Revert "ACPI: EC: Handle IRQ storm on Acer laptops"
[wrt350n-kernel.git] / mm / dmapool.c
blob34aaac451a96124d163a99397af386ecb4fc6a4c
1 /*
2 * DMA Pool allocator
4 * Copyright 2001 David Brownell
5 * Copyright 2007 Intel Corporation
6 * Author: Matthew Wilcox <willy@linux.intel.com>
8 * This software may be redistributed and/or modified under the terms of
9 * the GNU General Public License ("GPL") version 2 as published by the
10 * Free Software Foundation.
12 * This allocator returns small blocks of a given size which are DMA-able by
13 * the given device. It uses the dma_alloc_coherent page allocator to get
14 * new pages, then splits them up into blocks of the required size.
15 * Many older drivers still have their own code to do this.
17 * The current design of this allocator is fairly simple. The pool is
18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19 * allocated pages. Each page in the page_list is split into blocks of at
20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
21 * list of free blocks within the page. Used blocks aren't tracked, but we
22 * keep a count of how many are currently allocated from each page.
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/poison.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/types.h>
38 #include <linux/wait.h>
40 struct dma_pool { /* the pool */
41 struct list_head page_list;
42 spinlock_t lock;
43 size_t size;
44 struct device *dev;
45 size_t allocation;
46 size_t boundary;
47 char name[32];
48 wait_queue_head_t waitq;
49 struct list_head pools;
52 struct dma_page { /* cacheable header for 'allocation' bytes */
53 struct list_head page_list;
54 void *vaddr;
55 dma_addr_t dma;
56 unsigned int in_use;
57 unsigned int offset;
60 #define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000)
62 static DEFINE_MUTEX(pools_lock);
64 static ssize_t
65 show_pools(struct device *dev, struct device_attribute *attr, char *buf)
67 unsigned temp;
68 unsigned size;
69 char *next;
70 struct dma_page *page;
71 struct dma_pool *pool;
73 next = buf;
74 size = PAGE_SIZE;
76 temp = scnprintf(next, size, "poolinfo - 0.1\n");
77 size -= temp;
78 next += temp;
80 mutex_lock(&pools_lock);
81 list_for_each_entry(pool, &dev->dma_pools, pools) {
82 unsigned pages = 0;
83 unsigned blocks = 0;
85 list_for_each_entry(page, &pool->page_list, page_list) {
86 pages++;
87 blocks += page->in_use;
90 /* per-pool info, no real statistics yet */
91 temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
92 pool->name, blocks,
93 pages * (pool->allocation / pool->size),
94 pool->size, pages);
95 size -= temp;
96 next += temp;
98 mutex_unlock(&pools_lock);
100 return PAGE_SIZE - size;
103 static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
106 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
107 * @name: name of pool, for diagnostics
108 * @dev: device that will be doing the DMA
109 * @size: size of the blocks in this pool.
110 * @align: alignment requirement for blocks; must be a power of two
111 * @boundary: returned blocks won't cross this power of two boundary
112 * Context: !in_interrupt()
114 * Returns a dma allocation pool with the requested characteristics, or
115 * null if one can't be created. Given one of these pools, dma_pool_alloc()
116 * may be used to allocate memory. Such memory will all have "consistent"
117 * DMA mappings, accessible by the device and its driver without using
118 * cache flushing primitives. The actual size of blocks allocated may be
119 * larger than requested because of alignment.
121 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
122 * cross that size boundary. This is useful for devices which have
123 * addressing restrictions on individual DMA transfers, such as not crossing
124 * boundaries of 4KBytes.
126 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
127 size_t size, size_t align, size_t boundary)
129 struct dma_pool *retval;
130 size_t allocation;
132 if (align == 0) {
133 align = 1;
134 } else if (align & (align - 1)) {
135 return NULL;
138 if (size == 0) {
139 return NULL;
140 } else if (size < 4) {
141 size = 4;
144 if ((size % align) != 0)
145 size = ALIGN(size, align);
147 allocation = max_t(size_t, size, PAGE_SIZE);
149 if (!boundary) {
150 boundary = allocation;
151 } else if ((boundary < size) || (boundary & (boundary - 1))) {
152 return NULL;
155 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
156 if (!retval)
157 return retval;
159 strlcpy(retval->name, name, sizeof(retval->name));
161 retval->dev = dev;
163 INIT_LIST_HEAD(&retval->page_list);
164 spin_lock_init(&retval->lock);
165 retval->size = size;
166 retval->boundary = boundary;
167 retval->allocation = allocation;
168 init_waitqueue_head(&retval->waitq);
170 if (dev) {
171 int ret;
173 mutex_lock(&pools_lock);
174 if (list_empty(&dev->dma_pools))
175 ret = device_create_file(dev, &dev_attr_pools);
176 else
177 ret = 0;
178 /* note: not currently insisting "name" be unique */
179 if (!ret)
180 list_add(&retval->pools, &dev->dma_pools);
181 else {
182 kfree(retval);
183 retval = NULL;
185 mutex_unlock(&pools_lock);
186 } else
187 INIT_LIST_HEAD(&retval->pools);
189 return retval;
191 EXPORT_SYMBOL(dma_pool_create);
193 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
195 unsigned int offset = 0;
196 unsigned int next_boundary = pool->boundary;
198 do {
199 unsigned int next = offset + pool->size;
200 if (unlikely((next + pool->size) >= next_boundary)) {
201 next = next_boundary;
202 next_boundary += pool->boundary;
204 *(int *)(page->vaddr + offset) = next;
205 offset = next;
206 } while (offset < pool->allocation);
209 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
211 struct dma_page *page;
213 page = kmalloc(sizeof(*page), mem_flags);
214 if (!page)
215 return NULL;
216 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
217 &page->dma, mem_flags);
218 if (page->vaddr) {
219 #ifdef CONFIG_DEBUG_SLAB
220 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
221 #endif
222 pool_initialise_page(pool, page);
223 list_add(&page->page_list, &pool->page_list);
224 page->in_use = 0;
225 page->offset = 0;
226 } else {
227 kfree(page);
228 page = NULL;
230 return page;
233 static inline int is_page_busy(struct dma_page *page)
235 return page->in_use != 0;
238 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
240 dma_addr_t dma = page->dma;
242 #ifdef CONFIG_DEBUG_SLAB
243 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
244 #endif
245 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
246 list_del(&page->page_list);
247 kfree(page);
251 * dma_pool_destroy - destroys a pool of dma memory blocks.
252 * @pool: dma pool that will be destroyed
253 * Context: !in_interrupt()
255 * Caller guarantees that no more memory from the pool is in use,
256 * and that nothing will try to use the pool after this call.
258 void dma_pool_destroy(struct dma_pool *pool)
260 mutex_lock(&pools_lock);
261 list_del(&pool->pools);
262 if (pool->dev && list_empty(&pool->dev->dma_pools))
263 device_remove_file(pool->dev, &dev_attr_pools);
264 mutex_unlock(&pools_lock);
266 while (!list_empty(&pool->page_list)) {
267 struct dma_page *page;
268 page = list_entry(pool->page_list.next,
269 struct dma_page, page_list);
270 if (is_page_busy(page)) {
271 if (pool->dev)
272 dev_err(pool->dev,
273 "dma_pool_destroy %s, %p busy\n",
274 pool->name, page->vaddr);
275 else
276 printk(KERN_ERR
277 "dma_pool_destroy %s, %p busy\n",
278 pool->name, page->vaddr);
279 /* leak the still-in-use consistent memory */
280 list_del(&page->page_list);
281 kfree(page);
282 } else
283 pool_free_page(pool, page);
286 kfree(pool);
288 EXPORT_SYMBOL(dma_pool_destroy);
291 * dma_pool_alloc - get a block of consistent memory
292 * @pool: dma pool that will produce the block
293 * @mem_flags: GFP_* bitmask
294 * @handle: pointer to dma address of block
296 * This returns the kernel virtual address of a currently unused block,
297 * and reports its dma address through the handle.
298 * If such a memory block can't be allocated, %NULL is returned.
300 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
301 dma_addr_t *handle)
303 unsigned long flags;
304 struct dma_page *page;
305 size_t offset;
306 void *retval;
308 spin_lock_irqsave(&pool->lock, flags);
309 restart:
310 list_for_each_entry(page, &pool->page_list, page_list) {
311 if (page->offset < pool->allocation)
312 goto ready;
314 page = pool_alloc_page(pool, GFP_ATOMIC);
315 if (!page) {
316 if (mem_flags & __GFP_WAIT) {
317 DECLARE_WAITQUEUE(wait, current);
319 __set_current_state(TASK_INTERRUPTIBLE);
320 __add_wait_queue(&pool->waitq, &wait);
321 spin_unlock_irqrestore(&pool->lock, flags);
323 schedule_timeout(POOL_TIMEOUT_JIFFIES);
325 spin_lock_irqsave(&pool->lock, flags);
326 __remove_wait_queue(&pool->waitq, &wait);
327 goto restart;
329 retval = NULL;
330 goto done;
333 ready:
334 page->in_use++;
335 offset = page->offset;
336 page->offset = *(int *)(page->vaddr + offset);
337 retval = offset + page->vaddr;
338 *handle = offset + page->dma;
339 #ifdef CONFIG_DEBUG_SLAB
340 memset(retval, POOL_POISON_ALLOCATED, pool->size);
341 #endif
342 done:
343 spin_unlock_irqrestore(&pool->lock, flags);
344 return retval;
346 EXPORT_SYMBOL(dma_pool_alloc);
348 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
350 unsigned long flags;
351 struct dma_page *page;
353 spin_lock_irqsave(&pool->lock, flags);
354 list_for_each_entry(page, &pool->page_list, page_list) {
355 if (dma < page->dma)
356 continue;
357 if (dma < (page->dma + pool->allocation))
358 goto done;
360 page = NULL;
361 done:
362 spin_unlock_irqrestore(&pool->lock, flags);
363 return page;
367 * dma_pool_free - put block back into dma pool
368 * @pool: the dma pool holding the block
369 * @vaddr: virtual address of block
370 * @dma: dma address of block
372 * Caller promises neither device nor driver will again touch this block
373 * unless it is first re-allocated.
375 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
377 struct dma_page *page;
378 unsigned long flags;
379 unsigned int offset;
381 page = pool_find_page(pool, dma);
382 if (!page) {
383 if (pool->dev)
384 dev_err(pool->dev,
385 "dma_pool_free %s, %p/%lx (bad dma)\n",
386 pool->name, vaddr, (unsigned long)dma);
387 else
388 printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
389 pool->name, vaddr, (unsigned long)dma);
390 return;
393 offset = vaddr - page->vaddr;
394 #ifdef CONFIG_DEBUG_SLAB
395 if ((dma - page->dma) != offset) {
396 if (pool->dev)
397 dev_err(pool->dev,
398 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
399 pool->name, vaddr, (unsigned long long)dma);
400 else
401 printk(KERN_ERR
402 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
403 pool->name, vaddr, (unsigned long long)dma);
404 return;
407 unsigned int chain = page->offset;
408 while (chain < pool->allocation) {
409 if (chain != offset) {
410 chain = *(int *)(page->vaddr + chain);
411 continue;
413 if (pool->dev)
414 dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
415 "already free\n", pool->name,
416 (unsigned long long)dma);
417 else
418 printk(KERN_ERR "dma_pool_free %s, dma %Lx "
419 "already free\n", pool->name,
420 (unsigned long long)dma);
421 return;
424 memset(vaddr, POOL_POISON_FREED, pool->size);
425 #endif
427 spin_lock_irqsave(&pool->lock, flags);
428 page->in_use--;
429 *(int *)vaddr = page->offset;
430 page->offset = offset;
431 if (waitqueue_active(&pool->waitq))
432 wake_up_locked(&pool->waitq);
434 * Resist a temptation to do
435 * if (!is_page_busy(page)) pool_free_page(pool, page);
436 * Better have a few empty pages hang around.
438 spin_unlock_irqrestore(&pool->lock, flags);
440 EXPORT_SYMBOL(dma_pool_free);
443 * Managed DMA pool
445 static void dmam_pool_release(struct device *dev, void *res)
447 struct dma_pool *pool = *(struct dma_pool **)res;
449 dma_pool_destroy(pool);
452 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
454 return *(struct dma_pool **)res == match_data;
458 * dmam_pool_create - Managed dma_pool_create()
459 * @name: name of pool, for diagnostics
460 * @dev: device that will be doing the DMA
461 * @size: size of the blocks in this pool.
462 * @align: alignment requirement for blocks; must be a power of two
463 * @allocation: returned blocks won't cross this boundary (or zero)
465 * Managed dma_pool_create(). DMA pool created with this function is
466 * automatically destroyed on driver detach.
468 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
469 size_t size, size_t align, size_t allocation)
471 struct dma_pool **ptr, *pool;
473 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
474 if (!ptr)
475 return NULL;
477 pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
478 if (pool)
479 devres_add(dev, ptr);
480 else
481 devres_free(ptr);
483 return pool;
485 EXPORT_SYMBOL(dmam_pool_create);
488 * dmam_pool_destroy - Managed dma_pool_destroy()
489 * @pool: dma pool that will be destroyed
491 * Managed dma_pool_destroy().
493 void dmam_pool_destroy(struct dma_pool *pool)
495 struct device *dev = pool->dev;
497 dma_pool_destroy(pool);
498 WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
500 EXPORT_SYMBOL(dmam_pool_destroy);