Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6.25
[wrt350n-kernel.git] / kernel / stop_machine.c
blob6f4e0e13f70c337c531be43b0d3cc5296c972c71
1 /* Copyright 2005 Rusty Russell rusty@rustcorp.com.au IBM Corporation.
2 * GPL v2 and any later version.
3 */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/kthread.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/stop_machine.h>
10 #include <linux/syscalls.h>
11 #include <linux/interrupt.h>
13 #include <asm/atomic.h>
14 #include <asm/semaphore.h>
15 #include <asm/uaccess.h>
17 /* Since we effect priority and affinity (both of which are visible
18 * to, and settable by outside processes) we do indirection via a
19 * kthread. */
21 /* Thread to stop each CPU in user context. */
22 enum stopmachine_state {
23 STOPMACHINE_WAIT,
24 STOPMACHINE_PREPARE,
25 STOPMACHINE_DISABLE_IRQ,
26 STOPMACHINE_EXIT,
29 static enum stopmachine_state stopmachine_state;
30 static unsigned int stopmachine_num_threads;
31 static atomic_t stopmachine_thread_ack;
33 static int stopmachine(void *cpu)
35 int irqs_disabled = 0;
36 int prepared = 0;
38 set_cpus_allowed(current, cpumask_of_cpu((int)(long)cpu));
40 /* Ack: we are alive */
41 smp_mb(); /* Theoretically the ack = 0 might not be on this CPU yet. */
42 atomic_inc(&stopmachine_thread_ack);
44 /* Simple state machine */
45 while (stopmachine_state != STOPMACHINE_EXIT) {
46 if (stopmachine_state == STOPMACHINE_DISABLE_IRQ
47 && !irqs_disabled) {
48 local_irq_disable();
49 hard_irq_disable();
50 irqs_disabled = 1;
51 /* Ack: irqs disabled. */
52 smp_mb(); /* Must read state first. */
53 atomic_inc(&stopmachine_thread_ack);
54 } else if (stopmachine_state == STOPMACHINE_PREPARE
55 && !prepared) {
56 /* Everyone is in place, hold CPU. */
57 preempt_disable();
58 prepared = 1;
59 smp_mb(); /* Must read state first. */
60 atomic_inc(&stopmachine_thread_ack);
62 /* Yield in first stage: migration threads need to
63 * help our sisters onto their CPUs. */
64 if (!prepared && !irqs_disabled)
65 yield();
66 else
67 cpu_relax();
70 /* Ack: we are exiting. */
71 smp_mb(); /* Must read state first. */
72 atomic_inc(&stopmachine_thread_ack);
74 if (irqs_disabled)
75 local_irq_enable();
76 if (prepared)
77 preempt_enable();
79 return 0;
82 /* Change the thread state */
83 static void stopmachine_set_state(enum stopmachine_state state)
85 atomic_set(&stopmachine_thread_ack, 0);
86 smp_wmb();
87 stopmachine_state = state;
88 while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
89 cpu_relax();
92 static int stop_machine(void)
94 int i, ret = 0;
96 atomic_set(&stopmachine_thread_ack, 0);
97 stopmachine_num_threads = 0;
98 stopmachine_state = STOPMACHINE_WAIT;
100 for_each_online_cpu(i) {
101 if (i == raw_smp_processor_id())
102 continue;
103 ret = kernel_thread(stopmachine, (void *)(long)i,CLONE_KERNEL);
104 if (ret < 0)
105 break;
106 stopmachine_num_threads++;
109 /* Wait for them all to come to life. */
110 while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
111 yield();
113 /* If some failed, kill them all. */
114 if (ret < 0) {
115 stopmachine_set_state(STOPMACHINE_EXIT);
116 return ret;
119 /* Now they are all started, make them hold the CPUs, ready. */
120 preempt_disable();
121 stopmachine_set_state(STOPMACHINE_PREPARE);
123 /* Make them disable irqs. */
124 local_irq_disable();
125 hard_irq_disable();
126 stopmachine_set_state(STOPMACHINE_DISABLE_IRQ);
128 return 0;
131 static void restart_machine(void)
133 stopmachine_set_state(STOPMACHINE_EXIT);
134 local_irq_enable();
135 preempt_enable_no_resched();
138 struct stop_machine_data
140 int (*fn)(void *);
141 void *data;
142 struct completion done;
145 static int do_stop(void *_smdata)
147 struct stop_machine_data *smdata = _smdata;
148 int ret;
150 ret = stop_machine();
151 if (ret == 0) {
152 ret = smdata->fn(smdata->data);
153 restart_machine();
156 /* We're done: you can kthread_stop us now */
157 complete(&smdata->done);
159 /* Wait for kthread_stop */
160 set_current_state(TASK_INTERRUPTIBLE);
161 while (!kthread_should_stop()) {
162 schedule();
163 set_current_state(TASK_INTERRUPTIBLE);
165 __set_current_state(TASK_RUNNING);
166 return ret;
169 struct task_struct *__stop_machine_run(int (*fn)(void *), void *data,
170 unsigned int cpu)
172 static DEFINE_MUTEX(stopmachine_mutex);
173 struct stop_machine_data smdata;
174 struct task_struct *p;
176 smdata.fn = fn;
177 smdata.data = data;
178 init_completion(&smdata.done);
180 mutex_lock(&stopmachine_mutex);
182 /* If they don't care which CPU fn runs on, bind to any online one. */
183 if (cpu == NR_CPUS)
184 cpu = raw_smp_processor_id();
186 p = kthread_create(do_stop, &smdata, "kstopmachine");
187 if (!IS_ERR(p)) {
188 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
190 /* One high-prio thread per cpu. We'll do this one. */
191 sched_setscheduler(p, SCHED_FIFO, &param);
192 kthread_bind(p, cpu);
193 wake_up_process(p);
194 wait_for_completion(&smdata.done);
196 mutex_unlock(&stopmachine_mutex);
197 return p;
200 int stop_machine_run(int (*fn)(void *), void *data, unsigned int cpu)
202 struct task_struct *p;
203 int ret;
205 /* No CPUs can come up or down during this. */
206 get_online_cpus();
207 p = __stop_machine_run(fn, data, cpu);
208 if (!IS_ERR(p))
209 ret = kthread_stop(p);
210 else
211 ret = PTR_ERR(p);
212 put_online_cpus();
214 return ret;
216 EXPORT_SYMBOL_GPL(stop_machine_run);