1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
54 struct ocfs2_extent_block
*eb
);
57 * Structures which describe a path through a btree, and functions to
60 * The idea here is to be as generic as possible with the tree
63 struct ocfs2_path_item
{
64 struct buffer_head
*bh
;
65 struct ocfs2_extent_list
*el
;
68 #define OCFS2_MAX_PATH_DEPTH 5
72 struct ocfs2_path_item p_node
[OCFS2_MAX_PATH_DEPTH
];
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
82 * Reset the actual path elements so that we can re-use the structure
83 * to build another path. Generally, this involves freeing the buffer
86 static void ocfs2_reinit_path(struct ocfs2_path
*path
, int keep_root
)
88 int i
, start
= 0, depth
= 0;
89 struct ocfs2_path_item
*node
;
94 for(i
= start
; i
< path_num_items(path
); i
++) {
95 node
= &path
->p_node
[i
];
103 * Tree depth may change during truncate, or insert. If we're
104 * keeping the root extent list, then make sure that our path
105 * structure reflects the proper depth.
108 depth
= le16_to_cpu(path_root_el(path
)->l_tree_depth
);
110 path
->p_tree_depth
= depth
;
113 static void ocfs2_free_path(struct ocfs2_path
*path
)
116 ocfs2_reinit_path(path
, 0);
122 * All the elements of src into dest. After this call, src could be freed
123 * without affecting dest.
125 * Both paths should have the same root. Any non-root elements of dest
128 static void ocfs2_cp_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
132 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
133 BUG_ON(path_root_el(dest
) != path_root_el(src
));
135 ocfs2_reinit_path(dest
, 1);
137 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
138 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
139 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
141 if (dest
->p_node
[i
].bh
)
142 get_bh(dest
->p_node
[i
].bh
);
147 * Make the *dest path the same as src and re-initialize src path to
150 static void ocfs2_mv_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
154 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
156 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
157 brelse(dest
->p_node
[i
].bh
);
159 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
160 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
162 src
->p_node
[i
].bh
= NULL
;
163 src
->p_node
[i
].el
= NULL
;
168 * Insert an extent block at given index.
170 * This will not take an additional reference on eb_bh.
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path
*path
, int index
,
173 struct buffer_head
*eb_bh
)
175 struct ocfs2_extent_block
*eb
= (struct ocfs2_extent_block
*)eb_bh
->b_data
;
178 * Right now, no root bh is an extent block, so this helps
179 * catch code errors with dinode trees. The assertion can be
180 * safely removed if we ever need to insert extent block
181 * structures at the root.
185 path
->p_node
[index
].bh
= eb_bh
;
186 path
->p_node
[index
].el
= &eb
->h_list
;
189 static struct ocfs2_path
*ocfs2_new_path(struct buffer_head
*root_bh
,
190 struct ocfs2_extent_list
*root_el
)
192 struct ocfs2_path
*path
;
194 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) >= OCFS2_MAX_PATH_DEPTH
);
196 path
= kzalloc(sizeof(*path
), GFP_NOFS
);
198 path
->p_tree_depth
= le16_to_cpu(root_el
->l_tree_depth
);
200 path_root_bh(path
) = root_bh
;
201 path_root_el(path
) = root_el
;
208 * Allocate and initialize a new path based on a disk inode tree.
210 static struct ocfs2_path
*ocfs2_new_inode_path(struct buffer_head
*di_bh
)
212 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
213 struct ocfs2_extent_list
*el
= &di
->id2
.i_list
;
215 return ocfs2_new_path(di_bh
, el
);
219 * Convenience function to journal all components in a path.
221 static int ocfs2_journal_access_path(struct inode
*inode
, handle_t
*handle
,
222 struct ocfs2_path
*path
)
229 for(i
= 0; i
< path_num_items(path
); i
++) {
230 ret
= ocfs2_journal_access(handle
, inode
, path
->p_node
[i
].bh
,
231 OCFS2_JOURNAL_ACCESS_WRITE
);
243 * Return the index of the extent record which contains cluster #v_cluster.
244 * -1 is returned if it was not found.
246 * Should work fine on interior and exterior nodes.
248 int ocfs2_search_extent_list(struct ocfs2_extent_list
*el
, u32 v_cluster
)
252 struct ocfs2_extent_rec
*rec
;
253 u32 rec_end
, rec_start
, clusters
;
255 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
256 rec
= &el
->l_recs
[i
];
258 rec_start
= le32_to_cpu(rec
->e_cpos
);
259 clusters
= ocfs2_rec_clusters(el
, rec
);
261 rec_end
= rec_start
+ clusters
;
263 if (v_cluster
>= rec_start
&& v_cluster
< rec_end
) {
272 enum ocfs2_contig_type
{
281 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282 * ocfs2_extent_contig only work properly against leaf nodes!
284 static int ocfs2_block_extent_contig(struct super_block
*sb
,
285 struct ocfs2_extent_rec
*ext
,
288 u64 blk_end
= le64_to_cpu(ext
->e_blkno
);
290 blk_end
+= ocfs2_clusters_to_blocks(sb
,
291 le16_to_cpu(ext
->e_leaf_clusters
));
293 return blkno
== blk_end
;
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec
*left
,
297 struct ocfs2_extent_rec
*right
)
301 left_range
= le32_to_cpu(left
->e_cpos
) +
302 le16_to_cpu(left
->e_leaf_clusters
);
304 return (left_range
== le32_to_cpu(right
->e_cpos
));
307 static enum ocfs2_contig_type
308 ocfs2_extent_contig(struct inode
*inode
,
309 struct ocfs2_extent_rec
*ext
,
310 struct ocfs2_extent_rec
*insert_rec
)
312 u64 blkno
= le64_to_cpu(insert_rec
->e_blkno
);
315 * Refuse to coalesce extent records with different flag
316 * fields - we don't want to mix unwritten extents with user
319 if (ext
->e_flags
!= insert_rec
->e_flags
)
322 if (ocfs2_extents_adjacent(ext
, insert_rec
) &&
323 ocfs2_block_extent_contig(inode
->i_sb
, ext
, blkno
))
326 blkno
= le64_to_cpu(ext
->e_blkno
);
327 if (ocfs2_extents_adjacent(insert_rec
, ext
) &&
328 ocfs2_block_extent_contig(inode
->i_sb
, insert_rec
, blkno
))
335 * NOTE: We can have pretty much any combination of contiguousness and
338 * The usefulness of APPEND_TAIL is more in that it lets us know that
339 * we'll have to update the path to that leaf.
341 enum ocfs2_append_type
{
346 enum ocfs2_split_type
{
352 struct ocfs2_insert_type
{
353 enum ocfs2_split_type ins_split
;
354 enum ocfs2_append_type ins_appending
;
355 enum ocfs2_contig_type ins_contig
;
356 int ins_contig_index
;
360 struct ocfs2_merge_ctxt
{
361 enum ocfs2_contig_type c_contig_type
;
362 int c_has_empty_extent
;
363 int c_split_covers_rec
;
367 * How many free extents have we got before we need more meta data?
369 int ocfs2_num_free_extents(struct ocfs2_super
*osb
,
371 struct ocfs2_dinode
*fe
)
374 struct ocfs2_extent_list
*el
;
375 struct ocfs2_extent_block
*eb
;
376 struct buffer_head
*eb_bh
= NULL
;
380 if (!OCFS2_IS_VALID_DINODE(fe
)) {
381 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
386 if (fe
->i_last_eb_blk
) {
387 retval
= ocfs2_read_block(osb
, le64_to_cpu(fe
->i_last_eb_blk
),
388 &eb_bh
, OCFS2_BH_CACHED
, inode
);
393 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
396 el
= &fe
->id2
.i_list
;
398 BUG_ON(el
->l_tree_depth
!= 0);
400 retval
= le16_to_cpu(el
->l_count
) - le16_to_cpu(el
->l_next_free_rec
);
409 /* expects array to already be allocated
411 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super
*osb
,
418 struct ocfs2_alloc_context
*meta_ac
,
419 struct buffer_head
*bhs
[])
421 int count
, status
, i
;
422 u16 suballoc_bit_start
;
425 struct ocfs2_extent_block
*eb
;
430 while (count
< wanted
) {
431 status
= ocfs2_claim_metadata(osb
,
443 for(i
= count
; i
< (num_got
+ count
); i
++) {
444 bhs
[i
] = sb_getblk(osb
->sb
, first_blkno
);
445 if (bhs
[i
] == NULL
) {
450 ocfs2_set_new_buffer_uptodate(inode
, bhs
[i
]);
452 status
= ocfs2_journal_access(handle
, inode
, bhs
[i
],
453 OCFS2_JOURNAL_ACCESS_CREATE
);
459 memset(bhs
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
460 eb
= (struct ocfs2_extent_block
*) bhs
[i
]->b_data
;
461 /* Ok, setup the minimal stuff here. */
462 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
463 eb
->h_blkno
= cpu_to_le64(first_blkno
);
464 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
465 eb
->h_suballoc_slot
= cpu_to_le16(osb
->slot_num
);
466 eb
->h_suballoc_bit
= cpu_to_le16(suballoc_bit_start
);
468 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
470 suballoc_bit_start
++;
473 /* We'll also be dirtied by the caller, so
474 * this isn't absolutely necessary. */
475 status
= ocfs2_journal_dirty(handle
, bhs
[i
]);
488 for(i
= 0; i
< wanted
; i
++) {
499 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
501 * Returns the sum of the rightmost extent rec logical offset and
504 * ocfs2_add_branch() uses this to determine what logical cluster
505 * value should be populated into the leftmost new branch records.
507 * ocfs2_shift_tree_depth() uses this to determine the # clusters
508 * value for the new topmost tree record.
510 static inline u32
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list
*el
)
514 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
516 return le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
517 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
521 * Add an entire tree branch to our inode. eb_bh is the extent block
522 * to start at, if we don't want to start the branch at the dinode
525 * last_eb_bh is required as we have to update it's next_leaf pointer
526 * for the new last extent block.
528 * the new branch will be 'empty' in the sense that every block will
529 * contain a single record with cluster count == 0.
531 static int ocfs2_add_branch(struct ocfs2_super
*osb
,
534 struct buffer_head
*fe_bh
,
535 struct buffer_head
*eb_bh
,
536 struct buffer_head
**last_eb_bh
,
537 struct ocfs2_alloc_context
*meta_ac
)
539 int status
, new_blocks
, i
;
540 u64 next_blkno
, new_last_eb_blk
;
541 struct buffer_head
*bh
;
542 struct buffer_head
**new_eb_bhs
= NULL
;
543 struct ocfs2_dinode
*fe
;
544 struct ocfs2_extent_block
*eb
;
545 struct ocfs2_extent_list
*eb_el
;
546 struct ocfs2_extent_list
*el
;
551 BUG_ON(!last_eb_bh
|| !*last_eb_bh
);
553 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
556 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
559 el
= &fe
->id2
.i_list
;
561 /* we never add a branch to a leaf. */
562 BUG_ON(!el
->l_tree_depth
);
564 new_blocks
= le16_to_cpu(el
->l_tree_depth
);
566 /* allocate the number of new eb blocks we need */
567 new_eb_bhs
= kcalloc(new_blocks
, sizeof(struct buffer_head
*),
575 status
= ocfs2_create_new_meta_bhs(osb
, handle
, inode
, new_blocks
,
576 meta_ac
, new_eb_bhs
);
582 eb
= (struct ocfs2_extent_block
*)(*last_eb_bh
)->b_data
;
583 new_cpos
= ocfs2_sum_rightmost_rec(&eb
->h_list
);
585 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
586 * linked with the rest of the tree.
587 * conversly, new_eb_bhs[0] is the new bottommost leaf.
589 * when we leave the loop, new_last_eb_blk will point to the
590 * newest leaf, and next_blkno will point to the topmost extent
592 next_blkno
= new_last_eb_blk
= 0;
593 for(i
= 0; i
< new_blocks
; i
++) {
595 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
596 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
597 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
603 status
= ocfs2_journal_access(handle
, inode
, bh
,
604 OCFS2_JOURNAL_ACCESS_CREATE
);
610 eb
->h_next_leaf_blk
= 0;
611 eb_el
->l_tree_depth
= cpu_to_le16(i
);
612 eb_el
->l_next_free_rec
= cpu_to_le16(1);
614 * This actually counts as an empty extent as
617 eb_el
->l_recs
[0].e_cpos
= cpu_to_le32(new_cpos
);
618 eb_el
->l_recs
[0].e_blkno
= cpu_to_le64(next_blkno
);
620 * eb_el isn't always an interior node, but even leaf
621 * nodes want a zero'd flags and reserved field so
622 * this gets the whole 32 bits regardless of use.
624 eb_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(0);
625 if (!eb_el
->l_tree_depth
)
626 new_last_eb_blk
= le64_to_cpu(eb
->h_blkno
);
628 status
= ocfs2_journal_dirty(handle
, bh
);
634 next_blkno
= le64_to_cpu(eb
->h_blkno
);
637 /* This is a bit hairy. We want to update up to three blocks
638 * here without leaving any of them in an inconsistent state
639 * in case of error. We don't have to worry about
640 * journal_dirty erroring as it won't unless we've aborted the
641 * handle (in which case we would never be here) so reserving
642 * the write with journal_access is all we need to do. */
643 status
= ocfs2_journal_access(handle
, inode
, *last_eb_bh
,
644 OCFS2_JOURNAL_ACCESS_WRITE
);
649 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
650 OCFS2_JOURNAL_ACCESS_WRITE
);
656 status
= ocfs2_journal_access(handle
, inode
, eb_bh
,
657 OCFS2_JOURNAL_ACCESS_WRITE
);
664 /* Link the new branch into the rest of the tree (el will
665 * either be on the fe, or the extent block passed in. */
666 i
= le16_to_cpu(el
->l_next_free_rec
);
667 el
->l_recs
[i
].e_blkno
= cpu_to_le64(next_blkno
);
668 el
->l_recs
[i
].e_cpos
= cpu_to_le32(new_cpos
);
669 el
->l_recs
[i
].e_int_clusters
= 0;
670 le16_add_cpu(&el
->l_next_free_rec
, 1);
672 /* fe needs a new last extent block pointer, as does the
673 * next_leaf on the previously last-extent-block. */
674 fe
->i_last_eb_blk
= cpu_to_le64(new_last_eb_blk
);
676 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
677 eb
->h_next_leaf_blk
= cpu_to_le64(new_last_eb_blk
);
679 status
= ocfs2_journal_dirty(handle
, *last_eb_bh
);
682 status
= ocfs2_journal_dirty(handle
, fe_bh
);
686 status
= ocfs2_journal_dirty(handle
, eb_bh
);
692 * Some callers want to track the rightmost leaf so pass it
696 get_bh(new_eb_bhs
[0]);
697 *last_eb_bh
= new_eb_bhs
[0];
702 for (i
= 0; i
< new_blocks
; i
++)
704 brelse(new_eb_bhs
[i
]);
713 * adds another level to the allocation tree.
714 * returns back the new extent block so you can add a branch to it
717 static int ocfs2_shift_tree_depth(struct ocfs2_super
*osb
,
720 struct buffer_head
*fe_bh
,
721 struct ocfs2_alloc_context
*meta_ac
,
722 struct buffer_head
**ret_new_eb_bh
)
726 struct buffer_head
*new_eb_bh
= NULL
;
727 struct ocfs2_dinode
*fe
;
728 struct ocfs2_extent_block
*eb
;
729 struct ocfs2_extent_list
*fe_el
;
730 struct ocfs2_extent_list
*eb_el
;
734 status
= ocfs2_create_new_meta_bhs(osb
, handle
, inode
, 1, meta_ac
,
741 eb
= (struct ocfs2_extent_block
*) new_eb_bh
->b_data
;
742 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
743 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
749 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
750 fe_el
= &fe
->id2
.i_list
;
752 status
= ocfs2_journal_access(handle
, inode
, new_eb_bh
,
753 OCFS2_JOURNAL_ACCESS_CREATE
);
759 /* copy the fe data into the new extent block */
760 eb_el
->l_tree_depth
= fe_el
->l_tree_depth
;
761 eb_el
->l_next_free_rec
= fe_el
->l_next_free_rec
;
762 for(i
= 0; i
< le16_to_cpu(fe_el
->l_next_free_rec
); i
++)
763 eb_el
->l_recs
[i
] = fe_el
->l_recs
[i
];
765 status
= ocfs2_journal_dirty(handle
, new_eb_bh
);
771 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
772 OCFS2_JOURNAL_ACCESS_WRITE
);
778 new_clusters
= ocfs2_sum_rightmost_rec(eb_el
);
781 le16_add_cpu(&fe_el
->l_tree_depth
, 1);
782 fe_el
->l_recs
[0].e_cpos
= 0;
783 fe_el
->l_recs
[0].e_blkno
= eb
->h_blkno
;
784 fe_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(new_clusters
);
785 for(i
= 1; i
< le16_to_cpu(fe_el
->l_next_free_rec
); i
++)
786 memset(&fe_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
787 fe_el
->l_next_free_rec
= cpu_to_le16(1);
789 /* If this is our 1st tree depth shift, then last_eb_blk
790 * becomes the allocated extent block */
791 if (fe_el
->l_tree_depth
== cpu_to_le16(1))
792 fe
->i_last_eb_blk
= eb
->h_blkno
;
794 status
= ocfs2_journal_dirty(handle
, fe_bh
);
800 *ret_new_eb_bh
= new_eb_bh
;
812 * Should only be called when there is no space left in any of the
813 * leaf nodes. What we want to do is find the lowest tree depth
814 * non-leaf extent block with room for new records. There are three
815 * valid results of this search:
817 * 1) a lowest extent block is found, then we pass it back in
818 * *lowest_eb_bh and return '0'
820 * 2) the search fails to find anything, but the dinode has room. We
821 * pass NULL back in *lowest_eb_bh, but still return '0'
823 * 3) the search fails to find anything AND the dinode is full, in
824 * which case we return > 0
826 * return status < 0 indicates an error.
828 static int ocfs2_find_branch_target(struct ocfs2_super
*osb
,
830 struct buffer_head
*fe_bh
,
831 struct buffer_head
**target_bh
)
835 struct ocfs2_dinode
*fe
;
836 struct ocfs2_extent_block
*eb
;
837 struct ocfs2_extent_list
*el
;
838 struct buffer_head
*bh
= NULL
;
839 struct buffer_head
*lowest_bh
= NULL
;
845 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
846 el
= &fe
->id2
.i_list
;
848 while(le16_to_cpu(el
->l_tree_depth
) > 1) {
849 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
850 ocfs2_error(inode
->i_sb
, "Dinode %llu has empty "
851 "extent list (next_free_rec == 0)",
852 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
856 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
857 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
859 ocfs2_error(inode
->i_sb
, "Dinode %llu has extent "
860 "list where extent # %d has no physical "
862 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, i
);
872 status
= ocfs2_read_block(osb
, blkno
, &bh
, OCFS2_BH_CACHED
,
879 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
880 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
881 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
887 if (le16_to_cpu(el
->l_next_free_rec
) <
888 le16_to_cpu(el
->l_count
)) {
896 /* If we didn't find one and the fe doesn't have any room,
899 && (fe
->id2
.i_list
.l_next_free_rec
== fe
->id2
.i_list
.l_count
))
902 *target_bh
= lowest_bh
;
912 * Grow a b-tree so that it has more records.
914 * We might shift the tree depth in which case existing paths should
915 * be considered invalid.
917 * Tree depth after the grow is returned via *final_depth.
919 * *last_eb_bh will be updated by ocfs2_add_branch().
921 static int ocfs2_grow_tree(struct inode
*inode
, handle_t
*handle
,
922 struct buffer_head
*di_bh
, int *final_depth
,
923 struct buffer_head
**last_eb_bh
,
924 struct ocfs2_alloc_context
*meta_ac
)
927 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
928 int depth
= le16_to_cpu(di
->id2
.i_list
.l_tree_depth
);
929 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
930 struct buffer_head
*bh
= NULL
;
932 BUG_ON(meta_ac
== NULL
);
934 shift
= ocfs2_find_branch_target(osb
, inode
, di_bh
, &bh
);
941 /* We traveled all the way to the bottom of the allocation tree
942 * and didn't find room for any more extents - we need to add
943 * another tree level */
946 mlog(0, "need to shift tree depth (current = %d)\n", depth
);
948 /* ocfs2_shift_tree_depth will return us a buffer with
949 * the new extent block (so we can pass that to
950 * ocfs2_add_branch). */
951 ret
= ocfs2_shift_tree_depth(osb
, handle
, inode
, di_bh
,
960 * Special case: we have room now if we shifted from
961 * tree_depth 0, so no more work needs to be done.
963 * We won't be calling add_branch, so pass
964 * back *last_eb_bh as the new leaf. At depth
965 * zero, it should always be null so there's
966 * no reason to brelse.
975 /* call ocfs2_add_branch to add the final part of the tree with
977 mlog(0, "add branch. bh = %p\n", bh
);
978 ret
= ocfs2_add_branch(osb
, handle
, inode
, di_bh
, bh
, last_eb_bh
,
987 *final_depth
= depth
;
993 * This is only valid for leaf nodes, which are the only ones that can
994 * have empty extents anyway.
996 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec
*rec
)
998 return !rec
->e_leaf_clusters
;
1002 * This function will discard the rightmost extent record.
1004 static void ocfs2_shift_records_right(struct ocfs2_extent_list
*el
)
1006 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1007 int count
= le16_to_cpu(el
->l_count
);
1008 unsigned int num_bytes
;
1011 /* This will cause us to go off the end of our extent list. */
1012 BUG_ON(next_free
>= count
);
1014 num_bytes
= sizeof(struct ocfs2_extent_rec
) * next_free
;
1016 memmove(&el
->l_recs
[1], &el
->l_recs
[0], num_bytes
);
1019 static void ocfs2_rotate_leaf(struct ocfs2_extent_list
*el
,
1020 struct ocfs2_extent_rec
*insert_rec
)
1022 int i
, insert_index
, next_free
, has_empty
, num_bytes
;
1023 u32 insert_cpos
= le32_to_cpu(insert_rec
->e_cpos
);
1024 struct ocfs2_extent_rec
*rec
;
1026 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1027 has_empty
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
1031 /* The tree code before us didn't allow enough room in the leaf. */
1032 if (el
->l_next_free_rec
== el
->l_count
&& !has_empty
)
1036 * The easiest way to approach this is to just remove the
1037 * empty extent and temporarily decrement next_free.
1041 * If next_free was 1 (only an empty extent), this
1042 * loop won't execute, which is fine. We still want
1043 * the decrement above to happen.
1045 for(i
= 0; i
< (next_free
- 1); i
++)
1046 el
->l_recs
[i
] = el
->l_recs
[i
+1];
1052 * Figure out what the new record index should be.
1054 for(i
= 0; i
< next_free
; i
++) {
1055 rec
= &el
->l_recs
[i
];
1057 if (insert_cpos
< le32_to_cpu(rec
->e_cpos
))
1062 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1063 insert_cpos
, insert_index
, has_empty
, next_free
, le16_to_cpu(el
->l_count
));
1065 BUG_ON(insert_index
< 0);
1066 BUG_ON(insert_index
>= le16_to_cpu(el
->l_count
));
1067 BUG_ON(insert_index
> next_free
);
1070 * No need to memmove if we're just adding to the tail.
1072 if (insert_index
!= next_free
) {
1073 BUG_ON(next_free
>= le16_to_cpu(el
->l_count
));
1075 num_bytes
= next_free
- insert_index
;
1076 num_bytes
*= sizeof(struct ocfs2_extent_rec
);
1077 memmove(&el
->l_recs
[insert_index
+ 1],
1078 &el
->l_recs
[insert_index
],
1083 * Either we had an empty extent, and need to re-increment or
1084 * there was no empty extent on a non full rightmost leaf node,
1085 * in which case we still need to increment.
1088 el
->l_next_free_rec
= cpu_to_le16(next_free
);
1090 * Make sure none of the math above just messed up our tree.
1092 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) > le16_to_cpu(el
->l_count
));
1094 el
->l_recs
[insert_index
] = *insert_rec
;
1098 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list
*el
)
1100 int size
, num_recs
= le16_to_cpu(el
->l_next_free_rec
);
1102 BUG_ON(num_recs
== 0);
1104 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
1106 size
= num_recs
* sizeof(struct ocfs2_extent_rec
);
1107 memmove(&el
->l_recs
[0], &el
->l_recs
[1], size
);
1108 memset(&el
->l_recs
[num_recs
], 0,
1109 sizeof(struct ocfs2_extent_rec
));
1110 el
->l_next_free_rec
= cpu_to_le16(num_recs
);
1115 * Create an empty extent record .
1117 * l_next_free_rec may be updated.
1119 * If an empty extent already exists do nothing.
1121 static void ocfs2_create_empty_extent(struct ocfs2_extent_list
*el
)
1123 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1125 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
1130 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
1133 mlog_bug_on_msg(el
->l_count
== el
->l_next_free_rec
,
1134 "Asked to create an empty extent in a full list:\n"
1135 "count = %u, tree depth = %u",
1136 le16_to_cpu(el
->l_count
),
1137 le16_to_cpu(el
->l_tree_depth
));
1139 ocfs2_shift_records_right(el
);
1142 le16_add_cpu(&el
->l_next_free_rec
, 1);
1143 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1147 * For a rotation which involves two leaf nodes, the "root node" is
1148 * the lowest level tree node which contains a path to both leafs. This
1149 * resulting set of information can be used to form a complete "subtree"
1151 * This function is passed two full paths from the dinode down to a
1152 * pair of adjacent leaves. It's task is to figure out which path
1153 * index contains the subtree root - this can be the root index itself
1154 * in a worst-case rotation.
1156 * The array index of the subtree root is passed back.
1158 static int ocfs2_find_subtree_root(struct inode
*inode
,
1159 struct ocfs2_path
*left
,
1160 struct ocfs2_path
*right
)
1165 * Check that the caller passed in two paths from the same tree.
1167 BUG_ON(path_root_bh(left
) != path_root_bh(right
));
1173 * The caller didn't pass two adjacent paths.
1175 mlog_bug_on_msg(i
> left
->p_tree_depth
,
1176 "Inode %lu, left depth %u, right depth %u\n"
1177 "left leaf blk %llu, right leaf blk %llu\n",
1178 inode
->i_ino
, left
->p_tree_depth
,
1179 right
->p_tree_depth
,
1180 (unsigned long long)path_leaf_bh(left
)->b_blocknr
,
1181 (unsigned long long)path_leaf_bh(right
)->b_blocknr
);
1182 } while (left
->p_node
[i
].bh
->b_blocknr
==
1183 right
->p_node
[i
].bh
->b_blocknr
);
1188 typedef void (path_insert_t
)(void *, struct buffer_head
*);
1191 * Traverse a btree path in search of cpos, starting at root_el.
1193 * This code can be called with a cpos larger than the tree, in which
1194 * case it will return the rightmost path.
1196 static int __ocfs2_find_path(struct inode
*inode
,
1197 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1198 path_insert_t
*func
, void *data
)
1203 struct buffer_head
*bh
= NULL
;
1204 struct ocfs2_extent_block
*eb
;
1205 struct ocfs2_extent_list
*el
;
1206 struct ocfs2_extent_rec
*rec
;
1207 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1210 while (el
->l_tree_depth
) {
1211 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1212 ocfs2_error(inode
->i_sb
,
1213 "Inode %llu has empty extent list at "
1215 (unsigned long long)oi
->ip_blkno
,
1216 le16_to_cpu(el
->l_tree_depth
));
1222 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
) - 1; i
++) {
1223 rec
= &el
->l_recs
[i
];
1226 * In the case that cpos is off the allocation
1227 * tree, this should just wind up returning the
1230 range
= le32_to_cpu(rec
->e_cpos
) +
1231 ocfs2_rec_clusters(el
, rec
);
1232 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1236 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1238 ocfs2_error(inode
->i_sb
,
1239 "Inode %llu has bad blkno in extent list "
1240 "at depth %u (index %d)\n",
1241 (unsigned long long)oi
->ip_blkno
,
1242 le16_to_cpu(el
->l_tree_depth
), i
);
1249 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
), blkno
,
1250 &bh
, OCFS2_BH_CACHED
, inode
);
1256 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1258 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
1259 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
1264 if (le16_to_cpu(el
->l_next_free_rec
) >
1265 le16_to_cpu(el
->l_count
)) {
1266 ocfs2_error(inode
->i_sb
,
1267 "Inode %llu has bad count in extent list "
1268 "at block %llu (next free=%u, count=%u)\n",
1269 (unsigned long long)oi
->ip_blkno
,
1270 (unsigned long long)bh
->b_blocknr
,
1271 le16_to_cpu(el
->l_next_free_rec
),
1272 le16_to_cpu(el
->l_count
));
1283 * Catch any trailing bh that the loop didn't handle.
1291 * Given an initialized path (that is, it has a valid root extent
1292 * list), this function will traverse the btree in search of the path
1293 * which would contain cpos.
1295 * The path traveled is recorded in the path structure.
1297 * Note that this will not do any comparisons on leaf node extent
1298 * records, so it will work fine in the case that we just added a tree
1301 struct find_path_data
{
1303 struct ocfs2_path
*path
;
1305 static void find_path_ins(void *data
, struct buffer_head
*bh
)
1307 struct find_path_data
*fp
= data
;
1310 ocfs2_path_insert_eb(fp
->path
, fp
->index
, bh
);
1313 static int ocfs2_find_path(struct inode
*inode
, struct ocfs2_path
*path
,
1316 struct find_path_data data
;
1320 return __ocfs2_find_path(inode
, path_root_el(path
), cpos
,
1321 find_path_ins
, &data
);
1324 static void find_leaf_ins(void *data
, struct buffer_head
*bh
)
1326 struct ocfs2_extent_block
*eb
=(struct ocfs2_extent_block
*)bh
->b_data
;
1327 struct ocfs2_extent_list
*el
= &eb
->h_list
;
1328 struct buffer_head
**ret
= data
;
1330 /* We want to retain only the leaf block. */
1331 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
1337 * Find the leaf block in the tree which would contain cpos. No
1338 * checking of the actual leaf is done.
1340 * Some paths want to call this instead of allocating a path structure
1341 * and calling ocfs2_find_path().
1343 * This function doesn't handle non btree extent lists.
1345 int ocfs2_find_leaf(struct inode
*inode
, struct ocfs2_extent_list
*root_el
,
1346 u32 cpos
, struct buffer_head
**leaf_bh
)
1349 struct buffer_head
*bh
= NULL
;
1351 ret
= __ocfs2_find_path(inode
, root_el
, cpos
, find_leaf_ins
, &bh
);
1363 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1365 * Basically, we've moved stuff around at the bottom of the tree and
1366 * we need to fix up the extent records above the changes to reflect
1369 * left_rec: the record on the left.
1370 * left_child_el: is the child list pointed to by left_rec
1371 * right_rec: the record to the right of left_rec
1372 * right_child_el: is the child list pointed to by right_rec
1374 * By definition, this only works on interior nodes.
1376 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec
*left_rec
,
1377 struct ocfs2_extent_list
*left_child_el
,
1378 struct ocfs2_extent_rec
*right_rec
,
1379 struct ocfs2_extent_list
*right_child_el
)
1381 u32 left_clusters
, right_end
;
1384 * Interior nodes never have holes. Their cpos is the cpos of
1385 * the leftmost record in their child list. Their cluster
1386 * count covers the full theoretical range of their child list
1387 * - the range between their cpos and the cpos of the record
1388 * immediately to their right.
1390 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[0].e_cpos
);
1391 if (ocfs2_is_empty_extent(&right_child_el
->l_recs
[0])) {
1392 BUG_ON(le16_to_cpu(right_child_el
->l_next_free_rec
) <= 1);
1393 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[1].e_cpos
);
1395 left_clusters
-= le32_to_cpu(left_rec
->e_cpos
);
1396 left_rec
->e_int_clusters
= cpu_to_le32(left_clusters
);
1399 * Calculate the rightmost cluster count boundary before
1400 * moving cpos - we will need to adjust clusters after
1401 * updating e_cpos to keep the same highest cluster count.
1403 right_end
= le32_to_cpu(right_rec
->e_cpos
);
1404 right_end
+= le32_to_cpu(right_rec
->e_int_clusters
);
1406 right_rec
->e_cpos
= left_rec
->e_cpos
;
1407 le32_add_cpu(&right_rec
->e_cpos
, left_clusters
);
1409 right_end
-= le32_to_cpu(right_rec
->e_cpos
);
1410 right_rec
->e_int_clusters
= cpu_to_le32(right_end
);
1414 * Adjust the adjacent root node records involved in a
1415 * rotation. left_el_blkno is passed in as a key so that we can easily
1416 * find it's index in the root list.
1418 static void ocfs2_adjust_root_records(struct ocfs2_extent_list
*root_el
,
1419 struct ocfs2_extent_list
*left_el
,
1420 struct ocfs2_extent_list
*right_el
,
1425 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) <=
1426 le16_to_cpu(left_el
->l_tree_depth
));
1428 for(i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
) - 1; i
++) {
1429 if (le64_to_cpu(root_el
->l_recs
[i
].e_blkno
) == left_el_blkno
)
1434 * The path walking code should have never returned a root and
1435 * two paths which are not adjacent.
1437 BUG_ON(i
>= (le16_to_cpu(root_el
->l_next_free_rec
) - 1));
1439 ocfs2_adjust_adjacent_records(&root_el
->l_recs
[i
], left_el
,
1440 &root_el
->l_recs
[i
+ 1], right_el
);
1444 * We've changed a leaf block (in right_path) and need to reflect that
1445 * change back up the subtree.
1447 * This happens in multiple places:
1448 * - When we've moved an extent record from the left path leaf to the right
1449 * path leaf to make room for an empty extent in the left path leaf.
1450 * - When our insert into the right path leaf is at the leftmost edge
1451 * and requires an update of the path immediately to it's left. This
1452 * can occur at the end of some types of rotation and appending inserts.
1454 static void ocfs2_complete_edge_insert(struct inode
*inode
, handle_t
*handle
,
1455 struct ocfs2_path
*left_path
,
1456 struct ocfs2_path
*right_path
,
1460 struct ocfs2_extent_list
*el
, *left_el
, *right_el
;
1461 struct ocfs2_extent_rec
*left_rec
, *right_rec
;
1462 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
1465 * Update the counts and position values within all the
1466 * interior nodes to reflect the leaf rotation we just did.
1468 * The root node is handled below the loop.
1470 * We begin the loop with right_el and left_el pointing to the
1471 * leaf lists and work our way up.
1473 * NOTE: within this loop, left_el and right_el always refer
1474 * to the *child* lists.
1476 left_el
= path_leaf_el(left_path
);
1477 right_el
= path_leaf_el(right_path
);
1478 for(i
= left_path
->p_tree_depth
- 1; i
> subtree_index
; i
--) {
1479 mlog(0, "Adjust records at index %u\n", i
);
1482 * One nice property of knowing that all of these
1483 * nodes are below the root is that we only deal with
1484 * the leftmost right node record and the rightmost
1487 el
= left_path
->p_node
[i
].el
;
1488 idx
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
1489 left_rec
= &el
->l_recs
[idx
];
1491 el
= right_path
->p_node
[i
].el
;
1492 right_rec
= &el
->l_recs
[0];
1494 ocfs2_adjust_adjacent_records(left_rec
, left_el
, right_rec
,
1497 ret
= ocfs2_journal_dirty(handle
, left_path
->p_node
[i
].bh
);
1501 ret
= ocfs2_journal_dirty(handle
, right_path
->p_node
[i
].bh
);
1506 * Setup our list pointers now so that the current
1507 * parents become children in the next iteration.
1509 left_el
= left_path
->p_node
[i
].el
;
1510 right_el
= right_path
->p_node
[i
].el
;
1514 * At the root node, adjust the two adjacent records which
1515 * begin our path to the leaves.
1518 el
= left_path
->p_node
[subtree_index
].el
;
1519 left_el
= left_path
->p_node
[subtree_index
+ 1].el
;
1520 right_el
= right_path
->p_node
[subtree_index
+ 1].el
;
1522 ocfs2_adjust_root_records(el
, left_el
, right_el
,
1523 left_path
->p_node
[subtree_index
+ 1].bh
->b_blocknr
);
1525 root_bh
= left_path
->p_node
[subtree_index
].bh
;
1527 ret
= ocfs2_journal_dirty(handle
, root_bh
);
1532 static int ocfs2_rotate_subtree_right(struct inode
*inode
,
1534 struct ocfs2_path
*left_path
,
1535 struct ocfs2_path
*right_path
,
1539 struct buffer_head
*right_leaf_bh
;
1540 struct buffer_head
*left_leaf_bh
= NULL
;
1541 struct buffer_head
*root_bh
;
1542 struct ocfs2_extent_list
*right_el
, *left_el
;
1543 struct ocfs2_extent_rec move_rec
;
1545 left_leaf_bh
= path_leaf_bh(left_path
);
1546 left_el
= path_leaf_el(left_path
);
1548 if (left_el
->l_next_free_rec
!= left_el
->l_count
) {
1549 ocfs2_error(inode
->i_sb
,
1550 "Inode %llu has non-full interior leaf node %llu"
1552 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1553 (unsigned long long)left_leaf_bh
->b_blocknr
,
1554 le16_to_cpu(left_el
->l_next_free_rec
));
1559 * This extent block may already have an empty record, so we
1560 * return early if so.
1562 if (ocfs2_is_empty_extent(&left_el
->l_recs
[0]))
1565 root_bh
= left_path
->p_node
[subtree_index
].bh
;
1566 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
1568 ret
= ocfs2_journal_access(handle
, inode
, root_bh
,
1569 OCFS2_JOURNAL_ACCESS_WRITE
);
1575 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
1576 ret
= ocfs2_journal_access(handle
, inode
,
1577 right_path
->p_node
[i
].bh
,
1578 OCFS2_JOURNAL_ACCESS_WRITE
);
1584 ret
= ocfs2_journal_access(handle
, inode
,
1585 left_path
->p_node
[i
].bh
,
1586 OCFS2_JOURNAL_ACCESS_WRITE
);
1593 right_leaf_bh
= path_leaf_bh(right_path
);
1594 right_el
= path_leaf_el(right_path
);
1596 /* This is a code error, not a disk corruption. */
1597 mlog_bug_on_msg(!right_el
->l_next_free_rec
, "Inode %llu: Rotate fails "
1598 "because rightmost leaf block %llu is empty\n",
1599 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1600 (unsigned long long)right_leaf_bh
->b_blocknr
);
1602 ocfs2_create_empty_extent(right_el
);
1604 ret
= ocfs2_journal_dirty(handle
, right_leaf_bh
);
1610 /* Do the copy now. */
1611 i
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
1612 move_rec
= left_el
->l_recs
[i
];
1613 right_el
->l_recs
[0] = move_rec
;
1616 * Clear out the record we just copied and shift everything
1617 * over, leaving an empty extent in the left leaf.
1619 * We temporarily subtract from next_free_rec so that the
1620 * shift will lose the tail record (which is now defunct).
1622 le16_add_cpu(&left_el
->l_next_free_rec
, -1);
1623 ocfs2_shift_records_right(left_el
);
1624 memset(&left_el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1625 le16_add_cpu(&left_el
->l_next_free_rec
, 1);
1627 ret
= ocfs2_journal_dirty(handle
, left_leaf_bh
);
1633 ocfs2_complete_edge_insert(inode
, handle
, left_path
, right_path
,
1641 * Given a full path, determine what cpos value would return us a path
1642 * containing the leaf immediately to the left of the current one.
1644 * Will return zero if the path passed in is already the leftmost path.
1646 static int ocfs2_find_cpos_for_left_leaf(struct super_block
*sb
,
1647 struct ocfs2_path
*path
, u32
*cpos
)
1651 struct ocfs2_extent_list
*el
;
1653 BUG_ON(path
->p_tree_depth
== 0);
1657 blkno
= path_leaf_bh(path
)->b_blocknr
;
1659 /* Start at the tree node just above the leaf and work our way up. */
1660 i
= path
->p_tree_depth
- 1;
1662 el
= path
->p_node
[i
].el
;
1665 * Find the extent record just before the one in our
1668 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
1669 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
1673 * We've determined that the
1674 * path specified is already
1675 * the leftmost one - return a
1681 * The leftmost record points to our
1682 * leaf - we need to travel up the
1688 *cpos
= le32_to_cpu(el
->l_recs
[j
- 1].e_cpos
);
1689 *cpos
= *cpos
+ ocfs2_rec_clusters(el
,
1690 &el
->l_recs
[j
- 1]);
1697 * If we got here, we never found a valid node where
1698 * the tree indicated one should be.
1701 "Invalid extent tree at extent block %llu\n",
1702 (unsigned long long)blkno
);
1707 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
1716 * Extend the transaction by enough credits to complete the rotation,
1717 * and still leave at least the original number of credits allocated
1718 * to this transaction.
1720 static int ocfs2_extend_rotate_transaction(handle_t
*handle
, int subtree_depth
,
1722 struct ocfs2_path
*path
)
1724 int credits
= (path
->p_tree_depth
- subtree_depth
) * 2 + 1 + op_credits
;
1726 if (handle
->h_buffer_credits
< credits
)
1727 return ocfs2_extend_trans(handle
, credits
);
1733 * Trap the case where we're inserting into the theoretical range past
1734 * the _actual_ left leaf range. Otherwise, we'll rotate a record
1735 * whose cpos is less than ours into the right leaf.
1737 * It's only necessary to look at the rightmost record of the left
1738 * leaf because the logic that calls us should ensure that the
1739 * theoretical ranges in the path components above the leaves are
1742 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path
*left_path
,
1745 struct ocfs2_extent_list
*left_el
;
1746 struct ocfs2_extent_rec
*rec
;
1749 left_el
= path_leaf_el(left_path
);
1750 next_free
= le16_to_cpu(left_el
->l_next_free_rec
);
1751 rec
= &left_el
->l_recs
[next_free
- 1];
1753 if (insert_cpos
> le32_to_cpu(rec
->e_cpos
))
1758 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list
*el
, u32 cpos
)
1760 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1762 struct ocfs2_extent_rec
*rec
;
1767 rec
= &el
->l_recs
[0];
1768 if (ocfs2_is_empty_extent(rec
)) {
1772 rec
= &el
->l_recs
[1];
1775 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
1776 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1782 * Rotate all the records in a btree right one record, starting at insert_cpos.
1784 * The path to the rightmost leaf should be passed in.
1786 * The array is assumed to be large enough to hold an entire path (tree depth).
1788 * Upon succesful return from this function:
1790 * - The 'right_path' array will contain a path to the leaf block
1791 * whose range contains e_cpos.
1792 * - That leaf block will have a single empty extent in list index 0.
1793 * - In the case that the rotation requires a post-insert update,
1794 * *ret_left_path will contain a valid path which can be passed to
1795 * ocfs2_insert_path().
1797 static int ocfs2_rotate_tree_right(struct inode
*inode
,
1799 enum ocfs2_split_type split
,
1801 struct ocfs2_path
*right_path
,
1802 struct ocfs2_path
**ret_left_path
)
1804 int ret
, start
, orig_credits
= handle
->h_buffer_credits
;
1806 struct ocfs2_path
*left_path
= NULL
;
1808 *ret_left_path
= NULL
;
1810 left_path
= ocfs2_new_path(path_root_bh(right_path
),
1811 path_root_el(right_path
));
1818 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
, &cpos
);
1824 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos
, cpos
);
1827 * What we want to do here is:
1829 * 1) Start with the rightmost path.
1831 * 2) Determine a path to the leaf block directly to the left
1834 * 3) Determine the 'subtree root' - the lowest level tree node
1835 * which contains a path to both leaves.
1837 * 4) Rotate the subtree.
1839 * 5) Find the next subtree by considering the left path to be
1840 * the new right path.
1842 * The check at the top of this while loop also accepts
1843 * insert_cpos == cpos because cpos is only a _theoretical_
1844 * value to get us the left path - insert_cpos might very well
1845 * be filling that hole.
1847 * Stop at a cpos of '0' because we either started at the
1848 * leftmost branch (i.e., a tree with one branch and a
1849 * rotation inside of it), or we've gone as far as we can in
1850 * rotating subtrees.
1852 while (cpos
&& insert_cpos
<= cpos
) {
1853 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1856 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
1862 mlog_bug_on_msg(path_leaf_bh(left_path
) ==
1863 path_leaf_bh(right_path
),
1864 "Inode %lu: error during insert of %u "
1865 "(left path cpos %u) results in two identical "
1866 "paths ending at %llu\n",
1867 inode
->i_ino
, insert_cpos
, cpos
,
1868 (unsigned long long)
1869 path_leaf_bh(left_path
)->b_blocknr
);
1871 if (split
== SPLIT_NONE
&&
1872 ocfs2_rotate_requires_path_adjustment(left_path
,
1876 * We've rotated the tree as much as we
1877 * should. The rest is up to
1878 * ocfs2_insert_path() to complete, after the
1879 * record insertion. We indicate this
1880 * situation by returning the left path.
1882 * The reason we don't adjust the records here
1883 * before the record insert is that an error
1884 * later might break the rule where a parent
1885 * record e_cpos will reflect the actual
1886 * e_cpos of the 1st nonempty record of the
1889 *ret_left_path
= left_path
;
1893 start
= ocfs2_find_subtree_root(inode
, left_path
, right_path
);
1895 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1897 (unsigned long long) right_path
->p_node
[start
].bh
->b_blocknr
,
1898 right_path
->p_tree_depth
);
1900 ret
= ocfs2_extend_rotate_transaction(handle
, start
,
1901 orig_credits
, right_path
);
1907 ret
= ocfs2_rotate_subtree_right(inode
, handle
, left_path
,
1914 if (split
!= SPLIT_NONE
&&
1915 ocfs2_leftmost_rec_contains(path_leaf_el(right_path
),
1918 * A rotate moves the rightmost left leaf
1919 * record over to the leftmost right leaf
1920 * slot. If we're doing an extent split
1921 * instead of a real insert, then we have to
1922 * check that the extent to be split wasn't
1923 * just moved over. If it was, then we can
1924 * exit here, passing left_path back -
1925 * ocfs2_split_extent() is smart enough to
1926 * search both leaves.
1928 *ret_left_path
= left_path
;
1933 * There is no need to re-read the next right path
1934 * as we know that it'll be our current left
1935 * path. Optimize by copying values instead.
1937 ocfs2_mv_path(right_path
, left_path
);
1939 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
,
1948 ocfs2_free_path(left_path
);
1954 static void ocfs2_update_edge_lengths(struct inode
*inode
, handle_t
*handle
,
1955 struct ocfs2_path
*path
)
1958 struct ocfs2_extent_rec
*rec
;
1959 struct ocfs2_extent_list
*el
;
1960 struct ocfs2_extent_block
*eb
;
1963 /* Path should always be rightmost. */
1964 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
1965 BUG_ON(eb
->h_next_leaf_blk
!= 0ULL);
1968 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
1969 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1970 rec
= &el
->l_recs
[idx
];
1971 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
1973 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
1974 el
= path
->p_node
[i
].el
;
1975 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1976 rec
= &el
->l_recs
[idx
];
1978 rec
->e_int_clusters
= cpu_to_le32(range
);
1979 le32_add_cpu(&rec
->e_int_clusters
, -le32_to_cpu(rec
->e_cpos
));
1981 ocfs2_journal_dirty(handle
, path
->p_node
[i
].bh
);
1985 static void ocfs2_unlink_path(struct inode
*inode
, handle_t
*handle
,
1986 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
1987 struct ocfs2_path
*path
, int unlink_start
)
1990 struct ocfs2_extent_block
*eb
;
1991 struct ocfs2_extent_list
*el
;
1992 struct buffer_head
*bh
;
1994 for(i
= unlink_start
; i
< path_num_items(path
); i
++) {
1995 bh
= path
->p_node
[i
].bh
;
1997 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
1999 * Not all nodes might have had their final count
2000 * decremented by the caller - handle this here.
2003 if (le16_to_cpu(el
->l_next_free_rec
) > 1) {
2005 "Inode %llu, attempted to remove extent block "
2006 "%llu with %u records\n",
2007 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2008 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
2009 le16_to_cpu(el
->l_next_free_rec
));
2011 ocfs2_journal_dirty(handle
, bh
);
2012 ocfs2_remove_from_cache(inode
, bh
);
2016 el
->l_next_free_rec
= 0;
2017 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2019 ocfs2_journal_dirty(handle
, bh
);
2021 ret
= ocfs2_cache_extent_block_free(dealloc
, eb
);
2025 ocfs2_remove_from_cache(inode
, bh
);
2029 static void ocfs2_unlink_subtree(struct inode
*inode
, handle_t
*handle
,
2030 struct ocfs2_path
*left_path
,
2031 struct ocfs2_path
*right_path
,
2033 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2036 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2037 struct ocfs2_extent_list
*root_el
= left_path
->p_node
[subtree_index
].el
;
2038 struct ocfs2_extent_list
*el
;
2039 struct ocfs2_extent_block
*eb
;
2041 el
= path_leaf_el(left_path
);
2043 eb
= (struct ocfs2_extent_block
*)right_path
->p_node
[subtree_index
+ 1].bh
->b_data
;
2045 for(i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
2046 if (root_el
->l_recs
[i
].e_blkno
== eb
->h_blkno
)
2049 BUG_ON(i
>= le16_to_cpu(root_el
->l_next_free_rec
));
2051 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
2052 le16_add_cpu(&root_el
->l_next_free_rec
, -1);
2054 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2055 eb
->h_next_leaf_blk
= 0;
2057 ocfs2_journal_dirty(handle
, root_bh
);
2058 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2060 ocfs2_unlink_path(inode
, handle
, dealloc
, right_path
,
2064 static int ocfs2_rotate_subtree_left(struct inode
*inode
, handle_t
*handle
,
2065 struct ocfs2_path
*left_path
,
2066 struct ocfs2_path
*right_path
,
2068 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2071 int ret
, i
, del_right_subtree
= 0, right_has_empty
= 0;
2072 struct buffer_head
*root_bh
, *di_bh
= path_root_bh(right_path
);
2073 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2074 struct ocfs2_extent_list
*right_leaf_el
, *left_leaf_el
;
2075 struct ocfs2_extent_block
*eb
;
2079 right_leaf_el
= path_leaf_el(right_path
);
2080 left_leaf_el
= path_leaf_el(left_path
);
2081 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2082 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2084 if (!ocfs2_is_empty_extent(&left_leaf_el
->l_recs
[0]))
2087 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(right_path
)->b_data
;
2088 if (ocfs2_is_empty_extent(&right_leaf_el
->l_recs
[0])) {
2090 * It's legal for us to proceed if the right leaf is
2091 * the rightmost one and it has an empty extent. There
2092 * are two cases to handle - whether the leaf will be
2093 * empty after removal or not. If the leaf isn't empty
2094 * then just remove the empty extent up front. The
2095 * next block will handle empty leaves by flagging
2098 * Non rightmost leaves will throw -EAGAIN and the
2099 * caller can manually move the subtree and retry.
2102 if (eb
->h_next_leaf_blk
!= 0ULL)
2105 if (le16_to_cpu(right_leaf_el
->l_next_free_rec
) > 1) {
2106 ret
= ocfs2_journal_access(handle
, inode
,
2107 path_leaf_bh(right_path
),
2108 OCFS2_JOURNAL_ACCESS_WRITE
);
2114 ocfs2_remove_empty_extent(right_leaf_el
);
2116 right_has_empty
= 1;
2119 if (eb
->h_next_leaf_blk
== 0ULL &&
2120 le16_to_cpu(right_leaf_el
->l_next_free_rec
) == 1) {
2122 * We have to update i_last_eb_blk during the meta
2125 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
2126 OCFS2_JOURNAL_ACCESS_WRITE
);
2132 del_right_subtree
= 1;
2136 * Getting here with an empty extent in the right path implies
2137 * that it's the rightmost path and will be deleted.
2139 BUG_ON(right_has_empty
&& !del_right_subtree
);
2141 ret
= ocfs2_journal_access(handle
, inode
, root_bh
,
2142 OCFS2_JOURNAL_ACCESS_WRITE
);
2148 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2149 ret
= ocfs2_journal_access(handle
, inode
,
2150 right_path
->p_node
[i
].bh
,
2151 OCFS2_JOURNAL_ACCESS_WRITE
);
2157 ret
= ocfs2_journal_access(handle
, inode
,
2158 left_path
->p_node
[i
].bh
,
2159 OCFS2_JOURNAL_ACCESS_WRITE
);
2166 if (!right_has_empty
) {
2168 * Only do this if we're moving a real
2169 * record. Otherwise, the action is delayed until
2170 * after removal of the right path in which case we
2171 * can do a simple shift to remove the empty extent.
2173 ocfs2_rotate_leaf(left_leaf_el
, &right_leaf_el
->l_recs
[0]);
2174 memset(&right_leaf_el
->l_recs
[0], 0,
2175 sizeof(struct ocfs2_extent_rec
));
2177 if (eb
->h_next_leaf_blk
== 0ULL) {
2179 * Move recs over to get rid of empty extent, decrease
2180 * next_free. This is allowed to remove the last
2181 * extent in our leaf (setting l_next_free_rec to
2182 * zero) - the delete code below won't care.
2184 ocfs2_remove_empty_extent(right_leaf_el
);
2187 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2190 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
2194 if (del_right_subtree
) {
2195 ocfs2_unlink_subtree(inode
, handle
, left_path
, right_path
,
2196 subtree_index
, dealloc
);
2197 ocfs2_update_edge_lengths(inode
, handle
, left_path
);
2199 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2200 di
->i_last_eb_blk
= eb
->h_blkno
;
2203 * Removal of the extent in the left leaf was skipped
2204 * above so we could delete the right path
2207 if (right_has_empty
)
2208 ocfs2_remove_empty_extent(left_leaf_el
);
2210 ret
= ocfs2_journal_dirty(handle
, di_bh
);
2216 ocfs2_complete_edge_insert(inode
, handle
, left_path
, right_path
,
2224 * Given a full path, determine what cpos value would return us a path
2225 * containing the leaf immediately to the right of the current one.
2227 * Will return zero if the path passed in is already the rightmost path.
2229 * This looks similar, but is subtly different to
2230 * ocfs2_find_cpos_for_left_leaf().
2232 static int ocfs2_find_cpos_for_right_leaf(struct super_block
*sb
,
2233 struct ocfs2_path
*path
, u32
*cpos
)
2237 struct ocfs2_extent_list
*el
;
2241 if (path
->p_tree_depth
== 0)
2244 blkno
= path_leaf_bh(path
)->b_blocknr
;
2246 /* Start at the tree node just above the leaf and work our way up. */
2247 i
= path
->p_tree_depth
- 1;
2251 el
= path
->p_node
[i
].el
;
2254 * Find the extent record just after the one in our
2257 next_free
= le16_to_cpu(el
->l_next_free_rec
);
2258 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2259 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2260 if (j
== (next_free
- 1)) {
2263 * We've determined that the
2264 * path specified is already
2265 * the rightmost one - return a
2271 * The rightmost record points to our
2272 * leaf - we need to travel up the
2278 *cpos
= le32_to_cpu(el
->l_recs
[j
+ 1].e_cpos
);
2284 * If we got here, we never found a valid node where
2285 * the tree indicated one should be.
2288 "Invalid extent tree at extent block %llu\n",
2289 (unsigned long long)blkno
);
2294 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2302 static int ocfs2_rotate_rightmost_leaf_left(struct inode
*inode
,
2304 struct buffer_head
*bh
,
2305 struct ocfs2_extent_list
*el
)
2309 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2312 ret
= ocfs2_journal_access(handle
, inode
, bh
,
2313 OCFS2_JOURNAL_ACCESS_WRITE
);
2319 ocfs2_remove_empty_extent(el
);
2321 ret
= ocfs2_journal_dirty(handle
, bh
);
2329 static int __ocfs2_rotate_tree_left(struct inode
*inode
,
2330 handle_t
*handle
, int orig_credits
,
2331 struct ocfs2_path
*path
,
2332 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2333 struct ocfs2_path
**empty_extent_path
)
2335 int ret
, subtree_root
, deleted
;
2337 struct ocfs2_path
*left_path
= NULL
;
2338 struct ocfs2_path
*right_path
= NULL
;
2340 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path
)->l_recs
[0])));
2342 *empty_extent_path
= NULL
;
2344 ret
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
, path
,
2351 left_path
= ocfs2_new_path(path_root_bh(path
),
2352 path_root_el(path
));
2359 ocfs2_cp_path(left_path
, path
);
2361 right_path
= ocfs2_new_path(path_root_bh(path
),
2362 path_root_el(path
));
2369 while (right_cpos
) {
2370 ret
= ocfs2_find_path(inode
, right_path
, right_cpos
);
2376 subtree_root
= ocfs2_find_subtree_root(inode
, left_path
,
2379 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2381 (unsigned long long)
2382 right_path
->p_node
[subtree_root
].bh
->b_blocknr
,
2383 right_path
->p_tree_depth
);
2385 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_root
,
2386 orig_credits
, left_path
);
2393 * Caller might still want to make changes to the
2394 * tree root, so re-add it to the journal here.
2396 ret
= ocfs2_journal_access(handle
, inode
,
2397 path_root_bh(left_path
),
2398 OCFS2_JOURNAL_ACCESS_WRITE
);
2404 ret
= ocfs2_rotate_subtree_left(inode
, handle
, left_path
,
2405 right_path
, subtree_root
,
2407 if (ret
== -EAGAIN
) {
2409 * The rotation has to temporarily stop due to
2410 * the right subtree having an empty
2411 * extent. Pass it back to the caller for a
2414 *empty_extent_path
= right_path
;
2424 * The subtree rotate might have removed records on
2425 * the rightmost edge. If so, then rotation is
2431 ocfs2_mv_path(left_path
, right_path
);
2433 ret
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
, left_path
,
2442 ocfs2_free_path(right_path
);
2443 ocfs2_free_path(left_path
);
2448 static int ocfs2_remove_rightmost_path(struct inode
*inode
, handle_t
*handle
,
2449 struct ocfs2_path
*path
,
2450 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2452 int ret
, subtree_index
;
2454 struct ocfs2_path
*left_path
= NULL
;
2455 struct ocfs2_dinode
*di
;
2456 struct ocfs2_extent_block
*eb
;
2457 struct ocfs2_extent_list
*el
;
2460 * XXX: This code assumes that the root is an inode, which is
2461 * true for now but may change as tree code gets generic.
2463 di
= (struct ocfs2_dinode
*)path_root_bh(path
)->b_data
;
2464 if (!OCFS2_IS_VALID_DINODE(di
)) {
2466 ocfs2_error(inode
->i_sb
,
2467 "Inode %llu has invalid path root",
2468 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
2473 * There's two ways we handle this depending on
2474 * whether path is the only existing one.
2476 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
2477 handle
->h_buffer_credits
,
2484 ret
= ocfs2_journal_access_path(inode
, handle
, path
);
2490 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
, &cpos
);
2498 * We have a path to the left of this one - it needs
2501 left_path
= ocfs2_new_path(path_root_bh(path
),
2502 path_root_el(path
));
2509 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
2515 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
2521 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
, path
);
2523 ocfs2_unlink_subtree(inode
, handle
, left_path
, path
,
2524 subtree_index
, dealloc
);
2525 ocfs2_update_edge_lengths(inode
, handle
, left_path
);
2527 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2528 di
->i_last_eb_blk
= eb
->h_blkno
;
2531 * 'path' is also the leftmost path which
2532 * means it must be the only one. This gets
2533 * handled differently because we want to
2534 * revert the inode back to having extents
2537 ocfs2_unlink_path(inode
, handle
, dealloc
, path
, 1);
2539 el
= &di
->id2
.i_list
;
2540 el
->l_tree_depth
= 0;
2541 el
->l_next_free_rec
= 0;
2542 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2544 di
->i_last_eb_blk
= 0;
2547 ocfs2_journal_dirty(handle
, path_root_bh(path
));
2550 ocfs2_free_path(left_path
);
2555 * Left rotation of btree records.
2557 * In many ways, this is (unsurprisingly) the opposite of right
2558 * rotation. We start at some non-rightmost path containing an empty
2559 * extent in the leaf block. The code works its way to the rightmost
2560 * path by rotating records to the left in every subtree.
2562 * This is used by any code which reduces the number of extent records
2563 * in a leaf. After removal, an empty record should be placed in the
2564 * leftmost list position.
2566 * This won't handle a length update of the rightmost path records if
2567 * the rightmost tree leaf record is removed so the caller is
2568 * responsible for detecting and correcting that.
2570 static int ocfs2_rotate_tree_left(struct inode
*inode
, handle_t
*handle
,
2571 struct ocfs2_path
*path
,
2572 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2574 int ret
, orig_credits
= handle
->h_buffer_credits
;
2575 struct ocfs2_path
*tmp_path
= NULL
, *restart_path
= NULL
;
2576 struct ocfs2_extent_block
*eb
;
2577 struct ocfs2_extent_list
*el
;
2579 el
= path_leaf_el(path
);
2580 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2583 if (path
->p_tree_depth
== 0) {
2584 rightmost_no_delete
:
2586 * In-inode extents. This is trivially handled, so do
2589 ret
= ocfs2_rotate_rightmost_leaf_left(inode
, handle
,
2591 path_leaf_el(path
));
2598 * Handle rightmost branch now. There's several cases:
2599 * 1) simple rotation leaving records in there. That's trivial.
2600 * 2) rotation requiring a branch delete - there's no more
2601 * records left. Two cases of this:
2602 * a) There are branches to the left.
2603 * b) This is also the leftmost (the only) branch.
2605 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
2606 * 2a) we need the left branch so that we can update it with the unlink
2607 * 2b) we need to bring the inode back to inline extents.
2610 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2612 if (eb
->h_next_leaf_blk
== 0) {
2614 * This gets a bit tricky if we're going to delete the
2615 * rightmost path. Get the other cases out of the way
2618 if (le16_to_cpu(el
->l_next_free_rec
) > 1)
2619 goto rightmost_no_delete
;
2621 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
2623 ocfs2_error(inode
->i_sb
,
2624 "Inode %llu has empty extent block at %llu",
2625 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2626 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
2631 * XXX: The caller can not trust "path" any more after
2632 * this as it will have been deleted. What do we do?
2634 * In theory the rotate-for-merge code will never get
2635 * here because it'll always ask for a rotate in a
2639 ret
= ocfs2_remove_rightmost_path(inode
, handle
, path
,
2647 * Now we can loop, remembering the path we get from -EAGAIN
2648 * and restarting from there.
2651 ret
= __ocfs2_rotate_tree_left(inode
, handle
, orig_credits
, path
,
2652 dealloc
, &restart_path
);
2653 if (ret
&& ret
!= -EAGAIN
) {
2658 while (ret
== -EAGAIN
) {
2659 tmp_path
= restart_path
;
2660 restart_path
= NULL
;
2662 ret
= __ocfs2_rotate_tree_left(inode
, handle
, orig_credits
,
2665 if (ret
&& ret
!= -EAGAIN
) {
2670 ocfs2_free_path(tmp_path
);
2678 ocfs2_free_path(tmp_path
);
2679 ocfs2_free_path(restart_path
);
2683 static void ocfs2_cleanup_merge(struct ocfs2_extent_list
*el
,
2686 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[index
];
2689 if (rec
->e_leaf_clusters
== 0) {
2691 * We consumed all of the merged-from record. An empty
2692 * extent cannot exist anywhere but the 1st array
2693 * position, so move things over if the merged-from
2694 * record doesn't occupy that position.
2696 * This creates a new empty extent so the caller
2697 * should be smart enough to have removed any existing
2701 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
2702 size
= index
* sizeof(struct ocfs2_extent_rec
);
2703 memmove(&el
->l_recs
[1], &el
->l_recs
[0], size
);
2707 * Always memset - the caller doesn't check whether it
2708 * created an empty extent, so there could be junk in
2711 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2716 * Remove split_rec clusters from the record at index and merge them
2717 * onto the beginning of the record at index + 1.
2719 static int ocfs2_merge_rec_right(struct inode
*inode
, struct buffer_head
*bh
,
2721 struct ocfs2_extent_rec
*split_rec
,
2722 struct ocfs2_extent_list
*el
, int index
)
2725 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
2726 struct ocfs2_extent_rec
*left_rec
;
2727 struct ocfs2_extent_rec
*right_rec
;
2729 BUG_ON(index
>= le16_to_cpu(el
->l_next_free_rec
));
2731 left_rec
= &el
->l_recs
[index
];
2732 right_rec
= &el
->l_recs
[index
+ 1];
2734 ret
= ocfs2_journal_access(handle
, inode
, bh
,
2735 OCFS2_JOURNAL_ACCESS_WRITE
);
2741 le16_add_cpu(&left_rec
->e_leaf_clusters
, -split_clusters
);
2743 le32_add_cpu(&right_rec
->e_cpos
, -split_clusters
);
2744 le64_add_cpu(&right_rec
->e_blkno
,
2745 -ocfs2_clusters_to_blocks(inode
->i_sb
, split_clusters
));
2746 le16_add_cpu(&right_rec
->e_leaf_clusters
, split_clusters
);
2748 ocfs2_cleanup_merge(el
, index
);
2750 ret
= ocfs2_journal_dirty(handle
, bh
);
2759 * Remove split_rec clusters from the record at index and merge them
2760 * onto the tail of the record at index - 1.
2762 static int ocfs2_merge_rec_left(struct inode
*inode
, struct buffer_head
*bh
,
2764 struct ocfs2_extent_rec
*split_rec
,
2765 struct ocfs2_extent_list
*el
, int index
)
2767 int ret
, has_empty_extent
= 0;
2768 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
2769 struct ocfs2_extent_rec
*left_rec
;
2770 struct ocfs2_extent_rec
*right_rec
;
2774 left_rec
= &el
->l_recs
[index
- 1];
2775 right_rec
= &el
->l_recs
[index
];
2776 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
2777 has_empty_extent
= 1;
2779 ret
= ocfs2_journal_access(handle
, inode
, bh
,
2780 OCFS2_JOURNAL_ACCESS_WRITE
);
2786 if (has_empty_extent
&& index
== 1) {
2788 * The easy case - we can just plop the record right in.
2790 *left_rec
= *split_rec
;
2792 has_empty_extent
= 0;
2794 le16_add_cpu(&left_rec
->e_leaf_clusters
, split_clusters
);
2797 le32_add_cpu(&right_rec
->e_cpos
, split_clusters
);
2798 le64_add_cpu(&right_rec
->e_blkno
,
2799 ocfs2_clusters_to_blocks(inode
->i_sb
, split_clusters
));
2800 le16_add_cpu(&right_rec
->e_leaf_clusters
, -split_clusters
);
2802 ocfs2_cleanup_merge(el
, index
);
2804 ret
= ocfs2_journal_dirty(handle
, bh
);
2812 static int ocfs2_try_to_merge_extent(struct inode
*inode
,
2814 struct ocfs2_path
*left_path
,
2816 struct ocfs2_extent_rec
*split_rec
,
2817 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2818 struct ocfs2_merge_ctxt
*ctxt
)
2822 struct ocfs2_extent_list
*el
= path_leaf_el(left_path
);
2823 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
2825 BUG_ON(ctxt
->c_contig_type
== CONTIG_NONE
);
2827 if (ctxt
->c_split_covers_rec
&& ctxt
->c_has_empty_extent
) {
2829 * The merge code will need to create an empty
2830 * extent to take the place of the newly
2831 * emptied slot. Remove any pre-existing empty
2832 * extents - having more than one in a leaf is
2835 ret
= ocfs2_rotate_tree_left(inode
, handle
, left_path
,
2842 rec
= &el
->l_recs
[split_index
];
2845 if (ctxt
->c_contig_type
== CONTIG_LEFTRIGHT
) {
2847 * Left-right contig implies this.
2849 BUG_ON(!ctxt
->c_split_covers_rec
);
2850 BUG_ON(split_index
== 0);
2853 * Since the leftright insert always covers the entire
2854 * extent, this call will delete the insert record
2855 * entirely, resulting in an empty extent record added to
2858 * Since the adding of an empty extent shifts
2859 * everything back to the right, there's no need to
2860 * update split_index here.
2862 ret
= ocfs2_merge_rec_left(inode
, path_leaf_bh(left_path
),
2863 handle
, split_rec
, el
, split_index
);
2870 * We can only get this from logic error above.
2872 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
2875 * The left merge left us with an empty extent, remove
2878 ret
= ocfs2_rotate_tree_left(inode
, handle
, left_path
, dealloc
);
2884 rec
= &el
->l_recs
[split_index
];
2887 * Note that we don't pass split_rec here on purpose -
2888 * we've merged it into the left side.
2890 ret
= ocfs2_merge_rec_right(inode
, path_leaf_bh(left_path
),
2891 handle
, rec
, el
, split_index
);
2897 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
2899 ret
= ocfs2_rotate_tree_left(inode
, handle
, left_path
,
2902 * Error from this last rotate is not critical, so
2903 * print but don't bubble it up.
2910 * Merge a record to the left or right.
2912 * 'contig_type' is relative to the existing record,
2913 * so for example, if we're "right contig", it's to
2914 * the record on the left (hence the left merge).
2916 if (ctxt
->c_contig_type
== CONTIG_RIGHT
) {
2917 ret
= ocfs2_merge_rec_left(inode
,
2918 path_leaf_bh(left_path
),
2919 handle
, split_rec
, el
,
2926 ret
= ocfs2_merge_rec_right(inode
,
2927 path_leaf_bh(left_path
),
2928 handle
, split_rec
, el
,
2936 if (ctxt
->c_split_covers_rec
) {
2938 * The merge may have left an empty extent in
2939 * our leaf. Try to rotate it away.
2941 ret
= ocfs2_rotate_tree_left(inode
, handle
, left_path
,
2953 static void ocfs2_subtract_from_rec(struct super_block
*sb
,
2954 enum ocfs2_split_type split
,
2955 struct ocfs2_extent_rec
*rec
,
2956 struct ocfs2_extent_rec
*split_rec
)
2960 len_blocks
= ocfs2_clusters_to_blocks(sb
,
2961 le16_to_cpu(split_rec
->e_leaf_clusters
));
2963 if (split
== SPLIT_LEFT
) {
2965 * Region is on the left edge of the existing
2968 le32_add_cpu(&rec
->e_cpos
,
2969 le16_to_cpu(split_rec
->e_leaf_clusters
));
2970 le64_add_cpu(&rec
->e_blkno
, len_blocks
);
2971 le16_add_cpu(&rec
->e_leaf_clusters
,
2972 -le16_to_cpu(split_rec
->e_leaf_clusters
));
2975 * Region is on the right edge of the existing
2978 le16_add_cpu(&rec
->e_leaf_clusters
,
2979 -le16_to_cpu(split_rec
->e_leaf_clusters
));
2984 * Do the final bits of extent record insertion at the target leaf
2985 * list. If this leaf is part of an allocation tree, it is assumed
2986 * that the tree above has been prepared.
2988 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec
*insert_rec
,
2989 struct ocfs2_extent_list
*el
,
2990 struct ocfs2_insert_type
*insert
,
2991 struct inode
*inode
)
2993 int i
= insert
->ins_contig_index
;
2995 struct ocfs2_extent_rec
*rec
;
2997 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
2999 if (insert
->ins_split
!= SPLIT_NONE
) {
3000 i
= ocfs2_search_extent_list(el
, le32_to_cpu(insert_rec
->e_cpos
));
3002 rec
= &el
->l_recs
[i
];
3003 ocfs2_subtract_from_rec(inode
->i_sb
, insert
->ins_split
, rec
,
3009 * Contiguous insert - either left or right.
3011 if (insert
->ins_contig
!= CONTIG_NONE
) {
3012 rec
= &el
->l_recs
[i
];
3013 if (insert
->ins_contig
== CONTIG_LEFT
) {
3014 rec
->e_blkno
= insert_rec
->e_blkno
;
3015 rec
->e_cpos
= insert_rec
->e_cpos
;
3017 le16_add_cpu(&rec
->e_leaf_clusters
,
3018 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3023 * Handle insert into an empty leaf.
3025 if (le16_to_cpu(el
->l_next_free_rec
) == 0 ||
3026 ((le16_to_cpu(el
->l_next_free_rec
) == 1) &&
3027 ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3028 el
->l_recs
[0] = *insert_rec
;
3029 el
->l_next_free_rec
= cpu_to_le16(1);
3036 if (insert
->ins_appending
== APPEND_TAIL
) {
3037 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3038 rec
= &el
->l_recs
[i
];
3039 range
= le32_to_cpu(rec
->e_cpos
)
3040 + le16_to_cpu(rec
->e_leaf_clusters
);
3041 BUG_ON(le32_to_cpu(insert_rec
->e_cpos
) < range
);
3043 mlog_bug_on_msg(le16_to_cpu(el
->l_next_free_rec
) >=
3044 le16_to_cpu(el
->l_count
),
3045 "inode %lu, depth %u, count %u, next free %u, "
3046 "rec.cpos %u, rec.clusters %u, "
3047 "insert.cpos %u, insert.clusters %u\n",
3049 le16_to_cpu(el
->l_tree_depth
),
3050 le16_to_cpu(el
->l_count
),
3051 le16_to_cpu(el
->l_next_free_rec
),
3052 le32_to_cpu(el
->l_recs
[i
].e_cpos
),
3053 le16_to_cpu(el
->l_recs
[i
].e_leaf_clusters
),
3054 le32_to_cpu(insert_rec
->e_cpos
),
3055 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3057 el
->l_recs
[i
] = *insert_rec
;
3058 le16_add_cpu(&el
->l_next_free_rec
, 1);
3064 * Ok, we have to rotate.
3066 * At this point, it is safe to assume that inserting into an
3067 * empty leaf and appending to a leaf have both been handled
3070 * This leaf needs to have space, either by the empty 1st
3071 * extent record, or by virtue of an l_next_rec < l_count.
3073 ocfs2_rotate_leaf(el
, insert_rec
);
3076 static inline void ocfs2_update_dinode_clusters(struct inode
*inode
,
3077 struct ocfs2_dinode
*di
,
3080 le32_add_cpu(&di
->i_clusters
, clusters
);
3081 spin_lock(&OCFS2_I(inode
)->ip_lock
);
3082 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(di
->i_clusters
);
3083 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
3086 static void ocfs2_adjust_rightmost_records(struct inode
*inode
,
3088 struct ocfs2_path
*path
,
3089 struct ocfs2_extent_rec
*insert_rec
)
3091 int ret
, i
, next_free
;
3092 struct buffer_head
*bh
;
3093 struct ocfs2_extent_list
*el
;
3094 struct ocfs2_extent_rec
*rec
;
3097 * Update everything except the leaf block.
3099 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
3100 bh
= path
->p_node
[i
].bh
;
3101 el
= path
->p_node
[i
].el
;
3103 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3104 if (next_free
== 0) {
3105 ocfs2_error(inode
->i_sb
,
3106 "Dinode %llu has a bad extent list",
3107 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
3112 rec
= &el
->l_recs
[next_free
- 1];
3114 rec
->e_int_clusters
= insert_rec
->e_cpos
;
3115 le32_add_cpu(&rec
->e_int_clusters
,
3116 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3117 le32_add_cpu(&rec
->e_int_clusters
,
3118 -le32_to_cpu(rec
->e_cpos
));
3120 ret
= ocfs2_journal_dirty(handle
, bh
);
3127 static int ocfs2_append_rec_to_path(struct inode
*inode
, handle_t
*handle
,
3128 struct ocfs2_extent_rec
*insert_rec
,
3129 struct ocfs2_path
*right_path
,
3130 struct ocfs2_path
**ret_left_path
)
3133 struct ocfs2_extent_list
*el
;
3134 struct ocfs2_path
*left_path
= NULL
;
3136 *ret_left_path
= NULL
;
3139 * This shouldn't happen for non-trees. The extent rec cluster
3140 * count manipulation below only works for interior nodes.
3142 BUG_ON(right_path
->p_tree_depth
== 0);
3145 * If our appending insert is at the leftmost edge of a leaf,
3146 * then we might need to update the rightmost records of the
3149 el
= path_leaf_el(right_path
);
3150 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3151 if (next_free
== 0 ||
3152 (next_free
== 1 && ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3155 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
,
3162 mlog(0, "Append may need a left path update. cpos: %u, "
3163 "left_cpos: %u\n", le32_to_cpu(insert_rec
->e_cpos
),
3167 * No need to worry if the append is already in the
3171 left_path
= ocfs2_new_path(path_root_bh(right_path
),
3172 path_root_el(right_path
));
3179 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
3186 * ocfs2_insert_path() will pass the left_path to the
3192 ret
= ocfs2_journal_access_path(inode
, handle
, right_path
);
3198 ocfs2_adjust_rightmost_records(inode
, handle
, right_path
, insert_rec
);
3200 *ret_left_path
= left_path
;
3204 ocfs2_free_path(left_path
);
3209 static void ocfs2_split_record(struct inode
*inode
,
3210 struct ocfs2_path
*left_path
,
3211 struct ocfs2_path
*right_path
,
3212 struct ocfs2_extent_rec
*split_rec
,
3213 enum ocfs2_split_type split
)
3216 u32 cpos
= le32_to_cpu(split_rec
->e_cpos
);
3217 struct ocfs2_extent_list
*left_el
= NULL
, *right_el
, *insert_el
, *el
;
3218 struct ocfs2_extent_rec
*rec
, *tmprec
;
3220 right_el
= path_leaf_el(right_path
);;
3222 left_el
= path_leaf_el(left_path
);
3225 insert_el
= right_el
;
3226 index
= ocfs2_search_extent_list(el
, cpos
);
3228 if (index
== 0 && left_path
) {
3229 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
3232 * This typically means that the record
3233 * started in the left path but moved to the
3234 * right as a result of rotation. We either
3235 * move the existing record to the left, or we
3236 * do the later insert there.
3238 * In this case, the left path should always
3239 * exist as the rotate code will have passed
3240 * it back for a post-insert update.
3243 if (split
== SPLIT_LEFT
) {
3245 * It's a left split. Since we know
3246 * that the rotate code gave us an
3247 * empty extent in the left path, we
3248 * can just do the insert there.
3250 insert_el
= left_el
;
3253 * Right split - we have to move the
3254 * existing record over to the left
3255 * leaf. The insert will be into the
3256 * newly created empty extent in the
3259 tmprec
= &right_el
->l_recs
[index
];
3260 ocfs2_rotate_leaf(left_el
, tmprec
);
3263 memset(tmprec
, 0, sizeof(*tmprec
));
3264 index
= ocfs2_search_extent_list(left_el
, cpos
);
3265 BUG_ON(index
== -1);
3270 BUG_ON(!ocfs2_is_empty_extent(&left_el
->l_recs
[0]));
3272 * Left path is easy - we can just allow the insert to
3276 insert_el
= left_el
;
3277 index
= ocfs2_search_extent_list(el
, cpos
);
3278 BUG_ON(index
== -1);
3281 rec
= &el
->l_recs
[index
];
3282 ocfs2_subtract_from_rec(inode
->i_sb
, split
, rec
, split_rec
);
3283 ocfs2_rotate_leaf(insert_el
, split_rec
);
3287 * This function only does inserts on an allocation b-tree. For dinode
3288 * lists, ocfs2_insert_at_leaf() is called directly.
3290 * right_path is the path we want to do the actual insert
3291 * in. left_path should only be passed in if we need to update that
3292 * portion of the tree after an edge insert.
3294 static int ocfs2_insert_path(struct inode
*inode
,
3296 struct ocfs2_path
*left_path
,
3297 struct ocfs2_path
*right_path
,
3298 struct ocfs2_extent_rec
*insert_rec
,
3299 struct ocfs2_insert_type
*insert
)
3301 int ret
, subtree_index
;
3302 struct buffer_head
*leaf_bh
= path_leaf_bh(right_path
);
3305 int credits
= handle
->h_buffer_credits
;
3308 * There's a chance that left_path got passed back to
3309 * us without being accounted for in the
3310 * journal. Extend our transaction here to be sure we
3311 * can change those blocks.
3313 credits
+= left_path
->p_tree_depth
;
3315 ret
= ocfs2_extend_trans(handle
, credits
);
3321 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
3329 * Pass both paths to the journal. The majority of inserts
3330 * will be touching all components anyway.
3332 ret
= ocfs2_journal_access_path(inode
, handle
, right_path
);
3338 if (insert
->ins_split
!= SPLIT_NONE
) {
3340 * We could call ocfs2_insert_at_leaf() for some types
3341 * of splits, but it's easier to just let one seperate
3342 * function sort it all out.
3344 ocfs2_split_record(inode
, left_path
, right_path
,
3345 insert_rec
, insert
->ins_split
);
3348 * Split might have modified either leaf and we don't
3349 * have a guarantee that the later edge insert will
3350 * dirty this for us.
3353 ret
= ocfs2_journal_dirty(handle
,
3354 path_leaf_bh(left_path
));
3358 ocfs2_insert_at_leaf(insert_rec
, path_leaf_el(right_path
),
3361 ret
= ocfs2_journal_dirty(handle
, leaf_bh
);
3367 * The rotate code has indicated that we need to fix
3368 * up portions of the tree after the insert.
3370 * XXX: Should we extend the transaction here?
3372 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
,
3374 ocfs2_complete_edge_insert(inode
, handle
, left_path
,
3375 right_path
, subtree_index
);
3383 static int ocfs2_do_insert_extent(struct inode
*inode
,
3385 struct buffer_head
*di_bh
,
3386 struct ocfs2_extent_rec
*insert_rec
,
3387 struct ocfs2_insert_type
*type
)
3389 int ret
, rotate
= 0;
3391 struct ocfs2_path
*right_path
= NULL
;
3392 struct ocfs2_path
*left_path
= NULL
;
3393 struct ocfs2_dinode
*di
;
3394 struct ocfs2_extent_list
*el
;
3396 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
3397 el
= &di
->id2
.i_list
;
3399 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
3400 OCFS2_JOURNAL_ACCESS_WRITE
);
3406 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
3407 ocfs2_insert_at_leaf(insert_rec
, el
, type
, inode
);
3408 goto out_update_clusters
;
3411 right_path
= ocfs2_new_inode_path(di_bh
);
3419 * Determine the path to start with. Rotations need the
3420 * rightmost path, everything else can go directly to the
3423 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
3424 if (type
->ins_appending
== APPEND_NONE
&&
3425 type
->ins_contig
== CONTIG_NONE
) {
3430 ret
= ocfs2_find_path(inode
, right_path
, cpos
);
3437 * Rotations and appends need special treatment - they modify
3438 * parts of the tree's above them.
3440 * Both might pass back a path immediate to the left of the
3441 * one being inserted to. This will be cause
3442 * ocfs2_insert_path() to modify the rightmost records of
3443 * left_path to account for an edge insert.
3445 * XXX: When modifying this code, keep in mind that an insert
3446 * can wind up skipping both of these two special cases...
3449 ret
= ocfs2_rotate_tree_right(inode
, handle
, type
->ins_split
,
3450 le32_to_cpu(insert_rec
->e_cpos
),
3451 right_path
, &left_path
);
3458 * ocfs2_rotate_tree_right() might have extended the
3459 * transaction without re-journaling our tree root.
3461 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
3462 OCFS2_JOURNAL_ACCESS_WRITE
);
3467 } else if (type
->ins_appending
== APPEND_TAIL
3468 && type
->ins_contig
!= CONTIG_LEFT
) {
3469 ret
= ocfs2_append_rec_to_path(inode
, handle
, insert_rec
,
3470 right_path
, &left_path
);
3477 ret
= ocfs2_insert_path(inode
, handle
, left_path
, right_path
,
3484 out_update_clusters
:
3485 if (type
->ins_split
== SPLIT_NONE
)
3486 ocfs2_update_dinode_clusters(inode
, di
,
3487 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3489 ret
= ocfs2_journal_dirty(handle
, di_bh
);
3494 ocfs2_free_path(left_path
);
3495 ocfs2_free_path(right_path
);
3500 static enum ocfs2_contig_type
3501 ocfs2_figure_merge_contig_type(struct inode
*inode
,
3502 struct ocfs2_extent_list
*el
, int index
,
3503 struct ocfs2_extent_rec
*split_rec
)
3505 struct ocfs2_extent_rec
*rec
;
3506 enum ocfs2_contig_type ret
= CONTIG_NONE
;
3509 * We're careful to check for an empty extent record here -
3510 * the merge code will know what to do if it sees one.
3514 rec
= &el
->l_recs
[index
- 1];
3515 if (index
== 1 && ocfs2_is_empty_extent(rec
)) {
3516 if (split_rec
->e_cpos
== el
->l_recs
[index
].e_cpos
)
3519 ret
= ocfs2_extent_contig(inode
, rec
, split_rec
);
3523 if (index
< (le16_to_cpu(el
->l_next_free_rec
) - 1)) {
3524 enum ocfs2_contig_type contig_type
;
3526 rec
= &el
->l_recs
[index
+ 1];
3527 contig_type
= ocfs2_extent_contig(inode
, rec
, split_rec
);
3529 if (contig_type
== CONTIG_LEFT
&& ret
== CONTIG_RIGHT
)
3530 ret
= CONTIG_LEFTRIGHT
;
3531 else if (ret
== CONTIG_NONE
)
3538 static void ocfs2_figure_contig_type(struct inode
*inode
,
3539 struct ocfs2_insert_type
*insert
,
3540 struct ocfs2_extent_list
*el
,
3541 struct ocfs2_extent_rec
*insert_rec
)
3544 enum ocfs2_contig_type contig_type
= CONTIG_NONE
;
3546 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3548 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
3549 contig_type
= ocfs2_extent_contig(inode
, &el
->l_recs
[i
],
3551 if (contig_type
!= CONTIG_NONE
) {
3552 insert
->ins_contig_index
= i
;
3556 insert
->ins_contig
= contig_type
;
3560 * This should only be called against the righmost leaf extent list.
3562 * ocfs2_figure_appending_type() will figure out whether we'll have to
3563 * insert at the tail of the rightmost leaf.
3565 * This should also work against the dinode list for tree's with 0
3566 * depth. If we consider the dinode list to be the rightmost leaf node
3567 * then the logic here makes sense.
3569 static void ocfs2_figure_appending_type(struct ocfs2_insert_type
*insert
,
3570 struct ocfs2_extent_list
*el
,
3571 struct ocfs2_extent_rec
*insert_rec
)
3574 u32 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
3575 struct ocfs2_extent_rec
*rec
;
3577 insert
->ins_appending
= APPEND_NONE
;
3579 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3581 if (!el
->l_next_free_rec
)
3582 goto set_tail_append
;
3584 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
3585 /* Were all records empty? */
3586 if (le16_to_cpu(el
->l_next_free_rec
) == 1)
3587 goto set_tail_append
;
3590 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3591 rec
= &el
->l_recs
[i
];
3594 (le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)))
3595 goto set_tail_append
;
3600 insert
->ins_appending
= APPEND_TAIL
;
3604 * Helper function called at the begining of an insert.
3606 * This computes a few things that are commonly used in the process of
3607 * inserting into the btree:
3608 * - Whether the new extent is contiguous with an existing one.
3609 * - The current tree depth.
3610 * - Whether the insert is an appending one.
3611 * - The total # of free records in the tree.
3613 * All of the information is stored on the ocfs2_insert_type
3616 static int ocfs2_figure_insert_type(struct inode
*inode
,
3617 struct buffer_head
*di_bh
,
3618 struct buffer_head
**last_eb_bh
,
3619 struct ocfs2_extent_rec
*insert_rec
,
3621 struct ocfs2_insert_type
*insert
)
3624 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
3625 struct ocfs2_extent_block
*eb
;
3626 struct ocfs2_extent_list
*el
;
3627 struct ocfs2_path
*path
= NULL
;
3628 struct buffer_head
*bh
= NULL
;
3630 insert
->ins_split
= SPLIT_NONE
;
3632 el
= &di
->id2
.i_list
;
3633 insert
->ins_tree_depth
= le16_to_cpu(el
->l_tree_depth
);
3635 if (el
->l_tree_depth
) {
3637 * If we have tree depth, we read in the
3638 * rightmost extent block ahead of time as
3639 * ocfs2_figure_insert_type() and ocfs2_add_branch()
3640 * may want it later.
3642 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
3643 le64_to_cpu(di
->i_last_eb_blk
), &bh
,
3644 OCFS2_BH_CACHED
, inode
);
3649 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
3654 * Unless we have a contiguous insert, we'll need to know if
3655 * there is room left in our allocation tree for another
3658 * XXX: This test is simplistic, we can search for empty
3659 * extent records too.
3661 *free_records
= le16_to_cpu(el
->l_count
) -
3662 le16_to_cpu(el
->l_next_free_rec
);
3664 if (!insert
->ins_tree_depth
) {
3665 ocfs2_figure_contig_type(inode
, insert
, el
, insert_rec
);
3666 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
3670 path
= ocfs2_new_inode_path(di_bh
);
3678 * In the case that we're inserting past what the tree
3679 * currently accounts for, ocfs2_find_path() will return for
3680 * us the rightmost tree path. This is accounted for below in
3681 * the appending code.
3683 ret
= ocfs2_find_path(inode
, path
, le32_to_cpu(insert_rec
->e_cpos
));
3689 el
= path_leaf_el(path
);
3692 * Now that we have the path, there's two things we want to determine:
3693 * 1) Contiguousness (also set contig_index if this is so)
3695 * 2) Are we doing an append? We can trivially break this up
3696 * into two types of appends: simple record append, or a
3697 * rotate inside the tail leaf.
3699 ocfs2_figure_contig_type(inode
, insert
, el
, insert_rec
);
3702 * The insert code isn't quite ready to deal with all cases of
3703 * left contiguousness. Specifically, if it's an insert into
3704 * the 1st record in a leaf, it will require the adjustment of
3705 * cluster count on the last record of the path directly to it's
3706 * left. For now, just catch that case and fool the layers
3707 * above us. This works just fine for tree_depth == 0, which
3708 * is why we allow that above.
3710 if (insert
->ins_contig
== CONTIG_LEFT
&&
3711 insert
->ins_contig_index
== 0)
3712 insert
->ins_contig
= CONTIG_NONE
;
3715 * Ok, so we can simply compare against last_eb to figure out
3716 * whether the path doesn't exist. This will only happen in
3717 * the case that we're doing a tail append, so maybe we can
3718 * take advantage of that information somehow.
3720 if (le64_to_cpu(di
->i_last_eb_blk
) == path_leaf_bh(path
)->b_blocknr
) {
3722 * Ok, ocfs2_find_path() returned us the rightmost
3723 * tree path. This might be an appending insert. There are
3725 * 1) We're doing a true append at the tail:
3726 * -This might even be off the end of the leaf
3727 * 2) We're "appending" by rotating in the tail
3729 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
3733 ocfs2_free_path(path
);
3743 * Insert an extent into an inode btree.
3745 * The caller needs to update fe->i_clusters
3747 int ocfs2_insert_extent(struct ocfs2_super
*osb
,
3749 struct inode
*inode
,
3750 struct buffer_head
*fe_bh
,
3755 struct ocfs2_alloc_context
*meta_ac
)
3758 int uninitialized_var(free_records
);
3759 struct buffer_head
*last_eb_bh
= NULL
;
3760 struct ocfs2_insert_type insert
= {0, };
3761 struct ocfs2_extent_rec rec
;
3763 BUG_ON(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
3765 mlog(0, "add %u clusters at position %u to inode %llu\n",
3766 new_clusters
, cpos
, (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
3768 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb
) &&
3769 (OCFS2_I(inode
)->ip_clusters
!= cpos
),
3770 "Device %s, asking for sparse allocation: inode %llu, "
3771 "cpos %u, clusters %u\n",
3773 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
,
3774 OCFS2_I(inode
)->ip_clusters
);
3776 memset(&rec
, 0, sizeof(rec
));
3777 rec
.e_cpos
= cpu_to_le32(cpos
);
3778 rec
.e_blkno
= cpu_to_le64(start_blk
);
3779 rec
.e_leaf_clusters
= cpu_to_le16(new_clusters
);
3780 rec
.e_flags
= flags
;
3782 status
= ocfs2_figure_insert_type(inode
, fe_bh
, &last_eb_bh
, &rec
,
3783 &free_records
, &insert
);
3789 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
3790 "Insert.contig_index: %d, Insert.free_records: %d, "
3791 "Insert.tree_depth: %d\n",
3792 insert
.ins_appending
, insert
.ins_contig
, insert
.ins_contig_index
,
3793 free_records
, insert
.ins_tree_depth
);
3795 if (insert
.ins_contig
== CONTIG_NONE
&& free_records
== 0) {
3796 status
= ocfs2_grow_tree(inode
, handle
, fe_bh
,
3797 &insert
.ins_tree_depth
, &last_eb_bh
,
3805 /* Finally, we can add clusters. This might rotate the tree for us. */
3806 status
= ocfs2_do_insert_extent(inode
, handle
, fe_bh
, &rec
, &insert
);
3810 ocfs2_extent_map_insert_rec(inode
, &rec
);
3820 static void ocfs2_make_right_split_rec(struct super_block
*sb
,
3821 struct ocfs2_extent_rec
*split_rec
,
3823 struct ocfs2_extent_rec
*rec
)
3825 u32 rec_cpos
= le32_to_cpu(rec
->e_cpos
);
3826 u32 rec_range
= rec_cpos
+ le16_to_cpu(rec
->e_leaf_clusters
);
3828 memset(split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
3830 split_rec
->e_cpos
= cpu_to_le32(cpos
);
3831 split_rec
->e_leaf_clusters
= cpu_to_le16(rec_range
- cpos
);
3833 split_rec
->e_blkno
= rec
->e_blkno
;
3834 le64_add_cpu(&split_rec
->e_blkno
,
3835 ocfs2_clusters_to_blocks(sb
, cpos
- rec_cpos
));
3837 split_rec
->e_flags
= rec
->e_flags
;
3840 static int ocfs2_split_and_insert(struct inode
*inode
,
3842 struct ocfs2_path
*path
,
3843 struct buffer_head
*di_bh
,
3844 struct buffer_head
**last_eb_bh
,
3846 struct ocfs2_extent_rec
*orig_split_rec
,
3847 struct ocfs2_alloc_context
*meta_ac
)
3850 unsigned int insert_range
, rec_range
, do_leftright
= 0;
3851 struct ocfs2_extent_rec tmprec
;
3852 struct ocfs2_extent_list
*rightmost_el
;
3853 struct ocfs2_extent_rec rec
;
3854 struct ocfs2_extent_rec split_rec
= *orig_split_rec
;
3855 struct ocfs2_insert_type insert
;
3856 struct ocfs2_extent_block
*eb
;
3857 struct ocfs2_dinode
*di
;
3861 * Store a copy of the record on the stack - it might move
3862 * around as the tree is manipulated below.
3864 rec
= path_leaf_el(path
)->l_recs
[split_index
];
3866 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
3867 rightmost_el
= &di
->id2
.i_list
;
3869 depth
= le16_to_cpu(rightmost_el
->l_tree_depth
);
3871 BUG_ON(!(*last_eb_bh
));
3872 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
3873 rightmost_el
= &eb
->h_list
;
3876 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
3877 le16_to_cpu(rightmost_el
->l_count
)) {
3878 ret
= ocfs2_grow_tree(inode
, handle
, di_bh
, &depth
, last_eb_bh
,
3886 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
3887 insert
.ins_appending
= APPEND_NONE
;
3888 insert
.ins_contig
= CONTIG_NONE
;
3889 insert
.ins_tree_depth
= depth
;
3891 insert_range
= le32_to_cpu(split_rec
.e_cpos
) +
3892 le16_to_cpu(split_rec
.e_leaf_clusters
);
3893 rec_range
= le32_to_cpu(rec
.e_cpos
) +
3894 le16_to_cpu(rec
.e_leaf_clusters
);
3896 if (split_rec
.e_cpos
== rec
.e_cpos
) {
3897 insert
.ins_split
= SPLIT_LEFT
;
3898 } else if (insert_range
== rec_range
) {
3899 insert
.ins_split
= SPLIT_RIGHT
;
3902 * Left/right split. We fake this as a right split
3903 * first and then make a second pass as a left split.
3905 insert
.ins_split
= SPLIT_RIGHT
;
3907 ocfs2_make_right_split_rec(inode
->i_sb
, &tmprec
, insert_range
,
3912 BUG_ON(do_leftright
);
3916 ret
= ocfs2_do_insert_extent(inode
, handle
, di_bh
, &split_rec
,
3923 if (do_leftright
== 1) {
3925 struct ocfs2_extent_list
*el
;
3928 split_rec
= *orig_split_rec
;
3930 ocfs2_reinit_path(path
, 1);
3932 cpos
= le32_to_cpu(split_rec
.e_cpos
);
3933 ret
= ocfs2_find_path(inode
, path
, cpos
);
3939 el
= path_leaf_el(path
);
3940 split_index
= ocfs2_search_extent_list(el
, cpos
);
3949 * Mark part or all of the extent record at split_index in the leaf
3950 * pointed to by path as written. This removes the unwritten
3953 * Care is taken to handle contiguousness so as to not grow the tree.
3955 * meta_ac is not strictly necessary - we only truly need it if growth
3956 * of the tree is required. All other cases will degrade into a less
3957 * optimal tree layout.
3959 * last_eb_bh should be the rightmost leaf block for any inode with a
3960 * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
3962 * This code is optimized for readability - several passes might be
3963 * made over certain portions of the tree. All of those blocks will
3964 * have been brought into cache (and pinned via the journal), so the
3965 * extra overhead is not expressed in terms of disk reads.
3967 static int __ocfs2_mark_extent_written(struct inode
*inode
,
3968 struct buffer_head
*di_bh
,
3970 struct ocfs2_path
*path
,
3972 struct ocfs2_extent_rec
*split_rec
,
3973 struct ocfs2_alloc_context
*meta_ac
,
3974 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3977 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
3978 struct buffer_head
*last_eb_bh
= NULL
;
3979 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
3980 struct ocfs2_merge_ctxt ctxt
;
3981 struct ocfs2_extent_list
*rightmost_el
;
3983 if (!(rec
->e_flags
& OCFS2_EXT_UNWRITTEN
)) {
3989 if (le32_to_cpu(rec
->e_cpos
) > le32_to_cpu(split_rec
->e_cpos
) ||
3990 ((le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)) <
3991 (le32_to_cpu(split_rec
->e_cpos
) + le16_to_cpu(split_rec
->e_leaf_clusters
)))) {
3997 ctxt
.c_contig_type
= ocfs2_figure_merge_contig_type(inode
, el
,
4002 * The core merge / split code wants to know how much room is
4003 * left in this inodes allocation tree, so we pass the
4004 * rightmost extent list.
4006 if (path
->p_tree_depth
) {
4007 struct ocfs2_extent_block
*eb
;
4008 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
4010 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
4011 le64_to_cpu(di
->i_last_eb_blk
),
4012 &last_eb_bh
, OCFS2_BH_CACHED
, inode
);
4018 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
4019 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
4020 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
4025 rightmost_el
= &eb
->h_list
;
4027 rightmost_el
= path_root_el(path
);
4029 if (rec
->e_cpos
== split_rec
->e_cpos
&&
4030 rec
->e_leaf_clusters
== split_rec
->e_leaf_clusters
)
4031 ctxt
.c_split_covers_rec
= 1;
4033 ctxt
.c_split_covers_rec
= 0;
4035 ctxt
.c_has_empty_extent
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
4037 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4038 split_index
, ctxt
.c_contig_type
, ctxt
.c_has_empty_extent
,
4039 ctxt
.c_split_covers_rec
);
4041 if (ctxt
.c_contig_type
== CONTIG_NONE
) {
4042 if (ctxt
.c_split_covers_rec
)
4043 el
->l_recs
[split_index
] = *split_rec
;
4045 ret
= ocfs2_split_and_insert(inode
, handle
, path
, di_bh
,
4046 &last_eb_bh
, split_index
,
4047 split_rec
, meta_ac
);
4051 ret
= ocfs2_try_to_merge_extent(inode
, handle
, path
,
4052 split_index
, split_rec
,
4064 * Mark the already-existing extent at cpos as written for len clusters.
4066 * If the existing extent is larger than the request, initiate a
4067 * split. An attempt will be made at merging with adjacent extents.
4069 * The caller is responsible for passing down meta_ac if we'll need it.
4071 int ocfs2_mark_extent_written(struct inode
*inode
, struct buffer_head
*di_bh
,
4072 handle_t
*handle
, u32 cpos
, u32 len
, u32 phys
,
4073 struct ocfs2_alloc_context
*meta_ac
,
4074 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
4077 u64 start_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys
);
4078 struct ocfs2_extent_rec split_rec
;
4079 struct ocfs2_path
*left_path
= NULL
;
4080 struct ocfs2_extent_list
*el
;
4082 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4083 inode
->i_ino
, cpos
, len
, phys
, (unsigned long long)start_blkno
);
4085 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode
->i_sb
))) {
4086 ocfs2_error(inode
->i_sb
, "Inode %llu has unwritten extents "
4087 "that are being written to, but the feature bit "
4088 "is not set in the super block.",
4089 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
4095 * XXX: This should be fixed up so that we just re-insert the
4096 * next extent records.
4098 ocfs2_extent_map_trunc(inode
, 0);
4100 left_path
= ocfs2_new_inode_path(di_bh
);
4107 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
4112 el
= path_leaf_el(left_path
);
4114 index
= ocfs2_search_extent_list(el
, cpos
);
4115 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
4116 ocfs2_error(inode
->i_sb
,
4117 "Inode %llu has an extent at cpos %u which can no "
4118 "longer be found.\n",
4119 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
4124 memset(&split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4125 split_rec
.e_cpos
= cpu_to_le32(cpos
);
4126 split_rec
.e_leaf_clusters
= cpu_to_le16(len
);
4127 split_rec
.e_blkno
= cpu_to_le64(start_blkno
);
4128 split_rec
.e_flags
= path_leaf_el(left_path
)->l_recs
[index
].e_flags
;
4129 split_rec
.e_flags
&= ~OCFS2_EXT_UNWRITTEN
;
4131 ret
= __ocfs2_mark_extent_written(inode
, di_bh
, handle
, left_path
,
4132 index
, &split_rec
, meta_ac
, dealloc
);
4137 ocfs2_free_path(left_path
);
4141 static int ocfs2_split_tree(struct inode
*inode
, struct buffer_head
*di_bh
,
4142 handle_t
*handle
, struct ocfs2_path
*path
,
4143 int index
, u32 new_range
,
4144 struct ocfs2_alloc_context
*meta_ac
)
4146 int ret
, depth
, credits
= handle
->h_buffer_credits
;
4147 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
4148 struct buffer_head
*last_eb_bh
= NULL
;
4149 struct ocfs2_extent_block
*eb
;
4150 struct ocfs2_extent_list
*rightmost_el
, *el
;
4151 struct ocfs2_extent_rec split_rec
;
4152 struct ocfs2_extent_rec
*rec
;
4153 struct ocfs2_insert_type insert
;
4156 * Setup the record to split before we grow the tree.
4158 el
= path_leaf_el(path
);
4159 rec
= &el
->l_recs
[index
];
4160 ocfs2_make_right_split_rec(inode
->i_sb
, &split_rec
, new_range
, rec
);
4162 depth
= path
->p_tree_depth
;
4164 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
4165 le64_to_cpu(di
->i_last_eb_blk
),
4166 &last_eb_bh
, OCFS2_BH_CACHED
, inode
);
4172 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
4173 rightmost_el
= &eb
->h_list
;
4175 rightmost_el
= path_leaf_el(path
);
4177 credits
+= path
->p_tree_depth
+ ocfs2_extend_meta_needed(di
);
4178 ret
= ocfs2_extend_trans(handle
, credits
);
4184 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4185 le16_to_cpu(rightmost_el
->l_count
)) {
4186 ret
= ocfs2_grow_tree(inode
, handle
, di_bh
, &depth
, &last_eb_bh
,
4194 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4195 insert
.ins_appending
= APPEND_NONE
;
4196 insert
.ins_contig
= CONTIG_NONE
;
4197 insert
.ins_split
= SPLIT_RIGHT
;
4198 insert
.ins_tree_depth
= depth
;
4200 ret
= ocfs2_do_insert_extent(inode
, handle
, di_bh
, &split_rec
, &insert
);
4209 static int ocfs2_truncate_rec(struct inode
*inode
, handle_t
*handle
,
4210 struct ocfs2_path
*path
, int index
,
4211 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
4215 u32 left_cpos
, rec_range
, trunc_range
;
4216 int wants_rotate
= 0, is_rightmost_tree_rec
= 0;
4217 struct super_block
*sb
= inode
->i_sb
;
4218 struct ocfs2_path
*left_path
= NULL
;
4219 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
4220 struct ocfs2_extent_rec
*rec
;
4221 struct ocfs2_extent_block
*eb
;
4223 if (ocfs2_is_empty_extent(&el
->l_recs
[0]) && index
> 0) {
4224 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
, dealloc
);
4233 if (index
== (le16_to_cpu(el
->l_next_free_rec
) - 1) &&
4234 path
->p_tree_depth
) {
4236 * Check whether this is the rightmost tree record. If
4237 * we remove all of this record or part of its right
4238 * edge then an update of the record lengths above it
4241 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
4242 if (eb
->h_next_leaf_blk
== 0)
4243 is_rightmost_tree_rec
= 1;
4246 rec
= &el
->l_recs
[index
];
4247 if (index
== 0 && path
->p_tree_depth
&&
4248 le32_to_cpu(rec
->e_cpos
) == cpos
) {
4250 * Changing the leftmost offset (via partial or whole
4251 * record truncate) of an interior (or rightmost) path
4252 * means we have to update the subtree that is formed
4253 * by this leaf and the one to it's left.
4255 * There are two cases we can skip:
4256 * 1) Path is the leftmost one in our inode tree.
4257 * 2) The leaf is rightmost and will be empty after
4258 * we remove the extent record - the rotate code
4259 * knows how to update the newly formed edge.
4262 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
,
4269 if (left_cpos
&& le16_to_cpu(el
->l_next_free_rec
) > 1) {
4270 left_path
= ocfs2_new_path(path_root_bh(path
),
4271 path_root_el(path
));
4278 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
4286 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
4287 handle
->h_buffer_credits
,
4294 ret
= ocfs2_journal_access_path(inode
, handle
, path
);
4300 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
4306 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
4307 trunc_range
= cpos
+ len
;
4309 if (le32_to_cpu(rec
->e_cpos
) == cpos
&& rec_range
== trunc_range
) {
4312 memset(rec
, 0, sizeof(*rec
));
4313 ocfs2_cleanup_merge(el
, index
);
4316 next_free
= le16_to_cpu(el
->l_next_free_rec
);
4317 if (is_rightmost_tree_rec
&& next_free
> 1) {
4319 * We skip the edge update if this path will
4320 * be deleted by the rotate code.
4322 rec
= &el
->l_recs
[next_free
- 1];
4323 ocfs2_adjust_rightmost_records(inode
, handle
, path
,
4326 } else if (le32_to_cpu(rec
->e_cpos
) == cpos
) {
4327 /* Remove leftmost portion of the record. */
4328 le32_add_cpu(&rec
->e_cpos
, len
);
4329 le64_add_cpu(&rec
->e_blkno
, ocfs2_clusters_to_blocks(sb
, len
));
4330 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
4331 } else if (rec_range
== trunc_range
) {
4332 /* Remove rightmost portion of the record */
4333 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
4334 if (is_rightmost_tree_rec
)
4335 ocfs2_adjust_rightmost_records(inode
, handle
, path
, rec
);
4337 /* Caller should have trapped this. */
4338 mlog(ML_ERROR
, "Inode %llu: Invalid record truncate: (%u, %u) "
4339 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
4340 le32_to_cpu(rec
->e_cpos
),
4341 le16_to_cpu(rec
->e_leaf_clusters
), cpos
, len
);
4348 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
, path
);
4349 ocfs2_complete_edge_insert(inode
, handle
, left_path
, path
,
4353 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
4355 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
, dealloc
);
4362 ocfs2_free_path(left_path
);
4366 int ocfs2_remove_extent(struct inode
*inode
, struct buffer_head
*di_bh
,
4367 u32 cpos
, u32 len
, handle_t
*handle
,
4368 struct ocfs2_alloc_context
*meta_ac
,
4369 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
4372 u32 rec_range
, trunc_range
;
4373 struct ocfs2_extent_rec
*rec
;
4374 struct ocfs2_extent_list
*el
;
4375 struct ocfs2_path
*path
;
4377 ocfs2_extent_map_trunc(inode
, 0);
4379 path
= ocfs2_new_inode_path(di_bh
);
4386 ret
= ocfs2_find_path(inode
, path
, cpos
);
4392 el
= path_leaf_el(path
);
4393 index
= ocfs2_search_extent_list(el
, cpos
);
4394 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
4395 ocfs2_error(inode
->i_sb
,
4396 "Inode %llu has an extent at cpos %u which can no "
4397 "longer be found.\n",
4398 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
4404 * We have 3 cases of extent removal:
4405 * 1) Range covers the entire extent rec
4406 * 2) Range begins or ends on one edge of the extent rec
4407 * 3) Range is in the middle of the extent rec (no shared edges)
4409 * For case 1 we remove the extent rec and left rotate to
4412 * For case 2 we just shrink the existing extent rec, with a
4413 * tree update if the shrinking edge is also the edge of an
4416 * For case 3 we do a right split to turn the extent rec into
4417 * something case 2 can handle.
4419 rec
= &el
->l_recs
[index
];
4420 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
4421 trunc_range
= cpos
+ len
;
4423 BUG_ON(cpos
< le32_to_cpu(rec
->e_cpos
) || trunc_range
> rec_range
);
4425 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4426 "(cpos %u, len %u)\n",
4427 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
, len
, index
,
4428 le32_to_cpu(rec
->e_cpos
), ocfs2_rec_clusters(el
, rec
));
4430 if (le32_to_cpu(rec
->e_cpos
) == cpos
|| rec_range
== trunc_range
) {
4431 ret
= ocfs2_truncate_rec(inode
, handle
, path
, index
, dealloc
,
4438 ret
= ocfs2_split_tree(inode
, di_bh
, handle
, path
, index
,
4439 trunc_range
, meta_ac
);
4446 * The split could have manipulated the tree enough to
4447 * move the record location, so we have to look for it again.
4449 ocfs2_reinit_path(path
, 1);
4451 ret
= ocfs2_find_path(inode
, path
, cpos
);
4457 el
= path_leaf_el(path
);
4458 index
= ocfs2_search_extent_list(el
, cpos
);
4459 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
4460 ocfs2_error(inode
->i_sb
,
4461 "Inode %llu: split at cpos %u lost record.",
4462 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
4469 * Double check our values here. If anything is fishy,
4470 * it's easier to catch it at the top level.
4472 rec
= &el
->l_recs
[index
];
4473 rec_range
= le32_to_cpu(rec
->e_cpos
) +
4474 ocfs2_rec_clusters(el
, rec
);
4475 if (rec_range
!= trunc_range
) {
4476 ocfs2_error(inode
->i_sb
,
4477 "Inode %llu: error after split at cpos %u"
4478 "trunc len %u, existing record is (%u,%u)",
4479 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
4480 cpos
, len
, le32_to_cpu(rec
->e_cpos
),
4481 ocfs2_rec_clusters(el
, rec
));
4486 ret
= ocfs2_truncate_rec(inode
, handle
, path
, index
, dealloc
,
4495 ocfs2_free_path(path
);
4499 int ocfs2_truncate_log_needs_flush(struct ocfs2_super
*osb
)
4501 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
4502 struct ocfs2_dinode
*di
;
4503 struct ocfs2_truncate_log
*tl
;
4505 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
4506 tl
= &di
->id2
.i_dealloc
;
4508 mlog_bug_on_msg(le16_to_cpu(tl
->tl_used
) > le16_to_cpu(tl
->tl_count
),
4509 "slot %d, invalid truncate log parameters: used = "
4510 "%u, count = %u\n", osb
->slot_num
,
4511 le16_to_cpu(tl
->tl_used
), le16_to_cpu(tl
->tl_count
));
4512 return le16_to_cpu(tl
->tl_used
) == le16_to_cpu(tl
->tl_count
);
4515 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log
*tl
,
4516 unsigned int new_start
)
4518 unsigned int tail_index
;
4519 unsigned int current_tail
;
4521 /* No records, nothing to coalesce */
4522 if (!le16_to_cpu(tl
->tl_used
))
4525 tail_index
= le16_to_cpu(tl
->tl_used
) - 1;
4526 current_tail
= le32_to_cpu(tl
->tl_recs
[tail_index
].t_start
);
4527 current_tail
+= le32_to_cpu(tl
->tl_recs
[tail_index
].t_clusters
);
4529 return current_tail
== new_start
;
4532 int ocfs2_truncate_log_append(struct ocfs2_super
*osb
,
4535 unsigned int num_clusters
)
4538 unsigned int start_cluster
, tl_count
;
4539 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4540 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
4541 struct ocfs2_dinode
*di
;
4542 struct ocfs2_truncate_log
*tl
;
4544 mlog_entry("start_blk = %llu, num_clusters = %u\n",
4545 (unsigned long long)start_blk
, num_clusters
);
4547 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
4549 start_cluster
= ocfs2_blocks_to_clusters(osb
->sb
, start_blk
);
4551 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
4552 tl
= &di
->id2
.i_dealloc
;
4553 if (!OCFS2_IS_VALID_DINODE(di
)) {
4554 OCFS2_RO_ON_INVALID_DINODE(osb
->sb
, di
);
4559 tl_count
= le16_to_cpu(tl
->tl_count
);
4560 mlog_bug_on_msg(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
4562 "Truncate record count on #%llu invalid "
4563 "wanted %u, actual %u\n",
4564 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
4565 ocfs2_truncate_recs_per_inode(osb
->sb
),
4566 le16_to_cpu(tl
->tl_count
));
4568 /* Caller should have known to flush before calling us. */
4569 index
= le16_to_cpu(tl
->tl_used
);
4570 if (index
>= tl_count
) {
4576 status
= ocfs2_journal_access(handle
, tl_inode
, tl_bh
,
4577 OCFS2_JOURNAL_ACCESS_WRITE
);
4583 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4584 "%llu (index = %d)\n", num_clusters
, start_cluster
,
4585 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
, index
);
4587 if (ocfs2_truncate_log_can_coalesce(tl
, start_cluster
)) {
4589 * Move index back to the record we are coalescing with.
4590 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4594 num_clusters
+= le32_to_cpu(tl
->tl_recs
[index
].t_clusters
);
4595 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4596 index
, le32_to_cpu(tl
->tl_recs
[index
].t_start
),
4599 tl
->tl_recs
[index
].t_start
= cpu_to_le32(start_cluster
);
4600 tl
->tl_used
= cpu_to_le16(index
+ 1);
4602 tl
->tl_recs
[index
].t_clusters
= cpu_to_le32(num_clusters
);
4604 status
= ocfs2_journal_dirty(handle
, tl_bh
);
4615 static int ocfs2_replay_truncate_records(struct ocfs2_super
*osb
,
4617 struct inode
*data_alloc_inode
,
4618 struct buffer_head
*data_alloc_bh
)
4622 unsigned int num_clusters
;
4624 struct ocfs2_truncate_rec rec
;
4625 struct ocfs2_dinode
*di
;
4626 struct ocfs2_truncate_log
*tl
;
4627 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4628 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
4632 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
4633 tl
= &di
->id2
.i_dealloc
;
4634 i
= le16_to_cpu(tl
->tl_used
) - 1;
4636 /* Caller has given us at least enough credits to
4637 * update the truncate log dinode */
4638 status
= ocfs2_journal_access(handle
, tl_inode
, tl_bh
,
4639 OCFS2_JOURNAL_ACCESS_WRITE
);
4645 tl
->tl_used
= cpu_to_le16(i
);
4647 status
= ocfs2_journal_dirty(handle
, tl_bh
);
4653 /* TODO: Perhaps we can calculate the bulk of the
4654 * credits up front rather than extending like
4656 status
= ocfs2_extend_trans(handle
,
4657 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC
);
4663 rec
= tl
->tl_recs
[i
];
4664 start_blk
= ocfs2_clusters_to_blocks(data_alloc_inode
->i_sb
,
4665 le32_to_cpu(rec
.t_start
));
4666 num_clusters
= le32_to_cpu(rec
.t_clusters
);
4668 /* if start_blk is not set, we ignore the record as
4671 mlog(0, "free record %d, start = %u, clusters = %u\n",
4672 i
, le32_to_cpu(rec
.t_start
), num_clusters
);
4674 status
= ocfs2_free_clusters(handle
, data_alloc_inode
,
4675 data_alloc_bh
, start_blk
,
4690 /* Expects you to already be holding tl_inode->i_mutex */
4691 int __ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
4694 unsigned int num_to_flush
;
4696 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4697 struct inode
*data_alloc_inode
= NULL
;
4698 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
4699 struct buffer_head
*data_alloc_bh
= NULL
;
4700 struct ocfs2_dinode
*di
;
4701 struct ocfs2_truncate_log
*tl
;
4705 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
4707 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
4708 tl
= &di
->id2
.i_dealloc
;
4709 if (!OCFS2_IS_VALID_DINODE(di
)) {
4710 OCFS2_RO_ON_INVALID_DINODE(osb
->sb
, di
);
4715 num_to_flush
= le16_to_cpu(tl
->tl_used
);
4716 mlog(0, "Flush %u records from truncate log #%llu\n",
4717 num_to_flush
, (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
);
4718 if (!num_to_flush
) {
4723 data_alloc_inode
= ocfs2_get_system_file_inode(osb
,
4724 GLOBAL_BITMAP_SYSTEM_INODE
,
4725 OCFS2_INVALID_SLOT
);
4726 if (!data_alloc_inode
) {
4728 mlog(ML_ERROR
, "Could not get bitmap inode!\n");
4732 mutex_lock(&data_alloc_inode
->i_mutex
);
4734 status
= ocfs2_inode_lock(data_alloc_inode
, &data_alloc_bh
, 1);
4740 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
4741 if (IS_ERR(handle
)) {
4742 status
= PTR_ERR(handle
);
4747 status
= ocfs2_replay_truncate_records(osb
, handle
, data_alloc_inode
,
4752 ocfs2_commit_trans(osb
, handle
);
4755 brelse(data_alloc_bh
);
4756 ocfs2_inode_unlock(data_alloc_inode
, 1);
4759 mutex_unlock(&data_alloc_inode
->i_mutex
);
4760 iput(data_alloc_inode
);
4767 int ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
4770 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4772 mutex_lock(&tl_inode
->i_mutex
);
4773 status
= __ocfs2_flush_truncate_log(osb
);
4774 mutex_unlock(&tl_inode
->i_mutex
);
4779 static void ocfs2_truncate_log_worker(struct work_struct
*work
)
4782 struct ocfs2_super
*osb
=
4783 container_of(work
, struct ocfs2_super
,
4784 osb_truncate_log_wq
.work
);
4788 status
= ocfs2_flush_truncate_log(osb
);
4795 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
4796 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super
*osb
,
4799 if (osb
->osb_tl_inode
) {
4800 /* We want to push off log flushes while truncates are
4803 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
4805 queue_delayed_work(ocfs2_wq
, &osb
->osb_truncate_log_wq
,
4806 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL
);
4810 static int ocfs2_get_truncate_log_info(struct ocfs2_super
*osb
,
4812 struct inode
**tl_inode
,
4813 struct buffer_head
**tl_bh
)
4816 struct inode
*inode
= NULL
;
4817 struct buffer_head
*bh
= NULL
;
4819 inode
= ocfs2_get_system_file_inode(osb
,
4820 TRUNCATE_LOG_SYSTEM_INODE
,
4824 mlog(ML_ERROR
, "Could not get load truncate log inode!\n");
4828 status
= ocfs2_read_block(osb
, OCFS2_I(inode
)->ip_blkno
, &bh
,
4829 OCFS2_BH_CACHED
, inode
);
4843 /* called during the 1st stage of node recovery. we stamp a clean
4844 * truncate log and pass back a copy for processing later. if the
4845 * truncate log does not require processing, a *tl_copy is set to
4847 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super
*osb
,
4849 struct ocfs2_dinode
**tl_copy
)
4852 struct inode
*tl_inode
= NULL
;
4853 struct buffer_head
*tl_bh
= NULL
;
4854 struct ocfs2_dinode
*di
;
4855 struct ocfs2_truncate_log
*tl
;
4859 mlog(0, "recover truncate log from slot %d\n", slot_num
);
4861 status
= ocfs2_get_truncate_log_info(osb
, slot_num
, &tl_inode
, &tl_bh
);
4867 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
4868 tl
= &di
->id2
.i_dealloc
;
4869 if (!OCFS2_IS_VALID_DINODE(di
)) {
4870 OCFS2_RO_ON_INVALID_DINODE(tl_inode
->i_sb
, di
);
4875 if (le16_to_cpu(tl
->tl_used
)) {
4876 mlog(0, "We'll have %u logs to recover\n",
4877 le16_to_cpu(tl
->tl_used
));
4879 *tl_copy
= kmalloc(tl_bh
->b_size
, GFP_KERNEL
);
4886 /* Assuming the write-out below goes well, this copy
4887 * will be passed back to recovery for processing. */
4888 memcpy(*tl_copy
, tl_bh
->b_data
, tl_bh
->b_size
);
4890 /* All we need to do to clear the truncate log is set
4894 status
= ocfs2_write_block(osb
, tl_bh
, tl_inode
);
4907 if (status
< 0 && (*tl_copy
)) {
4916 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super
*osb
,
4917 struct ocfs2_dinode
*tl_copy
)
4921 unsigned int clusters
, num_recs
, start_cluster
;
4924 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4925 struct ocfs2_truncate_log
*tl
;
4929 if (OCFS2_I(tl_inode
)->ip_blkno
== le64_to_cpu(tl_copy
->i_blkno
)) {
4930 mlog(ML_ERROR
, "Asked to recover my own truncate log!\n");
4934 tl
= &tl_copy
->id2
.i_dealloc
;
4935 num_recs
= le16_to_cpu(tl
->tl_used
);
4936 mlog(0, "cleanup %u records from %llu\n", num_recs
,
4937 (unsigned long long)le64_to_cpu(tl_copy
->i_blkno
));
4939 mutex_lock(&tl_inode
->i_mutex
);
4940 for(i
= 0; i
< num_recs
; i
++) {
4941 if (ocfs2_truncate_log_needs_flush(osb
)) {
4942 status
= __ocfs2_flush_truncate_log(osb
);
4949 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
4950 if (IS_ERR(handle
)) {
4951 status
= PTR_ERR(handle
);
4956 clusters
= le32_to_cpu(tl
->tl_recs
[i
].t_clusters
);
4957 start_cluster
= le32_to_cpu(tl
->tl_recs
[i
].t_start
);
4958 start_blk
= ocfs2_clusters_to_blocks(osb
->sb
, start_cluster
);
4960 status
= ocfs2_truncate_log_append(osb
, handle
,
4961 start_blk
, clusters
);
4962 ocfs2_commit_trans(osb
, handle
);
4970 mutex_unlock(&tl_inode
->i_mutex
);
4976 void ocfs2_truncate_log_shutdown(struct ocfs2_super
*osb
)
4979 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4984 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
4985 flush_workqueue(ocfs2_wq
);
4987 status
= ocfs2_flush_truncate_log(osb
);
4991 brelse(osb
->osb_tl_bh
);
4992 iput(osb
->osb_tl_inode
);
4998 int ocfs2_truncate_log_init(struct ocfs2_super
*osb
)
5001 struct inode
*tl_inode
= NULL
;
5002 struct buffer_head
*tl_bh
= NULL
;
5006 status
= ocfs2_get_truncate_log_info(osb
,
5013 /* ocfs2_truncate_log_shutdown keys on the existence of
5014 * osb->osb_tl_inode so we don't set any of the osb variables
5015 * until we're sure all is well. */
5016 INIT_DELAYED_WORK(&osb
->osb_truncate_log_wq
,
5017 ocfs2_truncate_log_worker
);
5018 osb
->osb_tl_bh
= tl_bh
;
5019 osb
->osb_tl_inode
= tl_inode
;
5026 * Delayed de-allocation of suballocator blocks.
5028 * Some sets of block de-allocations might involve multiple suballocator inodes.
5030 * The locking for this can get extremely complicated, especially when
5031 * the suballocator inodes to delete from aren't known until deep
5032 * within an unrelated codepath.
5034 * ocfs2_extent_block structures are a good example of this - an inode
5035 * btree could have been grown by any number of nodes each allocating
5036 * out of their own suballoc inode.
5038 * These structures allow the delay of block de-allocation until a
5039 * later time, when locking of multiple cluster inodes won't cause
5044 * Describes a single block free from a suballocator
5046 struct ocfs2_cached_block_free
{
5047 struct ocfs2_cached_block_free
*free_next
;
5049 unsigned int free_bit
;
5052 struct ocfs2_per_slot_free_list
{
5053 struct ocfs2_per_slot_free_list
*f_next_suballocator
;
5056 struct ocfs2_cached_block_free
*f_first
;
5059 static int ocfs2_free_cached_items(struct ocfs2_super
*osb
,
5062 struct ocfs2_cached_block_free
*head
)
5067 struct inode
*inode
;
5068 struct buffer_head
*di_bh
= NULL
;
5069 struct ocfs2_cached_block_free
*tmp
;
5071 inode
= ocfs2_get_system_file_inode(osb
, sysfile_type
, slot
);
5078 mutex_lock(&inode
->i_mutex
);
5080 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
5086 handle
= ocfs2_start_trans(osb
, OCFS2_SUBALLOC_FREE
);
5087 if (IS_ERR(handle
)) {
5088 ret
= PTR_ERR(handle
);
5094 bg_blkno
= ocfs2_which_suballoc_group(head
->free_blk
,
5096 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5097 head
->free_bit
, (unsigned long long)head
->free_blk
);
5099 ret
= ocfs2_free_suballoc_bits(handle
, inode
, di_bh
,
5100 head
->free_bit
, bg_blkno
, 1);
5106 ret
= ocfs2_extend_trans(handle
, OCFS2_SUBALLOC_FREE
);
5113 head
= head
->free_next
;
5118 ocfs2_commit_trans(osb
, handle
);
5121 ocfs2_inode_unlock(inode
, 1);
5124 mutex_unlock(&inode
->i_mutex
);
5128 /* Premature exit may have left some dangling items. */
5130 head
= head
->free_next
;
5137 int ocfs2_run_deallocs(struct ocfs2_super
*osb
,
5138 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
5141 struct ocfs2_per_slot_free_list
*fl
;
5146 while (ctxt
->c_first_suballocator
) {
5147 fl
= ctxt
->c_first_suballocator
;
5150 mlog(0, "Free items: (type %u, slot %d)\n",
5151 fl
->f_inode_type
, fl
->f_slot
);
5152 ret2
= ocfs2_free_cached_items(osb
, fl
->f_inode_type
,
5153 fl
->f_slot
, fl
->f_first
);
5160 ctxt
->c_first_suballocator
= fl
->f_next_suballocator
;
5167 static struct ocfs2_per_slot_free_list
*
5168 ocfs2_find_per_slot_free_list(int type
,
5170 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
5172 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
5175 if (fl
->f_inode_type
== type
&& fl
->f_slot
== slot
)
5178 fl
= fl
->f_next_suballocator
;
5181 fl
= kmalloc(sizeof(*fl
), GFP_NOFS
);
5183 fl
->f_inode_type
= type
;
5186 fl
->f_next_suballocator
= ctxt
->c_first_suballocator
;
5188 ctxt
->c_first_suballocator
= fl
;
5193 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
5194 int type
, int slot
, u64 blkno
,
5198 struct ocfs2_per_slot_free_list
*fl
;
5199 struct ocfs2_cached_block_free
*item
;
5201 fl
= ocfs2_find_per_slot_free_list(type
, slot
, ctxt
);
5208 item
= kmalloc(sizeof(*item
), GFP_NOFS
);
5215 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5216 type
, slot
, bit
, (unsigned long long)blkno
);
5218 item
->free_blk
= blkno
;
5219 item
->free_bit
= bit
;
5220 item
->free_next
= fl
->f_first
;
5229 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
5230 struct ocfs2_extent_block
*eb
)
5232 return ocfs2_cache_block_dealloc(ctxt
, EXTENT_ALLOC_SYSTEM_INODE
,
5233 le16_to_cpu(eb
->h_suballoc_slot
),
5234 le64_to_cpu(eb
->h_blkno
),
5235 le16_to_cpu(eb
->h_suballoc_bit
));
5238 /* This function will figure out whether the currently last extent
5239 * block will be deleted, and if it will, what the new last extent
5240 * block will be so we can update his h_next_leaf_blk field, as well
5241 * as the dinodes i_last_eb_blk */
5242 static int ocfs2_find_new_last_ext_blk(struct inode
*inode
,
5243 unsigned int clusters_to_del
,
5244 struct ocfs2_path
*path
,
5245 struct buffer_head
**new_last_eb
)
5247 int next_free
, ret
= 0;
5249 struct ocfs2_extent_rec
*rec
;
5250 struct ocfs2_extent_block
*eb
;
5251 struct ocfs2_extent_list
*el
;
5252 struct buffer_head
*bh
= NULL
;
5254 *new_last_eb
= NULL
;
5256 /* we have no tree, so of course, no last_eb. */
5257 if (!path
->p_tree_depth
)
5260 /* trunc to zero special case - this makes tree_depth = 0
5261 * regardless of what it is. */
5262 if (OCFS2_I(inode
)->ip_clusters
== clusters_to_del
)
5265 el
= path_leaf_el(path
);
5266 BUG_ON(!el
->l_next_free_rec
);
5269 * Make sure that this extent list will actually be empty
5270 * after we clear away the data. We can shortcut out if
5271 * there's more than one non-empty extent in the
5272 * list. Otherwise, a check of the remaining extent is
5275 next_free
= le16_to_cpu(el
->l_next_free_rec
);
5277 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
5281 /* We may have a valid extent in index 1, check it. */
5283 rec
= &el
->l_recs
[1];
5286 * Fall through - no more nonempty extents, so we want
5287 * to delete this leaf.
5293 rec
= &el
->l_recs
[0];
5298 * Check it we'll only be trimming off the end of this
5301 if (le16_to_cpu(rec
->e_leaf_clusters
) > clusters_to_del
)
5305 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
, &cpos
);
5311 ret
= ocfs2_find_leaf(inode
, path_root_el(path
), cpos
, &bh
);
5317 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
5319 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
5320 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
5326 get_bh(*new_last_eb
);
5327 mlog(0, "returning block %llu, (cpos: %u)\n",
5328 (unsigned long long)le64_to_cpu(eb
->h_blkno
), cpos
);
5336 * Trim some clusters off the rightmost edge of a tree. Only called
5339 * The caller needs to:
5340 * - start journaling of each path component.
5341 * - compute and fully set up any new last ext block
5343 static int ocfs2_trim_tree(struct inode
*inode
, struct ocfs2_path
*path
,
5344 handle_t
*handle
, struct ocfs2_truncate_context
*tc
,
5345 u32 clusters_to_del
, u64
*delete_start
)
5347 int ret
, i
, index
= path
->p_tree_depth
;
5350 struct buffer_head
*bh
;
5351 struct ocfs2_extent_list
*el
;
5352 struct ocfs2_extent_rec
*rec
;
5356 while (index
>= 0) {
5357 bh
= path
->p_node
[index
].bh
;
5358 el
= path
->p_node
[index
].el
;
5360 mlog(0, "traveling tree (index = %d, block = %llu)\n",
5361 index
, (unsigned long long)bh
->b_blocknr
);
5363 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
5366 (path
->p_tree_depth
- le16_to_cpu(el
->l_tree_depth
))) {
5367 ocfs2_error(inode
->i_sb
,
5368 "Inode %lu has invalid ext. block %llu",
5370 (unsigned long long)bh
->b_blocknr
);
5376 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
5377 rec
= &el
->l_recs
[i
];
5379 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5380 "next = %u\n", i
, le32_to_cpu(rec
->e_cpos
),
5381 ocfs2_rec_clusters(el
, rec
),
5382 (unsigned long long)le64_to_cpu(rec
->e_blkno
),
5383 le16_to_cpu(el
->l_next_free_rec
));
5385 BUG_ON(ocfs2_rec_clusters(el
, rec
) < clusters_to_del
);
5387 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
5389 * If the leaf block contains a single empty
5390 * extent and no records, we can just remove
5393 if (i
== 0 && ocfs2_is_empty_extent(rec
)) {
5395 sizeof(struct ocfs2_extent_rec
));
5396 el
->l_next_free_rec
= cpu_to_le16(0);
5402 * Remove any empty extents by shifting things
5403 * left. That should make life much easier on
5404 * the code below. This condition is rare
5405 * enough that we shouldn't see a performance
5408 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
5409 le16_add_cpu(&el
->l_next_free_rec
, -1);
5412 i
< le16_to_cpu(el
->l_next_free_rec
); i
++)
5413 el
->l_recs
[i
] = el
->l_recs
[i
+ 1];
5415 memset(&el
->l_recs
[i
], 0,
5416 sizeof(struct ocfs2_extent_rec
));
5419 * We've modified our extent list. The
5420 * simplest way to handle this change
5421 * is to being the search from the
5424 goto find_tail_record
;
5427 le16_add_cpu(&rec
->e_leaf_clusters
, -clusters_to_del
);
5430 * We'll use "new_edge" on our way back up the
5431 * tree to know what our rightmost cpos is.
5433 new_edge
= le16_to_cpu(rec
->e_leaf_clusters
);
5434 new_edge
+= le32_to_cpu(rec
->e_cpos
);
5437 * The caller will use this to delete data blocks.
5439 *delete_start
= le64_to_cpu(rec
->e_blkno
)
5440 + ocfs2_clusters_to_blocks(inode
->i_sb
,
5441 le16_to_cpu(rec
->e_leaf_clusters
));
5444 * If it's now empty, remove this record.
5446 if (le16_to_cpu(rec
->e_leaf_clusters
) == 0) {
5448 sizeof(struct ocfs2_extent_rec
));
5449 le16_add_cpu(&el
->l_next_free_rec
, -1);
5452 if (le64_to_cpu(rec
->e_blkno
) == deleted_eb
) {
5454 sizeof(struct ocfs2_extent_rec
));
5455 le16_add_cpu(&el
->l_next_free_rec
, -1);
5460 /* Can this actually happen? */
5461 if (le16_to_cpu(el
->l_next_free_rec
) == 0)
5465 * We never actually deleted any clusters
5466 * because our leaf was empty. There's no
5467 * reason to adjust the rightmost edge then.
5472 rec
->e_int_clusters
= cpu_to_le32(new_edge
);
5473 le32_add_cpu(&rec
->e_int_clusters
,
5474 -le32_to_cpu(rec
->e_cpos
));
5477 * A deleted child record should have been
5480 BUG_ON(le32_to_cpu(rec
->e_int_clusters
) == 0);
5484 ret
= ocfs2_journal_dirty(handle
, bh
);
5490 mlog(0, "extent list container %llu, after: record %d: "
5491 "(%u, %u, %llu), next = %u.\n",
5492 (unsigned long long)bh
->b_blocknr
, i
,
5493 le32_to_cpu(rec
->e_cpos
), ocfs2_rec_clusters(el
, rec
),
5494 (unsigned long long)le64_to_cpu(rec
->e_blkno
),
5495 le16_to_cpu(el
->l_next_free_rec
));
5498 * We must be careful to only attempt delete of an
5499 * extent block (and not the root inode block).
5501 if (index
> 0 && le16_to_cpu(el
->l_next_free_rec
) == 0) {
5502 struct ocfs2_extent_block
*eb
=
5503 (struct ocfs2_extent_block
*)bh
->b_data
;
5506 * Save this for use when processing the
5509 deleted_eb
= le64_to_cpu(eb
->h_blkno
);
5511 mlog(0, "deleting this extent block.\n");
5513 ocfs2_remove_from_cache(inode
, bh
);
5515 BUG_ON(ocfs2_rec_clusters(el
, &el
->l_recs
[0]));
5516 BUG_ON(le32_to_cpu(el
->l_recs
[0].e_cpos
));
5517 BUG_ON(le64_to_cpu(el
->l_recs
[0].e_blkno
));
5519 ret
= ocfs2_cache_extent_block_free(&tc
->tc_dealloc
, eb
);
5520 /* An error here is not fatal. */
5535 static int ocfs2_do_truncate(struct ocfs2_super
*osb
,
5536 unsigned int clusters_to_del
,
5537 struct inode
*inode
,
5538 struct buffer_head
*fe_bh
,
5540 struct ocfs2_truncate_context
*tc
,
5541 struct ocfs2_path
*path
)
5544 struct ocfs2_dinode
*fe
;
5545 struct ocfs2_extent_block
*last_eb
= NULL
;
5546 struct ocfs2_extent_list
*el
;
5547 struct buffer_head
*last_eb_bh
= NULL
;
5550 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
5552 status
= ocfs2_find_new_last_ext_blk(inode
, clusters_to_del
,
5560 * Each component will be touched, so we might as well journal
5561 * here to avoid having to handle errors later.
5563 status
= ocfs2_journal_access_path(inode
, handle
, path
);
5570 status
= ocfs2_journal_access(handle
, inode
, last_eb_bh
,
5571 OCFS2_JOURNAL_ACCESS_WRITE
);
5577 last_eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5580 el
= &(fe
->id2
.i_list
);
5583 * Lower levels depend on this never happening, but it's best
5584 * to check it up here before changing the tree.
5586 if (el
->l_tree_depth
&& el
->l_recs
[0].e_int_clusters
== 0) {
5587 ocfs2_error(inode
->i_sb
,
5588 "Inode %lu has an empty extent record, depth %u\n",
5589 inode
->i_ino
, le16_to_cpu(el
->l_tree_depth
));
5594 spin_lock(&OCFS2_I(inode
)->ip_lock
);
5595 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
) -
5597 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
5598 le32_add_cpu(&fe
->i_clusters
, -clusters_to_del
);
5599 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
5601 status
= ocfs2_trim_tree(inode
, path
, handle
, tc
,
5602 clusters_to_del
, &delete_blk
);
5608 if (le32_to_cpu(fe
->i_clusters
) == 0) {
5609 /* trunc to zero is a special case. */
5610 el
->l_tree_depth
= 0;
5611 fe
->i_last_eb_blk
= 0;
5613 fe
->i_last_eb_blk
= last_eb
->h_blkno
;
5615 status
= ocfs2_journal_dirty(handle
, fe_bh
);
5622 /* If there will be a new last extent block, then by
5623 * definition, there cannot be any leaves to the right of
5625 last_eb
->h_next_leaf_blk
= 0;
5626 status
= ocfs2_journal_dirty(handle
, last_eb_bh
);
5634 status
= ocfs2_truncate_log_append(osb
, handle
, delete_blk
,
5648 static int ocfs2_writeback_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
5650 set_buffer_uptodate(bh
);
5651 mark_buffer_dirty(bh
);
5655 static int ocfs2_ordered_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
5657 set_buffer_uptodate(bh
);
5658 mark_buffer_dirty(bh
);
5659 return ocfs2_journal_dirty_data(handle
, bh
);
5662 static void ocfs2_map_and_dirty_page(struct inode
*inode
, handle_t
*handle
,
5663 unsigned int from
, unsigned int to
,
5664 struct page
*page
, int zero
, u64
*phys
)
5666 int ret
, partial
= 0;
5668 ret
= ocfs2_map_page_blocks(page
, phys
, inode
, from
, to
, 0);
5673 zero_user_page(page
, from
, to
- from
, KM_USER0
);
5676 * Need to set the buffers we zero'd into uptodate
5677 * here if they aren't - ocfs2_map_page_blocks()
5678 * might've skipped some
5680 if (ocfs2_should_order_data(inode
)) {
5681 ret
= walk_page_buffers(handle
,
5684 ocfs2_ordered_zero_func
);
5688 ret
= walk_page_buffers(handle
, page_buffers(page
),
5690 ocfs2_writeback_zero_func
);
5696 SetPageUptodate(page
);
5698 flush_dcache_page(page
);
5701 static void ocfs2_zero_cluster_pages(struct inode
*inode
, loff_t start
,
5702 loff_t end
, struct page
**pages
,
5703 int numpages
, u64 phys
, handle_t
*handle
)
5707 unsigned int from
, to
= PAGE_CACHE_SIZE
;
5708 struct super_block
*sb
= inode
->i_sb
;
5710 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
5715 to
= PAGE_CACHE_SIZE
;
5716 for(i
= 0; i
< numpages
; i
++) {
5719 from
= start
& (PAGE_CACHE_SIZE
- 1);
5720 if ((end
>> PAGE_CACHE_SHIFT
) == page
->index
)
5721 to
= end
& (PAGE_CACHE_SIZE
- 1);
5723 BUG_ON(from
> PAGE_CACHE_SIZE
);
5724 BUG_ON(to
> PAGE_CACHE_SIZE
);
5726 ocfs2_map_and_dirty_page(inode
, handle
, from
, to
, page
, 1,
5729 start
= (page
->index
+ 1) << PAGE_CACHE_SHIFT
;
5733 ocfs2_unlock_and_free_pages(pages
, numpages
);
5736 static int ocfs2_grab_eof_pages(struct inode
*inode
, loff_t start
, loff_t end
,
5737 struct page
**pages
, int *num
)
5739 int numpages
, ret
= 0;
5740 struct super_block
*sb
= inode
->i_sb
;
5741 struct address_space
*mapping
= inode
->i_mapping
;
5742 unsigned long index
;
5743 loff_t last_page_bytes
;
5745 BUG_ON(start
> end
);
5747 BUG_ON(start
>> OCFS2_SB(sb
)->s_clustersize_bits
!=
5748 (end
- 1) >> OCFS2_SB(sb
)->s_clustersize_bits
);
5751 last_page_bytes
= PAGE_ALIGN(end
);
5752 index
= start
>> PAGE_CACHE_SHIFT
;
5754 pages
[numpages
] = grab_cache_page(mapping
, index
);
5755 if (!pages
[numpages
]) {
5763 } while (index
< (last_page_bytes
>> PAGE_CACHE_SHIFT
));
5768 ocfs2_unlock_and_free_pages(pages
, numpages
);
5778 * Zero the area past i_size but still within an allocated
5779 * cluster. This avoids exposing nonzero data on subsequent file
5782 * We need to call this before i_size is updated on the inode because
5783 * otherwise block_write_full_page() will skip writeout of pages past
5784 * i_size. The new_i_size parameter is passed for this reason.
5786 int ocfs2_zero_range_for_truncate(struct inode
*inode
, handle_t
*handle
,
5787 u64 range_start
, u64 range_end
)
5789 int ret
= 0, numpages
;
5790 struct page
**pages
= NULL
;
5792 unsigned int ext_flags
;
5793 struct super_block
*sb
= inode
->i_sb
;
5796 * File systems which don't support sparse files zero on every
5799 if (!ocfs2_sparse_alloc(OCFS2_SB(sb
)))
5802 pages
= kcalloc(ocfs2_pages_per_cluster(sb
),
5803 sizeof(struct page
*), GFP_NOFS
);
5804 if (pages
== NULL
) {
5810 if (range_start
== range_end
)
5813 ret
= ocfs2_extent_map_get_blocks(inode
,
5814 range_start
>> sb
->s_blocksize_bits
,
5815 &phys
, NULL
, &ext_flags
);
5822 * Tail is a hole, or is marked unwritten. In either case, we
5823 * can count on read and write to return/push zero's.
5825 if (phys
== 0 || ext_flags
& OCFS2_EXT_UNWRITTEN
)
5828 ret
= ocfs2_grab_eof_pages(inode
, range_start
, range_end
, pages
,
5835 ocfs2_zero_cluster_pages(inode
, range_start
, range_end
, pages
,
5836 numpages
, phys
, handle
);
5839 * Initiate writeout of the pages we zero'd here. We don't
5840 * wait on them - the truncate_inode_pages() call later will
5843 ret
= do_sync_mapping_range(inode
->i_mapping
, range_start
,
5844 range_end
- 1, SYNC_FILE_RANGE_WRITE
);
5855 static void ocfs2_zero_dinode_id2(struct inode
*inode
, struct ocfs2_dinode
*di
)
5857 unsigned int blocksize
= 1 << inode
->i_sb
->s_blocksize_bits
;
5859 memset(&di
->id2
, 0, blocksize
- offsetof(struct ocfs2_dinode
, id2
));
5862 void ocfs2_dinode_new_extent_list(struct inode
*inode
,
5863 struct ocfs2_dinode
*di
)
5865 ocfs2_zero_dinode_id2(inode
, di
);
5866 di
->id2
.i_list
.l_tree_depth
= 0;
5867 di
->id2
.i_list
.l_next_free_rec
= 0;
5868 di
->id2
.i_list
.l_count
= cpu_to_le16(ocfs2_extent_recs_per_inode(inode
->i_sb
));
5871 void ocfs2_set_inode_data_inline(struct inode
*inode
, struct ocfs2_dinode
*di
)
5873 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
5874 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
5876 spin_lock(&oi
->ip_lock
);
5877 oi
->ip_dyn_features
|= OCFS2_INLINE_DATA_FL
;
5878 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
5879 spin_unlock(&oi
->ip_lock
);
5882 * We clear the entire i_data structure here so that all
5883 * fields can be properly initialized.
5885 ocfs2_zero_dinode_id2(inode
, di
);
5887 idata
->id_count
= cpu_to_le16(ocfs2_max_inline_data(inode
->i_sb
));
5890 int ocfs2_convert_inline_data_to_extents(struct inode
*inode
,
5891 struct buffer_head
*di_bh
)
5893 int ret
, i
, has_data
, num_pages
= 0;
5895 u64
uninitialized_var(block
);
5896 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
5897 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5898 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
5899 struct ocfs2_alloc_context
*data_ac
= NULL
;
5900 struct page
**pages
= NULL
;
5901 loff_t end
= osb
->s_clustersize
;
5903 has_data
= i_size_read(inode
) ? 1 : 0;
5906 pages
= kcalloc(ocfs2_pages_per_cluster(osb
->sb
),
5907 sizeof(struct page
*), GFP_NOFS
);
5908 if (pages
== NULL
) {
5914 ret
= ocfs2_reserve_clusters(osb
, 1, &data_ac
);
5921 handle
= ocfs2_start_trans(osb
, OCFS2_INLINE_TO_EXTENTS_CREDITS
);
5922 if (IS_ERR(handle
)) {
5923 ret
= PTR_ERR(handle
);
5928 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
5929 OCFS2_JOURNAL_ACCESS_WRITE
);
5937 unsigned int page_end
;
5940 ret
= ocfs2_claim_clusters(osb
, handle
, data_ac
, 1, &bit_off
,
5948 * Save two copies, one for insert, and one that can
5949 * be changed by ocfs2_map_and_dirty_page() below.
5951 block
= phys
= ocfs2_clusters_to_blocks(inode
->i_sb
, bit_off
);
5954 * Non sparse file systems zero on extend, so no need
5957 if (!ocfs2_sparse_alloc(osb
) &&
5958 PAGE_CACHE_SIZE
< osb
->s_clustersize
)
5959 end
= PAGE_CACHE_SIZE
;
5961 ret
= ocfs2_grab_eof_pages(inode
, 0, end
, pages
, &num_pages
);
5968 * This should populate the 1st page for us and mark
5971 ret
= ocfs2_read_inline_data(inode
, pages
[0], di_bh
);
5977 page_end
= PAGE_CACHE_SIZE
;
5978 if (PAGE_CACHE_SIZE
> osb
->s_clustersize
)
5979 page_end
= osb
->s_clustersize
;
5981 for (i
= 0; i
< num_pages
; i
++)
5982 ocfs2_map_and_dirty_page(inode
, handle
, 0, page_end
,
5983 pages
[i
], i
> 0, &phys
);
5986 spin_lock(&oi
->ip_lock
);
5987 oi
->ip_dyn_features
&= ~OCFS2_INLINE_DATA_FL
;
5988 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
5989 spin_unlock(&oi
->ip_lock
);
5991 ocfs2_dinode_new_extent_list(inode
, di
);
5993 ocfs2_journal_dirty(handle
, di_bh
);
5997 * An error at this point should be extremely rare. If
5998 * this proves to be false, we could always re-build
5999 * the in-inode data from our pages.
6001 ret
= ocfs2_insert_extent(osb
, handle
, inode
, di_bh
,
6002 0, block
, 1, 0, NULL
);
6008 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
6012 ocfs2_commit_trans(osb
, handle
);
6016 ocfs2_free_alloc_context(data_ac
);
6020 ocfs2_unlock_and_free_pages(pages
, num_pages
);
6028 * It is expected, that by the time you call this function,
6029 * inode->i_size and fe->i_size have been adjusted.
6031 * WARNING: This will kfree the truncate context
6033 int ocfs2_commit_truncate(struct ocfs2_super
*osb
,
6034 struct inode
*inode
,
6035 struct buffer_head
*fe_bh
,
6036 struct ocfs2_truncate_context
*tc
)
6038 int status
, i
, credits
, tl_sem
= 0;
6039 u32 clusters_to_del
, new_highest_cpos
, range
;
6040 struct ocfs2_extent_list
*el
;
6041 handle_t
*handle
= NULL
;
6042 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6043 struct ocfs2_path
*path
= NULL
;
6047 new_highest_cpos
= ocfs2_clusters_for_bytes(osb
->sb
,
6048 i_size_read(inode
));
6050 path
= ocfs2_new_inode_path(fe_bh
);
6057 ocfs2_extent_map_trunc(inode
, new_highest_cpos
);
6061 * Check that we still have allocation to delete.
6063 if (OCFS2_I(inode
)->ip_clusters
== 0) {
6069 * Truncate always works against the rightmost tree branch.
6071 status
= ocfs2_find_path(inode
, path
, UINT_MAX
);
6077 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6078 OCFS2_I(inode
)->ip_clusters
, path
->p_tree_depth
);
6081 * By now, el will point to the extent list on the bottom most
6082 * portion of this tree. Only the tail record is considered in
6085 * We handle the following cases, in order:
6086 * - empty extent: delete the remaining branch
6087 * - remove the entire record
6088 * - remove a partial record
6089 * - no record needs to be removed (truncate has completed)
6091 el
= path_leaf_el(path
);
6092 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
6093 ocfs2_error(inode
->i_sb
,
6094 "Inode %llu has empty extent block at %llu\n",
6095 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
6096 (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
6101 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
6102 range
= le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
6103 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
6104 if (i
== 0 && ocfs2_is_empty_extent(&el
->l_recs
[i
])) {
6105 clusters_to_del
= 0;
6106 } else if (le32_to_cpu(el
->l_recs
[i
].e_cpos
) >= new_highest_cpos
) {
6107 clusters_to_del
= ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
6108 } else if (range
> new_highest_cpos
) {
6109 clusters_to_del
= (ocfs2_rec_clusters(el
, &el
->l_recs
[i
]) +
6110 le32_to_cpu(el
->l_recs
[i
].e_cpos
)) -
6117 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6118 clusters_to_del
, (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
6120 mutex_lock(&tl_inode
->i_mutex
);
6122 /* ocfs2_truncate_log_needs_flush guarantees us at least one
6123 * record is free for use. If there isn't any, we flush to get
6124 * an empty truncate log. */
6125 if (ocfs2_truncate_log_needs_flush(osb
)) {
6126 status
= __ocfs2_flush_truncate_log(osb
);
6133 credits
= ocfs2_calc_tree_trunc_credits(osb
->sb
, clusters_to_del
,
6134 (struct ocfs2_dinode
*)fe_bh
->b_data
,
6136 handle
= ocfs2_start_trans(osb
, credits
);
6137 if (IS_ERR(handle
)) {
6138 status
= PTR_ERR(handle
);
6144 status
= ocfs2_do_truncate(osb
, clusters_to_del
, inode
, fe_bh
, handle
,
6151 mutex_unlock(&tl_inode
->i_mutex
);
6154 ocfs2_commit_trans(osb
, handle
);
6157 ocfs2_reinit_path(path
, 1);
6160 * The check above will catch the case where we've truncated
6161 * away all allocation.
6167 ocfs2_schedule_truncate_log_flush(osb
, 1);
6170 mutex_unlock(&tl_inode
->i_mutex
);
6173 ocfs2_commit_trans(osb
, handle
);
6175 ocfs2_run_deallocs(osb
, &tc
->tc_dealloc
);
6177 ocfs2_free_path(path
);
6179 /* This will drop the ext_alloc cluster lock for us */
6180 ocfs2_free_truncate_context(tc
);
6187 * Expects the inode to already be locked.
6189 int ocfs2_prepare_truncate(struct ocfs2_super
*osb
,
6190 struct inode
*inode
,
6191 struct buffer_head
*fe_bh
,
6192 struct ocfs2_truncate_context
**tc
)
6195 unsigned int new_i_clusters
;
6196 struct ocfs2_dinode
*fe
;
6197 struct ocfs2_extent_block
*eb
;
6198 struct buffer_head
*last_eb_bh
= NULL
;
6204 new_i_clusters
= ocfs2_clusters_for_bytes(osb
->sb
,
6205 i_size_read(inode
));
6206 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
6208 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6209 "%llu\n", le32_to_cpu(fe
->i_clusters
), new_i_clusters
,
6210 (unsigned long long)le64_to_cpu(fe
->i_size
));
6212 *tc
= kzalloc(sizeof(struct ocfs2_truncate_context
), GFP_KERNEL
);
6218 ocfs2_init_dealloc_ctxt(&(*tc
)->tc_dealloc
);
6220 if (fe
->id2
.i_list
.l_tree_depth
) {
6221 status
= ocfs2_read_block(osb
, le64_to_cpu(fe
->i_last_eb_blk
),
6222 &last_eb_bh
, OCFS2_BH_CACHED
, inode
);
6227 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
6228 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
6229 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
6237 (*tc
)->tc_last_eb_bh
= last_eb_bh
;
6243 ocfs2_free_truncate_context(*tc
);
6251 * 'start' is inclusive, 'end' is not.
6253 int ocfs2_truncate_inline(struct inode
*inode
, struct buffer_head
*di_bh
,
6254 unsigned int start
, unsigned int end
, int trunc
)
6257 unsigned int numbytes
;
6259 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
6260 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
6261 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
6263 if (end
> i_size_read(inode
))
6264 end
= i_size_read(inode
);
6266 BUG_ON(start
>= end
);
6268 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) ||
6269 !(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
) ||
6270 !ocfs2_supports_inline_data(osb
)) {
6271 ocfs2_error(inode
->i_sb
,
6272 "Inline data flags for inode %llu don't agree! "
6273 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
6274 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
6275 le16_to_cpu(di
->i_dyn_features
),
6276 OCFS2_I(inode
)->ip_dyn_features
,
6277 osb
->s_feature_incompat
);
6282 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
6283 if (IS_ERR(handle
)) {
6284 ret
= PTR_ERR(handle
);
6289 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
6290 OCFS2_JOURNAL_ACCESS_WRITE
);
6296 numbytes
= end
- start
;
6297 memset(idata
->id_data
+ start
, 0, numbytes
);
6300 * No need to worry about the data page here - it's been
6301 * truncated already and inline data doesn't need it for
6302 * pushing zero's to disk, so we'll let readpage pick it up
6306 i_size_write(inode
, start
);
6307 di
->i_size
= cpu_to_le64(start
);
6310 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
6311 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
6313 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
6314 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
6316 ocfs2_journal_dirty(handle
, di_bh
);
6319 ocfs2_commit_trans(osb
, handle
);
6325 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
)
6328 * The caller is responsible for completing deallocation
6329 * before freeing the context.
6331 if (tc
->tc_dealloc
.c_first_suballocator
!= NULL
)
6333 "Truncate completion has non-empty dealloc context\n");
6335 if (tc
->tc_last_eb_bh
)
6336 brelse(tc
->tc_last_eb_bh
);