3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Modified by Cort Dougan and Paul Mackerras.
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
34 #include <asm/pgtable.h>
36 #include <asm/mmu_context.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/siginfo.h>
44 static inline int notify_page_fault(struct pt_regs
*regs
)
48 /* kprobe_running() needs smp_processor_id() */
49 if (!user_mode(regs
)) {
51 if (kprobe_running() && kprobe_fault_handler(regs
, 11))
59 static inline int notify_page_fault(struct pt_regs
*regs
)
66 * Check whether the instruction at regs->nip is a store using
67 * an update addressing form which will update r1.
69 static int store_updates_sp(struct pt_regs
*regs
)
73 if (get_user(inst
, (unsigned int __user
*)regs
->nip
))
75 /* check for 1 in the rA field */
76 if (((inst
>> 16) & 0x1f) != 1)
78 /* check major opcode */
86 case 62: /* std or stdu */
87 return (inst
& 3) == 1;
89 /* check minor opcode */
90 switch ((inst
>> 1) & 0x3ff) {
95 case 695: /* stfsux */
96 case 759: /* stfdux */
103 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
104 static void do_dabr(struct pt_regs
*regs
, unsigned long address
,
105 unsigned long error_code
)
109 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
110 11, SIGSEGV
) == NOTIFY_STOP
)
113 if (debugger_dabr_match(regs
))
119 /* Deliver the signal to userspace */
120 info
.si_signo
= SIGTRAP
;
122 info
.si_code
= TRAP_HWBKPT
;
123 info
.si_addr
= (void __user
*)address
;
124 force_sig_info(SIGTRAP
, &info
, current
);
126 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
129 * For 600- and 800-family processors, the error_code parameter is DSISR
130 * for a data fault, SRR1 for an instruction fault. For 400-family processors
131 * the error_code parameter is ESR for a data fault, 0 for an instruction
133 * For 64-bit processors, the error_code parameter is
134 * - DSISR for a non-SLB data access fault,
135 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
138 * The return value is 0 if the fault was handled, or the signal
139 * number if this is a kernel fault that can't be handled here.
141 int __kprobes
do_page_fault(struct pt_regs
*regs
, unsigned long address
,
142 unsigned long error_code
)
144 struct vm_area_struct
* vma
;
145 struct mm_struct
*mm
= current
->mm
;
147 int code
= SEGV_MAPERR
;
148 int is_write
= 0, ret
;
149 int trap
= TRAP(regs
);
150 int is_exec
= trap
== 0x400;
152 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
154 * Fortunately the bit assignments in SRR1 for an instruction
155 * fault and DSISR for a data fault are mostly the same for the
156 * bits we are interested in. But there are some bits which
157 * indicate errors in DSISR but can validly be set in SRR1.
160 error_code
&= 0x48200000;
162 is_write
= error_code
& DSISR_ISSTORE
;
164 is_write
= error_code
& ESR_DST
;
165 #endif /* CONFIG_4xx || CONFIG_BOOKE */
167 if (notify_page_fault(regs
))
171 if (debugger_fault_handler(regs
))
175 /* On a kernel SLB miss we can only check for a valid exception entry */
176 if (!user_mode(regs
) && (address
>= TASK_SIZE
))
179 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
180 if (error_code
& DSISR_DABRMATCH
) {
182 do_dabr(regs
, address
, error_code
);
185 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
187 if (in_atomic() || mm
== NULL
) {
188 if (!user_mode(regs
))
190 /* in_atomic() in user mode is really bad,
191 as is current->mm == NULL. */
192 printk(KERN_EMERG
"Page fault in user mode with"
193 "in_atomic() = %d mm = %p\n", in_atomic(), mm
);
194 printk(KERN_EMERG
"NIP = %lx MSR = %lx\n",
195 regs
->nip
, regs
->msr
);
196 die("Weird page fault", regs
, SIGSEGV
);
199 /* When running in the kernel we expect faults to occur only to
200 * addresses in user space. All other faults represent errors in the
201 * kernel and should generate an OOPS. Unfortunately, in the case of an
202 * erroneous fault occurring in a code path which already holds mmap_sem
203 * we will deadlock attempting to validate the fault against the
204 * address space. Luckily the kernel only validly references user
205 * space from well defined areas of code, which are listed in the
208 * As the vast majority of faults will be valid we will only perform
209 * the source reference check when there is a possibility of a deadlock.
210 * Attempt to lock the address space, if we cannot we then validate the
211 * source. If this is invalid we can skip the address space check,
212 * thus avoiding the deadlock.
214 if (!down_read_trylock(&mm
->mmap_sem
)) {
215 if (!user_mode(regs
) && !search_exception_tables(regs
->nip
))
216 goto bad_area_nosemaphore
;
218 down_read(&mm
->mmap_sem
);
221 vma
= find_vma(mm
, address
);
224 if (vma
->vm_start
<= address
)
226 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
230 * N.B. The POWER/Open ABI allows programs to access up to
231 * 288 bytes below the stack pointer.
232 * The kernel signal delivery code writes up to about 1.5kB
233 * below the stack pointer (r1) before decrementing it.
234 * The exec code can write slightly over 640kB to the stack
235 * before setting the user r1. Thus we allow the stack to
236 * expand to 1MB without further checks.
238 if (address
+ 0x100000 < vma
->vm_end
) {
239 /* get user regs even if this fault is in kernel mode */
240 struct pt_regs
*uregs
= current
->thread
.regs
;
245 * A user-mode access to an address a long way below
246 * the stack pointer is only valid if the instruction
247 * is one which would update the stack pointer to the
248 * address accessed if the instruction completed,
249 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
250 * (or the byte, halfword, float or double forms).
252 * If we don't check this then any write to the area
253 * between the last mapped region and the stack will
254 * expand the stack rather than segfaulting.
256 if (address
+ 2048 < uregs
->gpr
[1]
257 && (!user_mode(regs
) || !store_updates_sp(regs
)))
260 if (expand_stack(vma
, address
))
265 #if defined(CONFIG_6xx)
266 if (error_code
& 0x95700000)
267 /* an error such as lwarx to I/O controller space,
268 address matching DABR, eciwx, etc. */
270 #endif /* CONFIG_6xx */
271 #if defined(CONFIG_8xx)
272 /* The MPC8xx seems to always set 0x80000000, which is
273 * "undefined". Of those that can be set, this is the only
274 * one which seems bad.
276 if (error_code
& 0x10000000)
277 /* Guarded storage error. */
279 #endif /* CONFIG_8xx */
282 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
283 /* protection fault */
284 if (error_code
& DSISR_PROTFAULT
)
287 * Allow execution from readable areas if the MMU does not
288 * provide separate controls over reading and executing.
290 if (!(vma
->vm_flags
& VM_EXEC
) &&
291 (cpu_has_feature(CPU_FTR_NOEXECUTE
) ||
292 !(vma
->vm_flags
& (VM_READ
| VM_WRITE
))))
298 /* Since 4xx/Book-E supports per-page execute permission,
299 * we lazily flush dcache to icache. */
301 if (get_pteptr(mm
, address
, &ptep
, &pmdp
)) {
302 spinlock_t
*ptl
= pte_lockptr(mm
, pmdp
);
304 if (pte_present(*ptep
)) {
305 struct page
*page
= pte_page(*ptep
);
307 if (!test_bit(PG_arch_1
, &page
->flags
)) {
308 flush_dcache_icache_page(page
);
309 set_bit(PG_arch_1
, &page
->flags
);
311 pte_update(ptep
, 0, _PAGE_HWEXEC
);
312 _tlbie(address
, mm
->context
.id
);
313 pte_unmap_unlock(ptep
, ptl
);
314 up_read(&mm
->mmap_sem
);
317 pte_unmap_unlock(ptep
, ptl
);
321 } else if (is_write
) {
322 if (!(vma
->vm_flags
& VM_WRITE
))
326 /* protection fault */
327 if (error_code
& 0x08000000)
329 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
334 * If for any reason at all we couldn't handle the fault,
335 * make sure we exit gracefully rather than endlessly redo
339 ret
= handle_mm_fault(mm
, vma
, address
, is_write
);
340 if (unlikely(ret
& VM_FAULT_ERROR
)) {
341 if (ret
& VM_FAULT_OOM
)
343 else if (ret
& VM_FAULT_SIGBUS
)
347 if (ret
& VM_FAULT_MAJOR
)
351 up_read(&mm
->mmap_sem
);
355 up_read(&mm
->mmap_sem
);
357 bad_area_nosemaphore
:
358 /* User mode accesses cause a SIGSEGV */
359 if (user_mode(regs
)) {
360 _exception(SIGSEGV
, regs
, code
, address
);
364 if (is_exec
&& (error_code
& DSISR_PROTFAULT
)
365 && printk_ratelimit())
366 printk(KERN_CRIT
"kernel tried to execute NX-protected"
367 " page (%lx) - exploit attempt? (uid: %d)\n",
368 address
, current
->uid
);
373 * We ran out of memory, or some other thing happened to us that made
374 * us unable to handle the page fault gracefully.
377 up_read(&mm
->mmap_sem
);
378 if (is_global_init(current
)) {
380 down_read(&mm
->mmap_sem
);
383 printk("VM: killing process %s\n", current
->comm
);
385 do_group_exit(SIGKILL
);
389 up_read(&mm
->mmap_sem
);
390 if (user_mode(regs
)) {
391 info
.si_signo
= SIGBUS
;
393 info
.si_code
= BUS_ADRERR
;
394 info
.si_addr
= (void __user
*)address
;
395 force_sig_info(SIGBUS
, &info
, current
);
402 * bad_page_fault is called when we have a bad access from the kernel.
403 * It is called from the DSI and ISI handlers in head.S and from some
404 * of the procedures in traps.c.
406 void bad_page_fault(struct pt_regs
*regs
, unsigned long address
, int sig
)
408 const struct exception_table_entry
*entry
;
410 /* Are we prepared to handle this fault? */
411 if ((entry
= search_exception_tables(regs
->nip
)) != NULL
) {
412 regs
->nip
= entry
->fixup
;
416 /* kernel has accessed a bad area */
418 switch (regs
->trap
) {
421 printk(KERN_ALERT
"Unable to handle kernel paging request for "
422 "data at address 0x%08lx\n", regs
->dar
);
426 printk(KERN_ALERT
"Unable to handle kernel paging request for "
427 "instruction fetch\n");
430 printk(KERN_ALERT
"Unable to handle kernel paging request for "
434 printk(KERN_ALERT
"Faulting instruction address: 0x%08lx\n",
437 die("Kernel access of bad area", regs
, sig
);