x86: add PAGE_KERNEL_EXEC_NOCACHE
[wrt350n-kernel.git] / arch / ppc / boot / simple / pci.c
blobb0f673c8b7d96c60461d8c5f201bc378541fd2fb
1 /* Stand alone funtions for QSpan Tundra support.
2 */
3 #include <linux/types.h>
4 #include <linux/pci.h>
5 #include <asm/mpc8xx.h>
7 extern void puthex(unsigned long val);
8 extern void puts(const char *);
10 /* To map PCI devices, you first write 0xffffffff into the device
11 * base address registers. When the register is read back, the
12 * number of most significant '1' bits describes the amount of address
13 * space needed for mapping. If the most significant bit is not set,
14 * either the device does not use that address register, or it has
15 * a fixed address that we can't change. After the address is assigned,
16 * the command register has to be written to enable the card.
18 typedef struct {
19 u_char pci_bus;
20 u_char pci_devfn;
21 ushort pci_command;
22 uint pci_addrs[6];
23 } pci_map_t;
25 /* We should probably dynamically allocate these structures.
27 #define MAX_PCI_DEVS 32
28 int pci_dev_cnt;
29 pci_map_t pci_map[MAX_PCI_DEVS];
31 void pci_conf_write(int bus, int device, int func, int reg, uint writeval);
32 void pci_conf_read(int bus, int device, int func, int reg, void *readval);
33 void probe_addresses(int bus, int devfn);
34 void map_pci_addrs(void);
36 extern int
37 qs_pci_read_config_byte(unsigned char bus, unsigned char dev_fn,
38 unsigned char offset, unsigned char *val);
39 extern int
40 qs_pci_read_config_word(unsigned char bus, unsigned char dev_fn,
41 unsigned char offset, unsigned short *val);
42 extern int
43 qs_pci_read_config_dword(unsigned char bus, unsigned char dev_fn,
44 unsigned char offset, unsigned int *val);
45 extern int
46 qs_pci_write_config_byte(unsigned char bus, unsigned char dev_fn,
47 unsigned char offset, unsigned char val);
48 extern int
49 qs_pci_write_config_word(unsigned char bus, unsigned char dev_fn,
50 unsigned char offset, unsigned short val);
51 extern int
52 qs_pci_write_config_dword(unsigned char bus, unsigned char dev_fn,
53 unsigned char offset, unsigned int val);
56 /* This is a really stripped version of PCI bus scan. All we are
57 * looking for are devices that exist.
59 void
60 pci_scanner(int addr_probe)
62 unsigned int devfn, l, class, bus_number;
63 unsigned char hdr_type, is_multi;
65 is_multi = 0;
66 bus_number = 0;
67 for (devfn = 0; devfn < 0xff; ++devfn) {
68 /* The device numbers are comprised of upper 5 bits of
69 * device number and lower 3 bits of multi-function number.
71 if ((devfn & 7) && !is_multi) {
72 /* Don't scan multifunction addresses if this is
73 * not a multifunction device.
75 continue;
78 /* Read the header to determine card type.
80 qs_pci_read_config_byte(bus_number, devfn, PCI_HEADER_TYPE,
81 &hdr_type);
83 /* If this is a base device number, check the header to
84 * determine if it is mulifunction.
86 if ((devfn & 7) == 0)
87 is_multi = hdr_type & 0x80;
89 /* Check to see if the board is really in the slot.
91 qs_pci_read_config_dword(bus_number, devfn, PCI_VENDOR_ID, &l);
92 /* some broken boards return 0 if a slot is empty: */
93 if (l == 0xffffffff || l == 0x00000000 || l == 0x0000ffff ||
94 l == 0xffff0000) {
95 /* Nothing there.
97 is_multi = 0;
98 continue;
101 /* If we are not performing an address probe,
102 * just simply print out some information.
104 if (!addr_probe) {
105 qs_pci_read_config_dword(bus_number, devfn,
106 PCI_CLASS_REVISION, &class);
108 class >>= 8; /* upper 3 bytes */
110 #if 0
111 printf("Found (%3d:%d): vendor 0x%04x, device 0x%04x, class 0x%06x\n",
112 (devfn >> 3), (devfn & 7),
113 (l & 0xffff), (l >> 16) & 0xffff, class);
114 #else
115 puts("Found ("); puthex(devfn >> 3);
116 puts(":"); puthex(devfn & 7);
117 puts("): vendor "); puthex(l & 0xffff);
118 puts(", device "); puthex((l >> 16) & 0xffff);
119 puts(", class "); puthex(class); puts("\n");
120 #endif
122 else {
123 /* If this is a "normal" device, build address list.
125 if ((hdr_type & 0x7f) == PCI_HEADER_TYPE_NORMAL)
126 probe_addresses(bus_number, devfn);
130 /* Now map the boards.
132 if (addr_probe)
133 map_pci_addrs();
136 /* Probe addresses for the specified device. This is a destructive
137 * operation because it writes the registers.
139 void
140 probe_addresses(bus, devfn)
142 int i;
143 uint pciaddr;
144 ushort pcicmd;
145 pci_map_t *pm;
147 if (pci_dev_cnt >= MAX_PCI_DEVS) {
148 puts("Too many PCI devices\n");
149 return;
152 pm = &pci_map[pci_dev_cnt++];
154 pm->pci_bus = bus;
155 pm->pci_devfn = devfn;
157 for (i=0; i<6; i++) {
158 qs_pci_write_config_dword(bus, devfn, PCI_BASE_ADDRESS_0 + (i * 4), -1);
159 qs_pci_read_config_dword(bus, devfn, PCI_BASE_ADDRESS_0 + (i * 4),
160 &pciaddr);
161 pm->pci_addrs[i] = pciaddr;
162 qs_pci_read_config_word(bus, devfn, PCI_COMMAND, &pcicmd);
163 pm->pci_command = pcicmd;
167 /* Map the cards into the PCI space. The PCI has separate memory
168 * and I/O spaces. In addition, some memory devices require mapping
169 * below 1M. The least significant 4 bits of the address register
170 * provide information. If this is an I/O device, only the LS bit
171 * is used to indicate that, so I/O devices can be mapped to a two byte
172 * boundard. Memory addresses can be mapped to a 32 byte boundary.
173 * The QSpan implementations usually have a 1Gbyte space for each
174 * memory and I/O spaces.
176 * This isn't a terribly fancy algorithm. I just map the spaces from
177 * the top starting with the largest address space. When finished,
178 * the registers are written and the card enabled.
180 * While the Tundra can map a large address space on most boards, we
181 * need to be careful because it may overlap other devices (like IMMR).
183 #define MEMORY_SPACE_SIZE 0x20000000
184 #define IO_SPACE_SIZE 0x20000000
186 void
187 map_pci_addrs()
189 uint pci_mem_top, pci_mem_low;
190 uint pci_io_top;
191 uint addr_mask, reg_addr, space;
192 int i, j;
193 pci_map_t *pm;
195 pci_mem_top = MEMORY_SPACE_SIZE;
196 pci_io_top = IO_SPACE_SIZE;
197 pci_mem_low = (1 * 1024 * 1024); /* Below one meg addresses */
199 /* We can't map anything more than the maximum space, but test
200 * for it anyway to catch devices out of range.
202 addr_mask = 0x80000000;
204 do {
205 space = (~addr_mask) + 1; /* Size of the space */
206 for (i=0; i<pci_dev_cnt; i++) {
207 pm = &pci_map[i];
208 for (j=0; j<6; j++) {
209 /* If the MS bit is not set, this has either
210 * already been mapped, or is not used.
212 reg_addr = pm->pci_addrs[j];
213 if ((reg_addr & 0x80000000) == 0)
214 continue;
215 if (reg_addr & PCI_BASE_ADDRESS_SPACE_IO) {
216 if ((reg_addr & PCI_BASE_ADDRESS_IO_MASK) != addr_mask)
217 continue;
218 if (pci_io_top < space) {
219 puts("Out of PCI I/O space\n");
221 else {
222 pci_io_top -= space;
223 pm->pci_addrs[j] = pci_io_top;
224 pm->pci_command |= PCI_COMMAND_IO;
227 else {
228 if ((reg_addr & PCI_BASE_ADDRESS_MEM_MASK) != addr_mask)
229 continue;
231 /* Memory space. Test if below 1M.
233 if (reg_addr & PCI_BASE_ADDRESS_MEM_TYPE_1M) {
234 if (pci_mem_low < space) {
235 puts("Out of PCI 1M space\n");
237 else {
238 pci_mem_low -= space;
239 pm->pci_addrs[j] = pci_mem_low;
242 else {
243 if (pci_mem_top < space) {
244 puts("Out of PCI Mem space\n");
246 else {
247 pci_mem_top -= space;
248 pm->pci_addrs[j] = pci_mem_top;
251 pm->pci_command |= PCI_COMMAND_MEMORY;
255 addr_mask >>= 1;
256 addr_mask |= 0x80000000;
257 } while (addr_mask != 0xfffffffe);
259 /* Now, run the list one more time and map everything.
261 for (i=0; i<pci_dev_cnt; i++) {
262 pm = &pci_map[i];
263 for (j=0; j<6; j++) {
264 qs_pci_write_config_dword(pm->pci_bus, pm->pci_devfn,
265 PCI_BASE_ADDRESS_0 + (j * 4), pm->pci_addrs[j]);
268 /* Enable memory or address mapping.
270 qs_pci_write_config_word(pm->pci_bus, pm->pci_devfn, PCI_COMMAND,
271 pm->pci_command);