2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
39 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
40 #include <asm-generic/rtc.h>
44 struct rtc_device
*rtc
;
47 struct resource
*iomem
;
49 void (*wake_on
)(struct device
*);
50 void (*wake_off
)(struct device
*);
55 /* newer hardware extends the original register set */
61 /* both platform and pnp busses use negative numbers for invalid irqs */
62 #define is_valid_irq(n) ((n) >= 0)
64 static const char driver_name
[] = "rtc_cmos";
66 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
67 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
68 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
70 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
72 static inline int is_intr(u8 rtc_intr
)
74 if (!(rtc_intr
& RTC_IRQF
))
76 return rtc_intr
& RTC_IRQMASK
;
79 /*----------------------------------------------------------------*/
81 static int cmos_read_time(struct device
*dev
, struct rtc_time
*t
)
83 /* REVISIT: if the clock has a "century" register, use
84 * that instead of the heuristic in get_rtc_time().
85 * That'll make Y3K compatility (year > 2070) easy!
91 static int cmos_set_time(struct device
*dev
, struct rtc_time
*t
)
93 /* REVISIT: set the "century" register if available
95 * NOTE: this ignores the issue whereby updating the seconds
96 * takes effect exactly 500ms after we write the register.
97 * (Also queueing and other delays before we get this far.)
99 return set_rtc_time(t
);
102 static int cmos_read_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
104 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
105 unsigned char rtc_control
;
107 if (!is_valid_irq(cmos
->irq
))
110 /* Basic alarms only support hour, minute, and seconds fields.
111 * Some also support day and month, for alarms up to a year in
114 t
->time
.tm_mday
= -1;
117 spin_lock_irq(&rtc_lock
);
118 t
->time
.tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
119 t
->time
.tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
120 t
->time
.tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
122 if (cmos
->day_alrm
) {
123 t
->time
.tm_mday
= CMOS_READ(cmos
->day_alrm
);
124 if (!t
->time
.tm_mday
)
125 t
->time
.tm_mday
= -1;
127 if (cmos
->mon_alrm
) {
128 t
->time
.tm_mon
= CMOS_READ(cmos
->mon_alrm
);
134 rtc_control
= CMOS_READ(RTC_CONTROL
);
135 spin_unlock_irq(&rtc_lock
);
137 /* REVISIT this assumes PC style usage: always BCD */
139 if (((unsigned)t
->time
.tm_sec
) < 0x60)
140 t
->time
.tm_sec
= BCD2BIN(t
->time
.tm_sec
);
143 if (((unsigned)t
->time
.tm_min
) < 0x60)
144 t
->time
.tm_min
= BCD2BIN(t
->time
.tm_min
);
147 if (((unsigned)t
->time
.tm_hour
) < 0x24)
148 t
->time
.tm_hour
= BCD2BIN(t
->time
.tm_hour
);
150 t
->time
.tm_hour
= -1;
152 if (cmos
->day_alrm
) {
153 if (((unsigned)t
->time
.tm_mday
) <= 0x31)
154 t
->time
.tm_mday
= BCD2BIN(t
->time
.tm_mday
);
156 t
->time
.tm_mday
= -1;
157 if (cmos
->mon_alrm
) {
158 if (((unsigned)t
->time
.tm_mon
) <= 0x12)
159 t
->time
.tm_mon
= BCD2BIN(t
->time
.tm_mon
) - 1;
164 t
->time
.tm_year
= -1;
166 t
->enabled
= !!(rtc_control
& RTC_AIE
);
172 static int cmos_set_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
174 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
175 unsigned char mon
, mday
, hrs
, min
, sec
;
176 unsigned char rtc_control
, rtc_intr
;
178 if (!is_valid_irq(cmos
->irq
))
181 /* REVISIT this assumes PC style usage: always BCD */
183 /* Writing 0xff means "don't care" or "match all". */
185 mon
= t
->time
.tm_mon
;
186 mon
= (mon
< 12) ? BIN2BCD(mon
) : 0xff;
189 mday
= t
->time
.tm_mday
;
190 mday
= (mday
>= 1 && mday
<= 31) ? BIN2BCD(mday
) : 0xff;
192 hrs
= t
->time
.tm_hour
;
193 hrs
= (hrs
< 24) ? BIN2BCD(hrs
) : 0xff;
195 min
= t
->time
.tm_min
;
196 min
= (min
< 60) ? BIN2BCD(min
) : 0xff;
198 sec
= t
->time
.tm_sec
;
199 sec
= (sec
< 60) ? BIN2BCD(sec
) : 0xff;
201 spin_lock_irq(&rtc_lock
);
203 /* next rtc irq must not be from previous alarm setting */
204 rtc_control
= CMOS_READ(RTC_CONTROL
);
205 rtc_control
&= ~RTC_AIE
;
206 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
207 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
208 rtc_intr
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
209 if (is_intr(rtc_intr
))
210 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
213 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
214 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
215 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
217 /* the system may support an "enhanced" alarm */
218 if (cmos
->day_alrm
) {
219 CMOS_WRITE(mday
, cmos
->day_alrm
);
221 CMOS_WRITE(mon
, cmos
->mon_alrm
);
225 rtc_control
|= RTC_AIE
;
226 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
227 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
228 rtc_intr
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
229 if (is_intr(rtc_intr
))
230 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
233 spin_unlock_irq(&rtc_lock
);
238 static int cmos_set_freq(struct device
*dev
, int freq
)
240 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
244 if (!is_valid_irq(cmos
->irq
))
247 /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
250 if (f
-- > 16 || freq
!= (1 << f
))
255 spin_lock_irqsave(&rtc_lock
, flags
);
256 CMOS_WRITE(RTC_REF_CLCK_32KHZ
| f
, RTC_FREQ_SELECT
);
257 spin_unlock_irqrestore(&rtc_lock
, flags
);
262 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
265 cmos_rtc_ioctl(struct device
*dev
, unsigned int cmd
, unsigned long arg
)
267 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
268 unsigned char rtc_control
, rtc_intr
;
278 if (!is_valid_irq(cmos
->irq
))
285 spin_lock_irqsave(&rtc_lock
, flags
);
286 rtc_control
= CMOS_READ(RTC_CONTROL
);
288 case RTC_AIE_OFF
: /* alarm off */
289 rtc_control
&= ~RTC_AIE
;
291 case RTC_AIE_ON
: /* alarm on */
292 rtc_control
|= RTC_AIE
;
294 case RTC_UIE_OFF
: /* update off */
295 rtc_control
&= ~RTC_UIE
;
297 case RTC_UIE_ON
: /* update on */
298 rtc_control
|= RTC_UIE
;
300 case RTC_PIE_OFF
: /* periodic off */
301 rtc_control
&= ~RTC_PIE
;
303 case RTC_PIE_ON
: /* periodic on */
304 rtc_control
|= RTC_PIE
;
307 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
308 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
309 rtc_intr
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
310 if (is_intr(rtc_intr
))
311 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
312 spin_unlock_irqrestore(&rtc_lock
, flags
);
317 #define cmos_rtc_ioctl NULL
320 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
322 static int cmos_procfs(struct device
*dev
, struct seq_file
*seq
)
324 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
325 unsigned char rtc_control
, valid
;
327 spin_lock_irq(&rtc_lock
);
328 rtc_control
= CMOS_READ(RTC_CONTROL
);
329 valid
= CMOS_READ(RTC_VALID
);
330 spin_unlock_irq(&rtc_lock
);
332 /* NOTE: at least ICH6 reports battery status using a different
333 * (non-RTC) bit; and SQWE is ignored on many current systems.
335 return seq_printf(seq
,
336 "periodic_IRQ\t: %s\n"
338 // "square_wave\t: %s\n"
341 "periodic_freq\t: %d\n"
342 "batt_status\t: %s\n",
343 (rtc_control
& RTC_PIE
) ? "yes" : "no",
344 (rtc_control
& RTC_UIE
) ? "yes" : "no",
345 // (rtc_control & RTC_SQWE) ? "yes" : "no",
346 // (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
347 (rtc_control
& RTC_DST_EN
) ? "yes" : "no",
349 (valid
& RTC_VRT
) ? "okay" : "dead");
353 #define cmos_procfs NULL
356 static const struct rtc_class_ops cmos_rtc_ops
= {
357 .ioctl
= cmos_rtc_ioctl
,
358 .read_time
= cmos_read_time
,
359 .set_time
= cmos_set_time
,
360 .read_alarm
= cmos_read_alarm
,
361 .set_alarm
= cmos_set_alarm
,
363 .irq_set_freq
= cmos_set_freq
,
366 /*----------------------------------------------------------------*/
368 static struct cmos_rtc cmos_rtc
;
370 static irqreturn_t
cmos_interrupt(int irq
, void *p
)
374 spin_lock(&rtc_lock
);
375 irqstat
= CMOS_READ(RTC_INTR_FLAGS
);
376 irqstat
&= (CMOS_READ(RTC_CONTROL
) & RTC_IRQMASK
) | RTC_IRQF
;
377 spin_unlock(&rtc_lock
);
379 if (is_intr(irqstat
)) {
380 rtc_update_irq(p
, 1, irqstat
);
392 #define INITSECTION __init
395 static int INITSECTION
396 cmos_do_probe(struct device
*dev
, struct resource
*ports
, int rtc_irq
)
398 struct cmos_rtc_board_info
*info
= dev
->platform_data
;
400 unsigned char rtc_control
;
402 /* there can be only one ... */
409 cmos_rtc
.irq
= rtc_irq
;
410 cmos_rtc
.iomem
= ports
;
412 /* For ACPI systems extension info comes from the FADT. On others,
413 * board specific setup provides it as appropriate. Systems where
414 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
415 * some almost-clones) can provide hooks to make that behave.
418 cmos_rtc
.day_alrm
= info
->rtc_day_alarm
;
419 cmos_rtc
.mon_alrm
= info
->rtc_mon_alarm
;
420 cmos_rtc
.century
= info
->rtc_century
;
422 if (info
->wake_on
&& info
->wake_off
) {
423 cmos_rtc
.wake_on
= info
->wake_on
;
424 cmos_rtc
.wake_off
= info
->wake_off
;
428 cmos_rtc
.rtc
= rtc_device_register(driver_name
, dev
,
429 &cmos_rtc_ops
, THIS_MODULE
);
430 if (IS_ERR(cmos_rtc
.rtc
))
431 return PTR_ERR(cmos_rtc
.rtc
);
434 dev_set_drvdata(dev
, &cmos_rtc
);
436 /* platform and pnp busses handle resources incompatibly.
438 * REVISIT for non-x86 systems we may need to handle io memory
439 * resources: ioremap them, and request_mem_region().
442 retval
= request_resource(&ioport_resource
, ports
);
444 dev_dbg(dev
, "i/o registers already in use\n");
448 rename_region(ports
, cmos_rtc
.rtc
->dev
.bus_id
);
450 spin_lock_irq(&rtc_lock
);
452 /* force periodic irq to CMOS reset default of 1024Hz;
454 * REVISIT it's been reported that at least one x86_64 ALI mobo
455 * doesn't use 32KHz here ... for portability we might need to
456 * do something about other clock frequencies.
458 CMOS_WRITE(RTC_REF_CLCK_32KHZ
| 0x06, RTC_FREQ_SELECT
);
459 cmos_rtc
.rtc
->irq_freq
= 1024;
463 * NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
464 * allegedly some older rtcs need that to handle irqs properly
466 rtc_control
= CMOS_READ(RTC_CONTROL
);
467 rtc_control
&= ~(RTC_PIE
| RTC_AIE
| RTC_UIE
);
468 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
469 CMOS_READ(RTC_INTR_FLAGS
);
471 spin_unlock_irq(&rtc_lock
);
473 /* FIXME teach the alarm code how to handle binary mode;
474 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
476 if (!(rtc_control
& RTC_24H
) || (rtc_control
& (RTC_DM_BINARY
))) {
477 dev_dbg(dev
, "only 24-hr BCD mode supported\n");
482 if (is_valid_irq(rtc_irq
))
483 retval
= request_irq(rtc_irq
, cmos_interrupt
, IRQF_DISABLED
,
484 cmos_rtc
.rtc
->dev
.bus_id
,
487 dev_dbg(dev
, "IRQ %d is already in use\n", rtc_irq
);
491 /* REVISIT optionally make 50 or 114 bytes NVRAM available,
492 * like rtc-ds1553, rtc-ds1742 ... this will often include
493 * registers for century, and day/month alarm.
496 pr_info("%s: alarms up to one %s%s\n",
497 cmos_rtc
.rtc
->dev
.bus_id
,
498 is_valid_irq(rtc_irq
)
504 cmos_rtc
.century
? ", y3k" : ""
510 rename_region(ports
, NULL
);
512 rtc_device_unregister(cmos_rtc
.rtc
);
516 static void cmos_do_shutdown(void)
518 unsigned char rtc_control
;
520 spin_lock_irq(&rtc_lock
);
521 rtc_control
= CMOS_READ(RTC_CONTROL
);
522 rtc_control
&= ~(RTC_PIE
|RTC_AIE
|RTC_UIE
);
523 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
524 CMOS_READ(RTC_INTR_FLAGS
);
525 spin_unlock_irq(&rtc_lock
);
528 static void __exit
cmos_do_remove(struct device
*dev
)
530 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
535 release_resource(cmos
->iomem
);
536 rename_region(cmos
->iomem
, NULL
);
538 if (is_valid_irq(cmos
->irq
))
539 free_irq(cmos
->irq
, cmos_rtc
.rtc
);
541 rtc_device_unregister(cmos_rtc
.rtc
);
544 dev_set_drvdata(dev
, NULL
);
549 static int cmos_suspend(struct device
*dev
, pm_message_t mesg
)
551 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
552 int do_wake
= device_may_wakeup(dev
);
555 /* only the alarm might be a wakeup event source */
556 spin_lock_irq(&rtc_lock
);
557 cmos
->suspend_ctrl
= tmp
= CMOS_READ(RTC_CONTROL
);
558 if (tmp
& (RTC_PIE
|RTC_AIE
|RTC_UIE
)) {
559 unsigned char irqstat
;
562 tmp
&= ~(RTC_PIE
|RTC_UIE
);
564 tmp
&= ~(RTC_PIE
|RTC_AIE
|RTC_UIE
);
565 CMOS_WRITE(tmp
, RTC_CONTROL
);
566 irqstat
= CMOS_READ(RTC_INTR_FLAGS
);
567 irqstat
&= (tmp
& RTC_IRQMASK
) | RTC_IRQF
;
568 if (is_intr(irqstat
))
569 rtc_update_irq(cmos
->rtc
, 1, irqstat
);
571 spin_unlock_irq(&rtc_lock
);
574 cmos
->enabled_wake
= 1;
578 enable_irq_wake(cmos
->irq
);
581 pr_debug("%s: suspend%s, ctrl %02x\n",
582 cmos_rtc
.rtc
->dev
.bus_id
,
583 (tmp
& RTC_AIE
) ? ", alarm may wake" : "",
589 static int cmos_resume(struct device
*dev
)
591 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
592 unsigned char tmp
= cmos
->suspend_ctrl
;
594 /* re-enable any irqs previously active */
595 if (tmp
& (RTC_PIE
|RTC_AIE
|RTC_UIE
)) {
597 if (cmos
->enabled_wake
) {
601 disable_irq_wake(cmos
->irq
);
602 cmos
->enabled_wake
= 0;
605 spin_lock_irq(&rtc_lock
);
606 CMOS_WRITE(tmp
, RTC_CONTROL
);
607 tmp
= CMOS_READ(RTC_INTR_FLAGS
);
608 tmp
&= (cmos
->suspend_ctrl
& RTC_IRQMASK
) | RTC_IRQF
;
610 rtc_update_irq(cmos
->rtc
, 1, tmp
);
611 spin_unlock_irq(&rtc_lock
);
614 pr_debug("%s: resume, ctrl %02x\n",
615 cmos_rtc
.rtc
->dev
.bus_id
,
623 #define cmos_suspend NULL
624 #define cmos_resume NULL
627 /*----------------------------------------------------------------*/
629 /* The "CMOS" RTC normally lives on the platform_bus. On ACPI systems,
630 * the device node will always be created as a PNPACPI device.
635 #include <linux/pnp.h>
638 cmos_pnp_probe(struct pnp_dev
*pnp
, const struct pnp_device_id
*id
)
640 /* REVISIT paranoia argues for a shutdown notifier, since PNP
641 * drivers can't provide shutdown() methods to disable IRQs.
642 * Or better yet, fix PNP to allow those methods...
644 if (pnp_port_start(pnp
,0) == 0x70 && !pnp_irq_valid(pnp
,0))
645 /* Some machines contain a PNP entry for the RTC, but
646 * don't define the IRQ. It should always be safe to
647 * hardcode it in these cases
649 return cmos_do_probe(&pnp
->dev
, &pnp
->res
.port_resource
[0], 8);
651 return cmos_do_probe(&pnp
->dev
,
652 &pnp
->res
.port_resource
[0],
653 pnp
->res
.irq_resource
[0].start
);
656 static void __exit
cmos_pnp_remove(struct pnp_dev
*pnp
)
658 cmos_do_remove(&pnp
->dev
);
663 static int cmos_pnp_suspend(struct pnp_dev
*pnp
, pm_message_t mesg
)
665 return cmos_suspend(&pnp
->dev
, mesg
);
668 static int cmos_pnp_resume(struct pnp_dev
*pnp
)
670 return cmos_resume(&pnp
->dev
);
674 #define cmos_pnp_suspend NULL
675 #define cmos_pnp_resume NULL
679 static const struct pnp_device_id rtc_ids
[] = {
680 { .id
= "PNP0b00", },
681 { .id
= "PNP0b01", },
682 { .id
= "PNP0b02", },
685 MODULE_DEVICE_TABLE(pnp
, rtc_ids
);
687 static struct pnp_driver cmos_pnp_driver
= {
688 .name
= (char *) driver_name
,
690 .probe
= cmos_pnp_probe
,
691 .remove
= __exit_p(cmos_pnp_remove
),
693 /* flag ensures resume() gets called, and stops syslog spam */
694 .flags
= PNP_DRIVER_RES_DO_NOT_CHANGE
,
695 .suspend
= cmos_pnp_suspend
,
696 .resume
= cmos_pnp_resume
,
699 static int __init
cmos_init(void)
701 return pnp_register_driver(&cmos_pnp_driver
);
703 module_init(cmos_init
);
705 static void __exit
cmos_exit(void)
707 pnp_unregister_driver(&cmos_pnp_driver
);
709 module_exit(cmos_exit
);
713 /*----------------------------------------------------------------*/
715 /* Platform setup should have set up an RTC device, when PNP is
716 * unavailable ... this could happen even on (older) PCs.
719 static int __init
cmos_platform_probe(struct platform_device
*pdev
)
721 return cmos_do_probe(&pdev
->dev
,
722 platform_get_resource(pdev
, IORESOURCE_IO
, 0),
723 platform_get_irq(pdev
, 0));
726 static int __exit
cmos_platform_remove(struct platform_device
*pdev
)
728 cmos_do_remove(&pdev
->dev
);
732 static void cmos_platform_shutdown(struct platform_device
*pdev
)
737 static struct platform_driver cmos_platform_driver
= {
738 .remove
= __exit_p(cmos_platform_remove
),
739 .shutdown
= cmos_platform_shutdown
,
741 .name
= (char *) driver_name
,
742 .suspend
= cmos_suspend
,
743 .resume
= cmos_resume
,
747 static int __init
cmos_init(void)
749 return platform_driver_probe(&cmos_platform_driver
,
750 cmos_platform_probe
);
752 module_init(cmos_init
);
754 static void __exit
cmos_exit(void)
756 platform_driver_unregister(&cmos_platform_driver
);
758 module_exit(cmos_exit
);
763 MODULE_AUTHOR("David Brownell");
764 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
765 MODULE_LICENSE("GPL");