2 raid0.c : Multiple Devices driver for Linux
3 Copyright (C) 1994-96 Marc ZYNGIER
4 <zyngier@ufr-info-p7.ibp.fr> or
6 Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
9 RAID-0 management functions.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
16 You should have received a copy of the GNU General Public License
17 (for example /usr/src/linux/COPYING); if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/module.h>
22 #include <linux/raid/raid0.h>
24 #define MAJOR_NR MD_MAJOR
26 #define MD_PERSONALITY
28 static void raid0_unplug(struct request_queue
*q
)
30 mddev_t
*mddev
= q
->queuedata
;
31 raid0_conf_t
*conf
= mddev_to_conf(mddev
);
32 mdk_rdev_t
**devlist
= conf
->strip_zone
[0].dev
;
35 for (i
=0; i
<mddev
->raid_disks
; i
++) {
36 struct request_queue
*r_queue
= bdev_get_queue(devlist
[i
]->bdev
);
42 static int raid0_congested(void *data
, int bits
)
44 mddev_t
*mddev
= data
;
45 raid0_conf_t
*conf
= mddev_to_conf(mddev
);
46 mdk_rdev_t
**devlist
= conf
->strip_zone
[0].dev
;
49 for (i
= 0; i
< mddev
->raid_disks
&& !ret
; i
++) {
50 struct request_queue
*q
= bdev_get_queue(devlist
[i
]->bdev
);
52 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
58 static int create_strip_zones (mddev_t
*mddev
)
61 sector_t current_offset
, curr_zone_offset
;
63 raid0_conf_t
*conf
= mddev_to_conf(mddev
);
64 mdk_rdev_t
*smallest
, *rdev1
, *rdev2
, *rdev
;
65 struct list_head
*tmp1
, *tmp2
;
66 struct strip_zone
*zone
;
68 char b
[BDEVNAME_SIZE
];
71 * The number of 'same size groups'
73 conf
->nr_strip_zones
= 0;
75 ITERATE_RDEV(mddev
,rdev1
,tmp1
) {
76 printk("raid0: looking at %s\n",
77 bdevname(rdev1
->bdev
,b
));
79 ITERATE_RDEV(mddev
,rdev2
,tmp2
) {
80 printk("raid0: comparing %s(%llu)",
81 bdevname(rdev1
->bdev
,b
),
82 (unsigned long long)rdev1
->size
);
83 printk(" with %s(%llu)\n",
84 bdevname(rdev2
->bdev
,b
),
85 (unsigned long long)rdev2
->size
);
87 printk("raid0: END\n");
90 if (rdev2
->size
== rdev1
->size
)
93 * Not unique, don't count it as a new
96 printk("raid0: EQUAL\n");
100 printk("raid0: NOT EQUAL\n");
103 printk("raid0: ==> UNIQUE\n");
104 conf
->nr_strip_zones
++;
105 printk("raid0: %d zones\n", conf
->nr_strip_zones
);
108 printk("raid0: FINAL %d zones\n", conf
->nr_strip_zones
);
110 conf
->strip_zone
= kzalloc(sizeof(struct strip_zone
)*
111 conf
->nr_strip_zones
, GFP_KERNEL
);
112 if (!conf
->strip_zone
)
114 conf
->devlist
= kzalloc(sizeof(mdk_rdev_t
*)*
115 conf
->nr_strip_zones
*mddev
->raid_disks
,
120 /* The first zone must contain all devices, so here we check that
121 * there is a proper alignment of slots to devices and find them all
123 zone
= &conf
->strip_zone
[0];
126 zone
->dev
= conf
->devlist
;
127 ITERATE_RDEV(mddev
, rdev1
, tmp1
) {
128 int j
= rdev1
->raid_disk
;
130 if (j
< 0 || j
>= mddev
->raid_disks
) {
131 printk("raid0: bad disk number %d - aborting!\n", j
);
135 printk("raid0: multiple devices for %d - aborting!\n",
139 zone
->dev
[j
] = rdev1
;
141 blk_queue_stack_limits(mddev
->queue
,
142 rdev1
->bdev
->bd_disk
->queue
);
143 /* as we don't honour merge_bvec_fn, we must never risk
144 * violating it, so limit ->max_sector to one PAGE, as
145 * a one page request is never in violation.
148 if (rdev1
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
149 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
150 blk_queue_max_sectors(mddev
->queue
, PAGE_SIZE
>>9);
152 if (!smallest
|| (rdev1
->size
<smallest
->size
))
156 if (cnt
!= mddev
->raid_disks
) {
157 printk("raid0: too few disks (%d of %d) - aborting!\n",
158 cnt
, mddev
->raid_disks
);
162 zone
->size
= smallest
->size
* cnt
;
163 zone
->zone_offset
= 0;
165 current_offset
= smallest
->size
;
166 curr_zone_offset
= zone
->size
;
168 /* now do the other zones */
169 for (i
= 1; i
< conf
->nr_strip_zones
; i
++)
171 zone
= conf
->strip_zone
+ i
;
172 zone
->dev
= conf
->strip_zone
[i
-1].dev
+ mddev
->raid_disks
;
174 printk("raid0: zone %d\n", i
);
175 zone
->dev_offset
= current_offset
;
179 for (j
=0; j
<cnt
; j
++) {
180 char b
[BDEVNAME_SIZE
];
181 rdev
= conf
->strip_zone
[0].dev
[j
];
182 printk("raid0: checking %s ...", bdevname(rdev
->bdev
,b
));
183 if (rdev
->size
> current_offset
)
185 printk(" contained as device %d\n", c
);
188 if (!smallest
|| (rdev
->size
<smallest
->size
)) {
190 printk(" (%llu) is smallest!.\n",
191 (unsigned long long)rdev
->size
);
198 zone
->size
= (smallest
->size
- current_offset
) * c
;
199 printk("raid0: zone->nb_dev: %d, size: %llu\n",
200 zone
->nb_dev
, (unsigned long long)zone
->size
);
202 zone
->zone_offset
= curr_zone_offset
;
203 curr_zone_offset
+= zone
->size
;
205 current_offset
= smallest
->size
;
206 printk("raid0: current zone offset: %llu\n",
207 (unsigned long long)current_offset
);
210 /* Now find appropriate hash spacing.
211 * We want a number which causes most hash entries to cover
212 * at most two strips, but the hash table must be at most
213 * 1 PAGE. We choose the smallest strip, or contiguous collection
214 * of strips, that has big enough size. We never consider the last
215 * strip though as it's size has no bearing on the efficacy of the hash
218 conf
->hash_spacing
= curr_zone_offset
;
219 min_spacing
= curr_zone_offset
;
220 sector_div(min_spacing
, PAGE_SIZE
/sizeof(struct strip_zone
*));
221 for (i
=0; i
< conf
->nr_strip_zones
-1; i
++) {
223 for (j
=i
; j
<conf
->nr_strip_zones
-1 &&
224 sz
< min_spacing
; j
++)
225 sz
+= conf
->strip_zone
[j
].size
;
226 if (sz
>= min_spacing
&& sz
< conf
->hash_spacing
)
227 conf
->hash_spacing
= sz
;
230 mddev
->queue
->unplug_fn
= raid0_unplug
;
232 mddev
->queue
->backing_dev_info
.congested_fn
= raid0_congested
;
233 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
235 printk("raid0: done.\n");
242 * raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
244 * @bio: the buffer head that's been built up so far
245 * @biovec: the request that could be merged to it.
247 * Return amount of bytes we can accept at this offset
249 static int raid0_mergeable_bvec(struct request_queue
*q
, struct bio
*bio
, struct bio_vec
*biovec
)
251 mddev_t
*mddev
= q
->queuedata
;
252 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
254 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
255 unsigned int bio_sectors
= bio
->bi_size
>> 9;
257 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
258 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
259 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
260 return biovec
->bv_len
;
265 static int raid0_run (mddev_t
*mddev
)
267 unsigned cur
=0, i
=0, nb_zone
;
271 struct list_head
*tmp
;
273 if (mddev
->chunk_size
== 0) {
274 printk(KERN_ERR
"md/raid0: non-zero chunk size required.\n");
277 printk(KERN_INFO
"%s: setting max_sectors to %d, segment boundary to %d\n",
279 mddev
->chunk_size
>> 9,
280 (mddev
->chunk_size
>>1)-1);
281 blk_queue_max_sectors(mddev
->queue
, mddev
->chunk_size
>> 9);
282 blk_queue_segment_boundary(mddev
->queue
, (mddev
->chunk_size
>>1) - 1);
284 conf
= kmalloc(sizeof (raid0_conf_t
), GFP_KERNEL
);
287 mddev
->private = (void *)conf
;
289 conf
->strip_zone
= NULL
;
290 conf
->devlist
= NULL
;
291 if (create_strip_zones (mddev
))
294 /* calculate array device size */
295 mddev
->array_size
= 0;
296 ITERATE_RDEV(mddev
,rdev
,tmp
)
297 mddev
->array_size
+= rdev
->size
;
299 printk("raid0 : md_size is %llu blocks.\n",
300 (unsigned long long)mddev
->array_size
);
301 printk("raid0 : conf->hash_spacing is %llu blocks.\n",
302 (unsigned long long)conf
->hash_spacing
);
304 sector_t s
= mddev
->array_size
;
305 sector_t space
= conf
->hash_spacing
;
308 if (sizeof(sector_t
) > sizeof(u32
)) {
309 /*shift down space and s so that sector_div will work */
310 while (space
> (sector_t
) (~(u32
)0)) {
313 s
+= 1; /* force round-up */
317 round
= sector_div(s
, (u32
)space
) ? 1 : 0;
320 printk("raid0 : nb_zone is %d.\n", nb_zone
);
322 printk("raid0 : Allocating %Zd bytes for hash.\n",
323 nb_zone
*sizeof(struct strip_zone
*));
324 conf
->hash_table
= kmalloc (sizeof (struct strip_zone
*)*nb_zone
, GFP_KERNEL
);
325 if (!conf
->hash_table
)
327 size
= conf
->strip_zone
[cur
].size
;
329 conf
->hash_table
[0] = conf
->strip_zone
+ cur
;
330 for (i
=1; i
< nb_zone
; i
++) {
331 while (size
<= conf
->hash_spacing
) {
333 size
+= conf
->strip_zone
[cur
].size
;
335 size
-= conf
->hash_spacing
;
336 conf
->hash_table
[i
] = conf
->strip_zone
+ cur
;
338 if (conf
->preshift
) {
339 conf
->hash_spacing
>>= conf
->preshift
;
340 /* round hash_spacing up so when we divide by it, we
341 * err on the side of too-low, which is safest
343 conf
->hash_spacing
++;
346 /* calculate the max read-ahead size.
347 * For read-ahead of large files to be effective, we need to
348 * readahead at least twice a whole stripe. i.e. number of devices
349 * multiplied by chunk size times 2.
350 * If an individual device has an ra_pages greater than the
351 * chunk size, then we will not drive that device as hard as it
352 * wants. We consider this a configuration error: a larger
353 * chunksize should be used in that case.
356 int stripe
= mddev
->raid_disks
* mddev
->chunk_size
/ PAGE_SIZE
;
357 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
358 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
362 blk_queue_merge_bvec(mddev
->queue
, raid0_mergeable_bvec
);
366 kfree(conf
->strip_zone
);
367 kfree(conf
->devlist
);
369 mddev
->private = NULL
;
374 static int raid0_stop (mddev_t
*mddev
)
376 raid0_conf_t
*conf
= mddev_to_conf(mddev
);
378 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
379 kfree(conf
->hash_table
);
380 conf
->hash_table
= NULL
;
381 kfree(conf
->strip_zone
);
382 conf
->strip_zone
= NULL
;
384 mddev
->private = NULL
;
389 static int raid0_make_request (struct request_queue
*q
, struct bio
*bio
)
391 mddev_t
*mddev
= q
->queuedata
;
392 unsigned int sect_in_chunk
, chunksize_bits
, chunk_size
, chunk_sects
;
393 raid0_conf_t
*conf
= mddev_to_conf(mddev
);
394 struct strip_zone
*zone
;
397 sector_t block
, rsect
;
398 const int rw
= bio_data_dir(bio
);
400 if (unlikely(bio_barrier(bio
))) {
401 bio_endio(bio
, -EOPNOTSUPP
);
405 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
406 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bio
));
408 chunk_size
= mddev
->chunk_size
>> 10;
409 chunk_sects
= mddev
->chunk_size
>> 9;
410 chunksize_bits
= ffz(~chunk_size
);
411 block
= bio
->bi_sector
>> 1;
414 if (unlikely(chunk_sects
< (bio
->bi_sector
& (chunk_sects
- 1)) + (bio
->bi_size
>> 9))) {
416 /* Sanity check -- queue functions should prevent this happening */
417 if (bio
->bi_vcnt
!= 1 ||
420 /* This is a one page bio that upper layers
421 * refuse to split for us, so we need to split it.
423 bp
= bio_split(bio
, bio_split_pool
, chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
424 if (raid0_make_request(q
, &bp
->bio1
))
425 generic_make_request(&bp
->bio1
);
426 if (raid0_make_request(q
, &bp
->bio2
))
427 generic_make_request(&bp
->bio2
);
429 bio_pair_release(bp
);
435 sector_t x
= block
>> conf
->preshift
;
436 sector_div(x
, (u32
)conf
->hash_spacing
);
437 zone
= conf
->hash_table
[x
];
440 while (block
>= (zone
->zone_offset
+ zone
->size
))
443 sect_in_chunk
= bio
->bi_sector
& ((chunk_size
<<1) -1);
447 sector_t x
= (block
- zone
->zone_offset
) >> chunksize_bits
;
449 sector_div(x
, zone
->nb_dev
);
452 x
= block
>> chunksize_bits
;
453 tmp_dev
= zone
->dev
[sector_div(x
, zone
->nb_dev
)];
455 rsect
= (((chunk
<< chunksize_bits
) + zone
->dev_offset
)<<1)
458 bio
->bi_bdev
= tmp_dev
->bdev
;
459 bio
->bi_sector
= rsect
+ tmp_dev
->data_offset
;
462 * Let the main block layer submit the IO and resolve recursion:
467 printk("raid0_make_request bug: can't convert block across chunks"
468 " or bigger than %dk %llu %d\n", chunk_size
,
469 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
475 static void raid0_status (struct seq_file
*seq
, mddev_t
*mddev
)
480 char b
[BDEVNAME_SIZE
];
481 raid0_conf_t
*conf
= mddev_to_conf(mddev
);
484 for (j
= 0; j
< conf
->nr_strip_zones
; j
++) {
485 seq_printf(seq
, " z%d", j
);
486 if (conf
->hash_table
[h
] == conf
->strip_zone
+j
)
487 seq_printf(seq
, "(h%d)", h
++);
488 seq_printf(seq
, "=[");
489 for (k
= 0; k
< conf
->strip_zone
[j
].nb_dev
; k
++)
490 seq_printf(seq
, "%s/", bdevname(
491 conf
->strip_zone
[j
].dev
[k
]->bdev
,b
));
493 seq_printf(seq
, "] zo=%d do=%d s=%d\n",
494 conf
->strip_zone
[j
].zone_offset
,
495 conf
->strip_zone
[j
].dev_offset
,
496 conf
->strip_zone
[j
].size
);
499 seq_printf(seq
, " %dk chunks", mddev
->chunk_size
/1024);
503 static struct mdk_personality raid0_personality
=
507 .owner
= THIS_MODULE
,
508 .make_request
= raid0_make_request
,
511 .status
= raid0_status
,
514 static int __init
raid0_init (void)
516 return register_md_personality (&raid0_personality
);
519 static void raid0_exit (void)
521 unregister_md_personality (&raid0_personality
);
524 module_init(raid0_init
);
525 module_exit(raid0_exit
);
526 MODULE_LICENSE("GPL");
527 MODULE_ALIAS("md-personality-2"); /* RAID0 */
528 MODULE_ALIAS("md-raid0");
529 MODULE_ALIAS("md-level-0");