Revert "ACPI: EC: Handle IRQ storm on Acer laptops"
[wrt350n-kernel.git] / include / linux / ipmi_smi.h
blob6e8cec50338000c31748bd1a8e5d4b28e26820cf
1 /*
2 * ipmi_smi.h
4 * MontaVista IPMI system management interface
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
8 * source@mvista.com
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #ifndef __LINUX_IPMI_SMI_H
35 #define __LINUX_IPMI_SMI_H
37 #include <linux/ipmi_msgdefs.h>
38 #include <linux/proc_fs.h>
39 #include <linux/module.h>
40 #include <linux/device.h>
41 #include <linux/platform_device.h>
42 #include <linux/ipmi_smi.h>
44 /* This files describes the interface for IPMI system management interface
45 drivers to bind into the IPMI message handler. */
47 /* Structure for the low-level drivers. */
48 typedef struct ipmi_smi *ipmi_smi_t;
51 * Messages to/from the lower layer. The smi interface will take one
52 * of these to send. After the send has occurred and a response has
53 * been received, it will report this same data structure back up to
54 * the upper layer. If an error occurs, it should fill in the
55 * response with an error code in the completion code location. When
56 * asynchronous data is received, one of these is allocated, the
57 * data_size is set to zero and the response holds the data from the
58 * get message or get event command that the interface initiated.
59 * Note that it is the interfaces responsibility to detect
60 * asynchronous data and messages and request them from the
61 * interface.
63 struct ipmi_smi_msg
65 struct list_head link;
67 long msgid;
68 void *user_data;
70 int data_size;
71 unsigned char data[IPMI_MAX_MSG_LENGTH];
73 int rsp_size;
74 unsigned char rsp[IPMI_MAX_MSG_LENGTH];
76 /* Will be called when the system is done with the message
77 (presumably to free it). */
78 void (*done)(struct ipmi_smi_msg *msg);
81 struct ipmi_smi_handlers
83 struct module *owner;
85 /* The low-level interface cannot start sending messages to
86 the upper layer until this function is called. This may
87 not be NULL, the lower layer must take the interface from
88 this call. */
89 int (*start_processing)(void *send_info,
90 ipmi_smi_t new_intf);
92 /* Called to enqueue an SMI message to be sent. This
93 operation is not allowed to fail. If an error occurs, it
94 should report back the error in a received message. It may
95 do this in the current call context, since no write locks
96 are held when this is run. If the priority is > 0, the
97 message will go into a high-priority queue and be sent
98 first. Otherwise, it goes into a normal-priority queue. */
99 void (*sender)(void *send_info,
100 struct ipmi_smi_msg *msg,
101 int priority);
103 /* Called by the upper layer to request that we try to get
104 events from the BMC we are attached to. */
105 void (*request_events)(void *send_info);
107 /* Called when the interface should go into "run to
108 completion" mode. If this call sets the value to true, the
109 interface should make sure that all messages are flushed
110 out and that none are pending, and any new requests are run
111 to completion immediately. */
112 void (*set_run_to_completion)(void *send_info, int run_to_completion);
114 /* Called to poll for work to do. This is so upper layers can
115 poll for operations during things like crash dumps. */
116 void (*poll)(void *send_info);
118 /* Enable/disable firmware maintenance mode. Note that this
119 is *not* the modes defined, this is simply an on/off
120 setting. The message handler does the mode handling. Note
121 that this is called from interrupt context, so it cannot
122 block. */
123 void (*set_maintenance_mode)(void *send_info, int enable);
125 /* Tell the handler that we are using it/not using it. The
126 message handler get the modules that this handler belongs
127 to; this function lets the SMI claim any modules that it
128 uses. These may be NULL if this is not required. */
129 int (*inc_usecount)(void *send_info);
130 void (*dec_usecount)(void *send_info);
133 struct ipmi_device_id {
134 unsigned char device_id;
135 unsigned char device_revision;
136 unsigned char firmware_revision_1;
137 unsigned char firmware_revision_2;
138 unsigned char ipmi_version;
139 unsigned char additional_device_support;
140 unsigned int manufacturer_id;
141 unsigned int product_id;
142 unsigned char aux_firmware_revision[4];
143 unsigned int aux_firmware_revision_set : 1;
146 #define ipmi_version_major(v) ((v)->ipmi_version & 0xf)
147 #define ipmi_version_minor(v) ((v)->ipmi_version >> 4)
149 /* Take a pointer to a raw data buffer and a length and extract device
150 id information from it. The first byte of data must point to the
151 netfn << 2, the data should be of the format:
152 netfn << 2, cmd, completion code, data
153 as normally comes from a device interface. */
154 static inline int ipmi_demangle_device_id(const unsigned char *data,
155 unsigned int data_len,
156 struct ipmi_device_id *id)
158 if (data_len < 9)
159 return -EINVAL;
160 if (data[0] != IPMI_NETFN_APP_RESPONSE << 2 ||
161 data[1] != IPMI_GET_DEVICE_ID_CMD)
162 /* Strange, didn't get the response we expected. */
163 return -EINVAL;
164 if (data[2] != 0)
165 /* That's odd, it shouldn't be able to fail. */
166 return -EINVAL;
168 data += 3;
169 data_len -= 3;
170 id->device_id = data[0];
171 id->device_revision = data[1];
172 id->firmware_revision_1 = data[2];
173 id->firmware_revision_2 = data[3];
174 id->ipmi_version = data[4];
175 id->additional_device_support = data[5];
176 if (data_len >= 11) {
177 id->manufacturer_id = (data[6] | (data[7] << 8) |
178 (data[8] << 16));
179 id->product_id = data[9] | (data[10] << 8);
180 } else {
181 id->manufacturer_id = 0;
182 id->product_id = 0;
184 if (data_len >= 15) {
185 memcpy(id->aux_firmware_revision, data+11, 4);
186 id->aux_firmware_revision_set = 1;
187 } else
188 id->aux_firmware_revision_set = 0;
190 return 0;
193 /* Add a low-level interface to the IPMI driver. Note that if the
194 interface doesn't know its slave address, it should pass in zero.
195 The low-level interface should not deliver any messages to the
196 upper layer until the start_processing() function in the handlers
197 is called, and the lower layer must get the interface from that
198 call. */
199 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
200 void *send_info,
201 struct ipmi_device_id *device_id,
202 struct device *dev,
203 const char *sysfs_name,
204 unsigned char slave_addr);
207 * Remove a low-level interface from the IPMI driver. This will
208 * return an error if the interface is still in use by a user.
210 int ipmi_unregister_smi(ipmi_smi_t intf);
213 * The lower layer reports received messages through this interface.
214 * The data_size should be zero if this is an asyncronous message. If
215 * the lower layer gets an error sending a message, it should format
216 * an error response in the message response.
218 void ipmi_smi_msg_received(ipmi_smi_t intf,
219 struct ipmi_smi_msg *msg);
221 /* The lower layer received a watchdog pre-timeout on interface. */
222 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf);
224 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void);
225 static inline void ipmi_free_smi_msg(struct ipmi_smi_msg *msg)
227 msg->done(msg);
230 /* Allow the lower layer to add things to the proc filesystem
231 directory for this interface. Note that the entry will
232 automatically be dstroyed when the interface is destroyed. */
233 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
234 read_proc_t *read_proc, write_proc_t *write_proc,
235 void *data, struct module *owner);
237 #endif /* __LINUX_IPMI_SMI_H */