 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
891 return 0;
892 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
896 * These are _only_ used during initialisation, therefore they
897 * can use __initdata ... They could have names to indicate
898 * this restriction.
900 #ifdef CONFIG_NUMA
901 #define pfn_to_nid(pfn) \
902 ({ \
903 unsigned long __pfn_to_nid_pfn = (pfn); \
904 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
906 #else
907 #define pfn_to_nid(pfn) (0)
908 #endif
910 #define early_pfn_valid(pfn) pfn_valid(pfn)
911 void sparse_init(void);
912 #else
913 #define sparse_init() do {} while (0)
914 #define sparse_index_init(_sec, _nid) do {} while (0)
915 #endif /* CONFIG_SPARSEMEM */
917 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
918 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
919 #else
920 #define early_pfn_in_nid(pfn, nid) (1)
921 #endif
923 #ifndef early_pfn_valid
924 #define early_pfn_valid(pfn) (1)
925 #endif
927 void memory_present(int nid, unsigned long start, unsigned long end);
928 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
931 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
932 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
933 * pfn_valid_within() should be used in this case; we optimise this away
934 * when we have no holes within a MAX_ORDER_NR_PAGES block.
936 #ifdef CONFIG_HOLES_IN_ZONE
937 #define pfn_valid_within(pfn) pfn_valid(pfn)
938 #else
939 #define pfn_valid_within(pfn) (1)
940 #endif
942 #endif /* !__ASSEMBLY__ */
943 #endif /* __KERNEL__ */
944 #endif /* _LINUX_MMZONE_H */