Revert "ACPI: EC: Handle IRQ storm on Acer laptops"
[wrt350n-kernel.git] / net / ipv4 / fib_frontend.c
blob86ff2711fc957977f179da841a0ffc3b698e75ac
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * IPv4 Forwarding Information Base: FIB frontend.
8 * Version: $Id: fib_frontend.c,v 1.26 2001/10/31 21:55:54 davem Exp $
10 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/module.h>
19 #include <asm/uaccess.h>
20 #include <asm/system.h>
21 #include <linux/bitops.h>
22 #include <linux/capability.h>
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/string.h>
27 #include <linux/socket.h>
28 #include <linux/sockios.h>
29 #include <linux/errno.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/inetdevice.h>
33 #include <linux/netdevice.h>
34 #include <linux/if_addr.h>
35 #include <linux/if_arp.h>
36 #include <linux/skbuff.h>
37 #include <linux/init.h>
38 #include <linux/list.h>
40 #include <net/ip.h>
41 #include <net/protocol.h>
42 #include <net/route.h>
43 #include <net/tcp.h>
44 #include <net/sock.h>
45 #include <net/icmp.h>
46 #include <net/arp.h>
47 #include <net/ip_fib.h>
48 #include <net/rtnetlink.h>
50 #ifndef CONFIG_IP_MULTIPLE_TABLES
52 static int __net_init fib4_rules_init(struct net *net)
54 struct fib_table *local_table, *main_table;
56 local_table = fib_hash_table(RT_TABLE_LOCAL);
57 if (local_table == NULL)
58 return -ENOMEM;
60 main_table = fib_hash_table(RT_TABLE_MAIN);
61 if (main_table == NULL)
62 goto fail;
64 hlist_add_head_rcu(&local_table->tb_hlist,
65 &net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX]);
66 hlist_add_head_rcu(&main_table->tb_hlist,
67 &net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]);
68 return 0;
70 fail:
71 kfree(local_table);
72 return -ENOMEM;
74 #else
76 struct fib_table *fib_new_table(struct net *net, u32 id)
78 struct fib_table *tb;
79 unsigned int h;
81 if (id == 0)
82 id = RT_TABLE_MAIN;
83 tb = fib_get_table(net, id);
84 if (tb)
85 return tb;
87 tb = fib_hash_table(id);
88 if (!tb)
89 return NULL;
90 h = id & (FIB_TABLE_HASHSZ - 1);
91 hlist_add_head_rcu(&tb->tb_hlist, &net->ipv4.fib_table_hash[h]);
92 return tb;
95 struct fib_table *fib_get_table(struct net *net, u32 id)
97 struct fib_table *tb;
98 struct hlist_node *node;
99 struct hlist_head *head;
100 unsigned int h;
102 if (id == 0)
103 id = RT_TABLE_MAIN;
104 h = id & (FIB_TABLE_HASHSZ - 1);
106 rcu_read_lock();
107 head = &net->ipv4.fib_table_hash[h];
108 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
109 if (tb->tb_id == id) {
110 rcu_read_unlock();
111 return tb;
114 rcu_read_unlock();
115 return NULL;
117 #endif /* CONFIG_IP_MULTIPLE_TABLES */
119 void fib_select_default(struct net *net,
120 const struct flowi *flp, struct fib_result *res)
122 struct fib_table *tb;
123 int table = RT_TABLE_MAIN;
124 #ifdef CONFIG_IP_MULTIPLE_TABLES
125 if (res->r == NULL || res->r->action != FR_ACT_TO_TBL)
126 return;
127 table = res->r->table;
128 #endif
129 tb = fib_get_table(net, table);
130 if (FIB_RES_GW(*res) && FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
131 tb->tb_select_default(tb, flp, res);
134 static void fib_flush(struct net *net)
136 int flushed = 0;
137 struct fib_table *tb;
138 struct hlist_node *node;
139 struct hlist_head *head;
140 unsigned int h;
142 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
143 head = &net->ipv4.fib_table_hash[h];
144 hlist_for_each_entry(tb, node, head, tb_hlist)
145 flushed += tb->tb_flush(tb);
148 if (flushed)
149 rt_cache_flush(-1);
153 * Find the first device with a given source address.
156 struct net_device * ip_dev_find(struct net *net, __be32 addr)
158 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = addr } } };
159 struct fib_result res;
160 struct net_device *dev = NULL;
161 struct fib_table *local_table;
163 #ifdef CONFIG_IP_MULTIPLE_TABLES
164 res.r = NULL;
165 #endif
167 local_table = fib_get_table(net, RT_TABLE_LOCAL);
168 if (!local_table || local_table->tb_lookup(local_table, &fl, &res))
169 return NULL;
170 if (res.type != RTN_LOCAL)
171 goto out;
172 dev = FIB_RES_DEV(res);
174 if (dev)
175 dev_hold(dev);
176 out:
177 fib_res_put(&res);
178 return dev;
182 * Find address type as if only "dev" was present in the system. If
183 * on_dev is NULL then all interfaces are taken into consideration.
185 static inline unsigned __inet_dev_addr_type(struct net *net,
186 const struct net_device *dev,
187 __be32 addr)
189 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = addr } } };
190 struct fib_result res;
191 unsigned ret = RTN_BROADCAST;
192 struct fib_table *local_table;
194 if (ipv4_is_zeronet(addr) || ipv4_is_lbcast(addr))
195 return RTN_BROADCAST;
196 if (ipv4_is_multicast(addr))
197 return RTN_MULTICAST;
199 #ifdef CONFIG_IP_MULTIPLE_TABLES
200 res.r = NULL;
201 #endif
203 local_table = fib_get_table(net, RT_TABLE_LOCAL);
204 if (local_table) {
205 ret = RTN_UNICAST;
206 if (!local_table->tb_lookup(local_table, &fl, &res)) {
207 if (!dev || dev == res.fi->fib_dev)
208 ret = res.type;
209 fib_res_put(&res);
212 return ret;
215 unsigned int inet_addr_type(struct net *net, __be32 addr)
217 return __inet_dev_addr_type(net, NULL, addr);
220 unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
221 __be32 addr)
223 return __inet_dev_addr_type(net, dev, addr);
226 /* Given (packet source, input interface) and optional (dst, oif, tos):
227 - (main) check, that source is valid i.e. not broadcast or our local
228 address.
229 - figure out what "logical" interface this packet arrived
230 and calculate "specific destination" address.
231 - check, that packet arrived from expected physical interface.
234 int fib_validate_source(__be32 src, __be32 dst, u8 tos, int oif,
235 struct net_device *dev, __be32 *spec_dst, u32 *itag)
237 struct in_device *in_dev;
238 struct flowi fl = { .nl_u = { .ip4_u =
239 { .daddr = src,
240 .saddr = dst,
241 .tos = tos } },
242 .iif = oif };
243 struct fib_result res;
244 int no_addr, rpf;
245 int ret;
246 struct net *net;
248 no_addr = rpf = 0;
249 rcu_read_lock();
250 in_dev = __in_dev_get_rcu(dev);
251 if (in_dev) {
252 no_addr = in_dev->ifa_list == NULL;
253 rpf = IN_DEV_RPFILTER(in_dev);
255 rcu_read_unlock();
257 if (in_dev == NULL)
258 goto e_inval;
260 net = dev->nd_net;
261 if (fib_lookup(net, &fl, &res))
262 goto last_resort;
263 if (res.type != RTN_UNICAST)
264 goto e_inval_res;
265 *spec_dst = FIB_RES_PREFSRC(res);
266 fib_combine_itag(itag, &res);
267 #ifdef CONFIG_IP_ROUTE_MULTIPATH
268 if (FIB_RES_DEV(res) == dev || res.fi->fib_nhs > 1)
269 #else
270 if (FIB_RES_DEV(res) == dev)
271 #endif
273 ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
274 fib_res_put(&res);
275 return ret;
277 fib_res_put(&res);
278 if (no_addr)
279 goto last_resort;
280 if (rpf)
281 goto e_inval;
282 fl.oif = dev->ifindex;
284 ret = 0;
285 if (fib_lookup(net, &fl, &res) == 0) {
286 if (res.type == RTN_UNICAST) {
287 *spec_dst = FIB_RES_PREFSRC(res);
288 ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
290 fib_res_put(&res);
292 return ret;
294 last_resort:
295 if (rpf)
296 goto e_inval;
297 *spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
298 *itag = 0;
299 return 0;
301 e_inval_res:
302 fib_res_put(&res);
303 e_inval:
304 return -EINVAL;
307 static inline __be32 sk_extract_addr(struct sockaddr *addr)
309 return ((struct sockaddr_in *) addr)->sin_addr.s_addr;
312 static int put_rtax(struct nlattr *mx, int len, int type, u32 value)
314 struct nlattr *nla;
316 nla = (struct nlattr *) ((char *) mx + len);
317 nla->nla_type = type;
318 nla->nla_len = nla_attr_size(4);
319 *(u32 *) nla_data(nla) = value;
321 return len + nla_total_size(4);
324 static int rtentry_to_fib_config(struct net *net, int cmd, struct rtentry *rt,
325 struct fib_config *cfg)
327 __be32 addr;
328 int plen;
330 memset(cfg, 0, sizeof(*cfg));
331 cfg->fc_nlinfo.nl_net = net;
333 if (rt->rt_dst.sa_family != AF_INET)
334 return -EAFNOSUPPORT;
337 * Check mask for validity:
338 * a) it must be contiguous.
339 * b) destination must have all host bits clear.
340 * c) if application forgot to set correct family (AF_INET),
341 * reject request unless it is absolutely clear i.e.
342 * both family and mask are zero.
344 plen = 32;
345 addr = sk_extract_addr(&rt->rt_dst);
346 if (!(rt->rt_flags & RTF_HOST)) {
347 __be32 mask = sk_extract_addr(&rt->rt_genmask);
349 if (rt->rt_genmask.sa_family != AF_INET) {
350 if (mask || rt->rt_genmask.sa_family)
351 return -EAFNOSUPPORT;
354 if (bad_mask(mask, addr))
355 return -EINVAL;
357 plen = inet_mask_len(mask);
360 cfg->fc_dst_len = plen;
361 cfg->fc_dst = addr;
363 if (cmd != SIOCDELRT) {
364 cfg->fc_nlflags = NLM_F_CREATE;
365 cfg->fc_protocol = RTPROT_BOOT;
368 if (rt->rt_metric)
369 cfg->fc_priority = rt->rt_metric - 1;
371 if (rt->rt_flags & RTF_REJECT) {
372 cfg->fc_scope = RT_SCOPE_HOST;
373 cfg->fc_type = RTN_UNREACHABLE;
374 return 0;
377 cfg->fc_scope = RT_SCOPE_NOWHERE;
378 cfg->fc_type = RTN_UNICAST;
380 if (rt->rt_dev) {
381 char *colon;
382 struct net_device *dev;
383 char devname[IFNAMSIZ];
385 if (copy_from_user(devname, rt->rt_dev, IFNAMSIZ-1))
386 return -EFAULT;
388 devname[IFNAMSIZ-1] = 0;
389 colon = strchr(devname, ':');
390 if (colon)
391 *colon = 0;
392 dev = __dev_get_by_name(net, devname);
393 if (!dev)
394 return -ENODEV;
395 cfg->fc_oif = dev->ifindex;
396 if (colon) {
397 struct in_ifaddr *ifa;
398 struct in_device *in_dev = __in_dev_get_rtnl(dev);
399 if (!in_dev)
400 return -ENODEV;
401 *colon = ':';
402 for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next)
403 if (strcmp(ifa->ifa_label, devname) == 0)
404 break;
405 if (ifa == NULL)
406 return -ENODEV;
407 cfg->fc_prefsrc = ifa->ifa_local;
411 addr = sk_extract_addr(&rt->rt_gateway);
412 if (rt->rt_gateway.sa_family == AF_INET && addr) {
413 cfg->fc_gw = addr;
414 if (rt->rt_flags & RTF_GATEWAY &&
415 inet_addr_type(net, addr) == RTN_UNICAST)
416 cfg->fc_scope = RT_SCOPE_UNIVERSE;
419 if (cmd == SIOCDELRT)
420 return 0;
422 if (rt->rt_flags & RTF_GATEWAY && !cfg->fc_gw)
423 return -EINVAL;
425 if (cfg->fc_scope == RT_SCOPE_NOWHERE)
426 cfg->fc_scope = RT_SCOPE_LINK;
428 if (rt->rt_flags & (RTF_MTU | RTF_WINDOW | RTF_IRTT)) {
429 struct nlattr *mx;
430 int len = 0;
432 mx = kzalloc(3 * nla_total_size(4), GFP_KERNEL);
433 if (mx == NULL)
434 return -ENOMEM;
436 if (rt->rt_flags & RTF_MTU)
437 len = put_rtax(mx, len, RTAX_ADVMSS, rt->rt_mtu - 40);
439 if (rt->rt_flags & RTF_WINDOW)
440 len = put_rtax(mx, len, RTAX_WINDOW, rt->rt_window);
442 if (rt->rt_flags & RTF_IRTT)
443 len = put_rtax(mx, len, RTAX_RTT, rt->rt_irtt << 3);
445 cfg->fc_mx = mx;
446 cfg->fc_mx_len = len;
449 return 0;
453 * Handle IP routing ioctl calls. These are used to manipulate the routing tables
456 int ip_rt_ioctl(struct net *net, unsigned int cmd, void __user *arg)
458 struct fib_config cfg;
459 struct rtentry rt;
460 int err;
462 switch (cmd) {
463 case SIOCADDRT: /* Add a route */
464 case SIOCDELRT: /* Delete a route */
465 if (!capable(CAP_NET_ADMIN))
466 return -EPERM;
468 if (copy_from_user(&rt, arg, sizeof(rt)))
469 return -EFAULT;
471 rtnl_lock();
472 err = rtentry_to_fib_config(net, cmd, &rt, &cfg);
473 if (err == 0) {
474 struct fib_table *tb;
476 if (cmd == SIOCDELRT) {
477 tb = fib_get_table(net, cfg.fc_table);
478 if (tb)
479 err = tb->tb_delete(tb, &cfg);
480 else
481 err = -ESRCH;
482 } else {
483 tb = fib_new_table(net, cfg.fc_table);
484 if (tb)
485 err = tb->tb_insert(tb, &cfg);
486 else
487 err = -ENOBUFS;
490 /* allocated by rtentry_to_fib_config() */
491 kfree(cfg.fc_mx);
493 rtnl_unlock();
494 return err;
496 return -EINVAL;
499 const struct nla_policy rtm_ipv4_policy[RTA_MAX+1] = {
500 [RTA_DST] = { .type = NLA_U32 },
501 [RTA_SRC] = { .type = NLA_U32 },
502 [RTA_IIF] = { .type = NLA_U32 },
503 [RTA_OIF] = { .type = NLA_U32 },
504 [RTA_GATEWAY] = { .type = NLA_U32 },
505 [RTA_PRIORITY] = { .type = NLA_U32 },
506 [RTA_PREFSRC] = { .type = NLA_U32 },
507 [RTA_METRICS] = { .type = NLA_NESTED },
508 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
509 [RTA_PROTOINFO] = { .type = NLA_U32 },
510 [RTA_FLOW] = { .type = NLA_U32 },
513 static int rtm_to_fib_config(struct net *net, struct sk_buff *skb,
514 struct nlmsghdr *nlh, struct fib_config *cfg)
516 struct nlattr *attr;
517 int err, remaining;
518 struct rtmsg *rtm;
520 err = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipv4_policy);
521 if (err < 0)
522 goto errout;
524 memset(cfg, 0, sizeof(*cfg));
526 rtm = nlmsg_data(nlh);
527 cfg->fc_dst_len = rtm->rtm_dst_len;
528 cfg->fc_tos = rtm->rtm_tos;
529 cfg->fc_table = rtm->rtm_table;
530 cfg->fc_protocol = rtm->rtm_protocol;
531 cfg->fc_scope = rtm->rtm_scope;
532 cfg->fc_type = rtm->rtm_type;
533 cfg->fc_flags = rtm->rtm_flags;
534 cfg->fc_nlflags = nlh->nlmsg_flags;
536 cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
537 cfg->fc_nlinfo.nlh = nlh;
538 cfg->fc_nlinfo.nl_net = net;
540 if (cfg->fc_type > RTN_MAX) {
541 err = -EINVAL;
542 goto errout;
545 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), remaining) {
546 switch (nla_type(attr)) {
547 case RTA_DST:
548 cfg->fc_dst = nla_get_be32(attr);
549 break;
550 case RTA_OIF:
551 cfg->fc_oif = nla_get_u32(attr);
552 break;
553 case RTA_GATEWAY:
554 cfg->fc_gw = nla_get_be32(attr);
555 break;
556 case RTA_PRIORITY:
557 cfg->fc_priority = nla_get_u32(attr);
558 break;
559 case RTA_PREFSRC:
560 cfg->fc_prefsrc = nla_get_be32(attr);
561 break;
562 case RTA_METRICS:
563 cfg->fc_mx = nla_data(attr);
564 cfg->fc_mx_len = nla_len(attr);
565 break;
566 case RTA_MULTIPATH:
567 cfg->fc_mp = nla_data(attr);
568 cfg->fc_mp_len = nla_len(attr);
569 break;
570 case RTA_FLOW:
571 cfg->fc_flow = nla_get_u32(attr);
572 break;
573 case RTA_TABLE:
574 cfg->fc_table = nla_get_u32(attr);
575 break;
579 return 0;
580 errout:
581 return err;
584 static int inet_rtm_delroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
586 struct net *net = skb->sk->sk_net;
587 struct fib_config cfg;
588 struct fib_table *tb;
589 int err;
591 err = rtm_to_fib_config(net, skb, nlh, &cfg);
592 if (err < 0)
593 goto errout;
595 tb = fib_get_table(net, cfg.fc_table);
596 if (tb == NULL) {
597 err = -ESRCH;
598 goto errout;
601 err = tb->tb_delete(tb, &cfg);
602 errout:
603 return err;
606 static int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
608 struct net *net = skb->sk->sk_net;
609 struct fib_config cfg;
610 struct fib_table *tb;
611 int err;
613 err = rtm_to_fib_config(net, skb, nlh, &cfg);
614 if (err < 0)
615 goto errout;
617 tb = fib_new_table(net, cfg.fc_table);
618 if (tb == NULL) {
619 err = -ENOBUFS;
620 goto errout;
623 err = tb->tb_insert(tb, &cfg);
624 errout:
625 return err;
628 static int inet_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
630 struct net *net = skb->sk->sk_net;
631 unsigned int h, s_h;
632 unsigned int e = 0, s_e;
633 struct fib_table *tb;
634 struct hlist_node *node;
635 struct hlist_head *head;
636 int dumped = 0;
638 if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) &&
639 ((struct rtmsg *) nlmsg_data(cb->nlh))->rtm_flags & RTM_F_CLONED)
640 return ip_rt_dump(skb, cb);
642 s_h = cb->args[0];
643 s_e = cb->args[1];
645 for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
646 e = 0;
647 head = &net->ipv4.fib_table_hash[h];
648 hlist_for_each_entry(tb, node, head, tb_hlist) {
649 if (e < s_e)
650 goto next;
651 if (dumped)
652 memset(&cb->args[2], 0, sizeof(cb->args) -
653 2 * sizeof(cb->args[0]));
654 if (tb->tb_dump(tb, skb, cb) < 0)
655 goto out;
656 dumped = 1;
657 next:
658 e++;
661 out:
662 cb->args[1] = e;
663 cb->args[0] = h;
665 return skb->len;
668 /* Prepare and feed intra-kernel routing request.
669 Really, it should be netlink message, but :-( netlink
670 can be not configured, so that we feed it directly
671 to fib engine. It is legal, because all events occur
672 only when netlink is already locked.
675 static void fib_magic(int cmd, int type, __be32 dst, int dst_len, struct in_ifaddr *ifa)
677 struct net *net = ifa->ifa_dev->dev->nd_net;
678 struct fib_table *tb;
679 struct fib_config cfg = {
680 .fc_protocol = RTPROT_KERNEL,
681 .fc_type = type,
682 .fc_dst = dst,
683 .fc_dst_len = dst_len,
684 .fc_prefsrc = ifa->ifa_local,
685 .fc_oif = ifa->ifa_dev->dev->ifindex,
686 .fc_nlflags = NLM_F_CREATE | NLM_F_APPEND,
687 .fc_nlinfo = {
688 .nl_net = net,
692 if (type == RTN_UNICAST)
693 tb = fib_new_table(net, RT_TABLE_MAIN);
694 else
695 tb = fib_new_table(net, RT_TABLE_LOCAL);
697 if (tb == NULL)
698 return;
700 cfg.fc_table = tb->tb_id;
702 if (type != RTN_LOCAL)
703 cfg.fc_scope = RT_SCOPE_LINK;
704 else
705 cfg.fc_scope = RT_SCOPE_HOST;
707 if (cmd == RTM_NEWROUTE)
708 tb->tb_insert(tb, &cfg);
709 else
710 tb->tb_delete(tb, &cfg);
713 void fib_add_ifaddr(struct in_ifaddr *ifa)
715 struct in_device *in_dev = ifa->ifa_dev;
716 struct net_device *dev = in_dev->dev;
717 struct in_ifaddr *prim = ifa;
718 __be32 mask = ifa->ifa_mask;
719 __be32 addr = ifa->ifa_local;
720 __be32 prefix = ifa->ifa_address&mask;
722 if (ifa->ifa_flags&IFA_F_SECONDARY) {
723 prim = inet_ifa_byprefix(in_dev, prefix, mask);
724 if (prim == NULL) {
725 printk(KERN_WARNING "fib_add_ifaddr: bug: prim == NULL\n");
726 return;
730 fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim);
732 if (!(dev->flags&IFF_UP))
733 return;
735 /* Add broadcast address, if it is explicitly assigned. */
736 if (ifa->ifa_broadcast && ifa->ifa_broadcast != htonl(0xFFFFFFFF))
737 fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
739 if (!ipv4_is_zeronet(prefix) && !(ifa->ifa_flags&IFA_F_SECONDARY) &&
740 (prefix != addr || ifa->ifa_prefixlen < 32)) {
741 fib_magic(RTM_NEWROUTE, dev->flags&IFF_LOOPBACK ? RTN_LOCAL :
742 RTN_UNICAST, prefix, ifa->ifa_prefixlen, prim);
744 /* Add network specific broadcasts, when it takes a sense */
745 if (ifa->ifa_prefixlen < 31) {
746 fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim);
747 fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix|~mask, 32, prim);
752 static void fib_del_ifaddr(struct in_ifaddr *ifa)
754 struct in_device *in_dev = ifa->ifa_dev;
755 struct net_device *dev = in_dev->dev;
756 struct in_ifaddr *ifa1;
757 struct in_ifaddr *prim = ifa;
758 __be32 brd = ifa->ifa_address|~ifa->ifa_mask;
759 __be32 any = ifa->ifa_address&ifa->ifa_mask;
760 #define LOCAL_OK 1
761 #define BRD_OK 2
762 #define BRD0_OK 4
763 #define BRD1_OK 8
764 unsigned ok = 0;
766 if (!(ifa->ifa_flags&IFA_F_SECONDARY))
767 fib_magic(RTM_DELROUTE, dev->flags&IFF_LOOPBACK ? RTN_LOCAL :
768 RTN_UNICAST, any, ifa->ifa_prefixlen, prim);
769 else {
770 prim = inet_ifa_byprefix(in_dev, any, ifa->ifa_mask);
771 if (prim == NULL) {
772 printk(KERN_WARNING "fib_del_ifaddr: bug: prim == NULL\n");
773 return;
777 /* Deletion is more complicated than add.
778 We should take care of not to delete too much :-)
780 Scan address list to be sure that addresses are really gone.
783 for (ifa1 = in_dev->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
784 if (ifa->ifa_local == ifa1->ifa_local)
785 ok |= LOCAL_OK;
786 if (ifa->ifa_broadcast == ifa1->ifa_broadcast)
787 ok |= BRD_OK;
788 if (brd == ifa1->ifa_broadcast)
789 ok |= BRD1_OK;
790 if (any == ifa1->ifa_broadcast)
791 ok |= BRD0_OK;
794 if (!(ok&BRD_OK))
795 fib_magic(RTM_DELROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
796 if (!(ok&BRD1_OK))
797 fib_magic(RTM_DELROUTE, RTN_BROADCAST, brd, 32, prim);
798 if (!(ok&BRD0_OK))
799 fib_magic(RTM_DELROUTE, RTN_BROADCAST, any, 32, prim);
800 if (!(ok&LOCAL_OK)) {
801 fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 32, prim);
803 /* Check, that this local address finally disappeared. */
804 if (inet_addr_type(dev->nd_net, ifa->ifa_local) != RTN_LOCAL) {
805 /* And the last, but not the least thing.
806 We must flush stray FIB entries.
808 First of all, we scan fib_info list searching
809 for stray nexthop entries, then ignite fib_flush.
811 if (fib_sync_down_addr(dev->nd_net, ifa->ifa_local))
812 fib_flush(dev->nd_net);
815 #undef LOCAL_OK
816 #undef BRD_OK
817 #undef BRD0_OK
818 #undef BRD1_OK
821 static void nl_fib_lookup(struct fib_result_nl *frn, struct fib_table *tb )
824 struct fib_result res;
825 struct flowi fl = { .mark = frn->fl_mark,
826 .nl_u = { .ip4_u = { .daddr = frn->fl_addr,
827 .tos = frn->fl_tos,
828 .scope = frn->fl_scope } } };
830 #ifdef CONFIG_IP_MULTIPLE_TABLES
831 res.r = NULL;
832 #endif
834 frn->err = -ENOENT;
835 if (tb) {
836 local_bh_disable();
838 frn->tb_id = tb->tb_id;
839 frn->err = tb->tb_lookup(tb, &fl, &res);
841 if (!frn->err) {
842 frn->prefixlen = res.prefixlen;
843 frn->nh_sel = res.nh_sel;
844 frn->type = res.type;
845 frn->scope = res.scope;
846 fib_res_put(&res);
848 local_bh_enable();
852 static void nl_fib_input(struct sk_buff *skb)
854 struct net *net;
855 struct fib_result_nl *frn;
856 struct nlmsghdr *nlh;
857 struct fib_table *tb;
858 u32 pid;
860 net = skb->sk->sk_net;
861 nlh = nlmsg_hdr(skb);
862 if (skb->len < NLMSG_SPACE(0) || skb->len < nlh->nlmsg_len ||
863 nlh->nlmsg_len < NLMSG_LENGTH(sizeof(*frn)))
864 return;
866 skb = skb_clone(skb, GFP_KERNEL);
867 if (skb == NULL)
868 return;
869 nlh = nlmsg_hdr(skb);
871 frn = (struct fib_result_nl *) NLMSG_DATA(nlh);
872 tb = fib_get_table(net, frn->tb_id_in);
874 nl_fib_lookup(frn, tb);
876 pid = NETLINK_CB(skb).pid; /* pid of sending process */
877 NETLINK_CB(skb).pid = 0; /* from kernel */
878 NETLINK_CB(skb).dst_group = 0; /* unicast */
879 netlink_unicast(net->ipv4.fibnl, skb, pid, MSG_DONTWAIT);
882 static int nl_fib_lookup_init(struct net *net)
884 struct sock *sk;
885 sk = netlink_kernel_create(net, NETLINK_FIB_LOOKUP, 0,
886 nl_fib_input, NULL, THIS_MODULE);
887 if (sk == NULL)
888 return -EAFNOSUPPORT;
889 net->ipv4.fibnl = sk;
890 return 0;
893 static void nl_fib_lookup_exit(struct net *net)
895 netlink_kernel_release(net->ipv4.fibnl);
896 net->ipv4.fibnl = NULL;
899 static void fib_disable_ip(struct net_device *dev, int force)
901 if (fib_sync_down_dev(dev, force))
902 fib_flush(dev->nd_net);
903 rt_cache_flush(0);
904 arp_ifdown(dev);
907 static int fib_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
909 struct in_ifaddr *ifa = (struct in_ifaddr*)ptr;
911 switch (event) {
912 case NETDEV_UP:
913 fib_add_ifaddr(ifa);
914 #ifdef CONFIG_IP_ROUTE_MULTIPATH
915 fib_sync_up(ifa->ifa_dev->dev);
916 #endif
917 rt_cache_flush(-1);
918 break;
919 case NETDEV_DOWN:
920 fib_del_ifaddr(ifa);
921 if (ifa->ifa_dev->ifa_list == NULL) {
922 /* Last address was deleted from this interface.
923 Disable IP.
925 fib_disable_ip(ifa->ifa_dev->dev, 1);
926 } else {
927 rt_cache_flush(-1);
929 break;
931 return NOTIFY_DONE;
934 static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
936 struct net_device *dev = ptr;
937 struct in_device *in_dev = __in_dev_get_rtnl(dev);
939 if (event == NETDEV_UNREGISTER) {
940 fib_disable_ip(dev, 2);
941 return NOTIFY_DONE;
944 if (!in_dev)
945 return NOTIFY_DONE;
947 switch (event) {
948 case NETDEV_UP:
949 for_ifa(in_dev) {
950 fib_add_ifaddr(ifa);
951 } endfor_ifa(in_dev);
952 #ifdef CONFIG_IP_ROUTE_MULTIPATH
953 fib_sync_up(dev);
954 #endif
955 rt_cache_flush(-1);
956 break;
957 case NETDEV_DOWN:
958 fib_disable_ip(dev, 0);
959 break;
960 case NETDEV_CHANGEMTU:
961 case NETDEV_CHANGE:
962 rt_cache_flush(0);
963 break;
965 return NOTIFY_DONE;
968 static struct notifier_block fib_inetaddr_notifier = {
969 .notifier_call =fib_inetaddr_event,
972 static struct notifier_block fib_netdev_notifier = {
973 .notifier_call =fib_netdev_event,
976 static int __net_init ip_fib_net_init(struct net *net)
978 int err;
979 unsigned int i;
981 net->ipv4.fib_table_hash = kzalloc(
982 sizeof(struct hlist_head)*FIB_TABLE_HASHSZ, GFP_KERNEL);
983 if (net->ipv4.fib_table_hash == NULL)
984 return -ENOMEM;
986 for (i = 0; i < FIB_TABLE_HASHSZ; i++)
987 INIT_HLIST_HEAD(&net->ipv4.fib_table_hash[i]);
989 err = fib4_rules_init(net);
990 if (err < 0)
991 goto fail;
992 return 0;
994 fail:
995 kfree(net->ipv4.fib_table_hash);
996 return err;
999 static void __net_exit ip_fib_net_exit(struct net *net)
1001 unsigned int i;
1003 #ifdef CONFIG_IP_MULTIPLE_TABLES
1004 fib4_rules_exit(net);
1005 #endif
1007 for (i = 0; i < FIB_TABLE_HASHSZ; i++) {
1008 struct fib_table *tb;
1009 struct hlist_head *head;
1010 struct hlist_node *node, *tmp;
1012 head = &net->ipv4.fib_table_hash[i];
1013 hlist_for_each_entry_safe(tb, node, tmp, head, tb_hlist) {
1014 hlist_del(node);
1015 tb->tb_flush(tb);
1016 kfree(tb);
1019 kfree(net->ipv4.fib_table_hash);
1022 static int __net_init fib_net_init(struct net *net)
1024 int error;
1026 error = ip_fib_net_init(net);
1027 if (error < 0)
1028 goto out;
1029 error = nl_fib_lookup_init(net);
1030 if (error < 0)
1031 goto out_nlfl;
1032 error = fib_proc_init(net);
1033 if (error < 0)
1034 goto out_proc;
1035 out:
1036 return error;
1038 out_proc:
1039 nl_fib_lookup_exit(net);
1040 out_nlfl:
1041 ip_fib_net_exit(net);
1042 goto out;
1045 static void __net_exit fib_net_exit(struct net *net)
1047 fib_proc_exit(net);
1048 nl_fib_lookup_exit(net);
1049 ip_fib_net_exit(net);
1052 static struct pernet_operations fib_net_ops = {
1053 .init = fib_net_init,
1054 .exit = fib_net_exit,
1057 void __init ip_fib_init(void)
1059 rtnl_register(PF_INET, RTM_NEWROUTE, inet_rtm_newroute, NULL);
1060 rtnl_register(PF_INET, RTM_DELROUTE, inet_rtm_delroute, NULL);
1061 rtnl_register(PF_INET, RTM_GETROUTE, NULL, inet_dump_fib);
1063 register_pernet_subsys(&fib_net_ops);
1064 register_netdevice_notifier(&fib_netdev_notifier);
1065 register_inetaddr_notifier(&fib_inetaddr_notifier);
1067 fib_hash_init();
1070 EXPORT_SYMBOL(inet_addr_type);
1071 EXPORT_SYMBOL(inet_dev_addr_type);
1072 EXPORT_SYMBOL(ip_dev_find);