2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
37 #include <scsi/scsi_cmnd.h>
39 static void blk_unplug_work(struct work_struct
*work
);
40 static void blk_unplug_timeout(unsigned long data
);
41 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
42 static void init_request_from_bio(struct request
*req
, struct bio
*bio
);
43 static int __make_request(struct request_queue
*q
, struct bio
*bio
);
44 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
);
45 static void blk_recalc_rq_segments(struct request
*rq
);
46 static void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
50 * For the allocated request tables
52 static struct kmem_cache
*request_cachep
;
55 * For queue allocation
57 static struct kmem_cache
*requestq_cachep
;
60 * For io context allocations
62 static struct kmem_cache
*iocontext_cachep
;
65 * Controlling structure to kblockd
67 static struct workqueue_struct
*kblockd_workqueue
;
69 unsigned long blk_max_low_pfn
, blk_max_pfn
;
71 EXPORT_SYMBOL(blk_max_low_pfn
);
72 EXPORT_SYMBOL(blk_max_pfn
);
74 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
76 /* Amount of time in which a process may batch requests */
77 #define BLK_BATCH_TIME (HZ/50UL)
79 /* Number of requests a "batching" process may submit */
80 #define BLK_BATCH_REQ 32
83 * Return the threshold (number of used requests) at which the queue is
84 * considered to be congested. It include a little hysteresis to keep the
85 * context switch rate down.
87 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
89 return q
->nr_congestion_on
;
93 * The threshold at which a queue is considered to be uncongested
95 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
97 return q
->nr_congestion_off
;
100 static void blk_queue_congestion_threshold(struct request_queue
*q
)
104 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
105 if (nr
> q
->nr_requests
)
107 q
->nr_congestion_on
= nr
;
109 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
112 q
->nr_congestion_off
= nr
;
116 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
119 * Locates the passed device's request queue and returns the address of its
122 * Will return NULL if the request queue cannot be located.
124 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
126 struct backing_dev_info
*ret
= NULL
;
127 struct request_queue
*q
= bdev_get_queue(bdev
);
130 ret
= &q
->backing_dev_info
;
133 EXPORT_SYMBOL(blk_get_backing_dev_info
);
136 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @pfn: prepare_request function
140 * It's possible for a queue to register a prepare_request callback which
141 * is invoked before the request is handed to the request_fn. The goal of
142 * the function is to prepare a request for I/O, it can be used to build a
143 * cdb from the request data for instance.
146 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
151 EXPORT_SYMBOL(blk_queue_prep_rq
);
154 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @mbfn: merge_bvec_fn
158 * Usually queues have static limitations on the max sectors or segments that
159 * we can put in a request. Stacking drivers may have some settings that
160 * are dynamic, and thus we have to query the queue whether it is ok to
161 * add a new bio_vec to a bio at a given offset or not. If the block device
162 * has such limitations, it needs to register a merge_bvec_fn to control
163 * the size of bio's sent to it. Note that a block device *must* allow a
164 * single page to be added to an empty bio. The block device driver may want
165 * to use the bio_split() function to deal with these bio's. By default
166 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
169 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
171 q
->merge_bvec_fn
= mbfn
;
174 EXPORT_SYMBOL(blk_queue_merge_bvec
);
176 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
178 q
->softirq_done_fn
= fn
;
181 EXPORT_SYMBOL(blk_queue_softirq_done
);
184 * blk_queue_make_request - define an alternate make_request function for a device
185 * @q: the request queue for the device to be affected
186 * @mfn: the alternate make_request function
189 * The normal way for &struct bios to be passed to a device
190 * driver is for them to be collected into requests on a request
191 * queue, and then to allow the device driver to select requests
192 * off that queue when it is ready. This works well for many block
193 * devices. However some block devices (typically virtual devices
194 * such as md or lvm) do not benefit from the processing on the
195 * request queue, and are served best by having the requests passed
196 * directly to them. This can be achieved by providing a function
197 * to blk_queue_make_request().
200 * The driver that does this *must* be able to deal appropriately
201 * with buffers in "highmemory". This can be accomplished by either calling
202 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
203 * blk_queue_bounce() to create a buffer in normal memory.
205 void blk_queue_make_request(struct request_queue
* q
, make_request_fn
* mfn
)
210 q
->nr_requests
= BLKDEV_MAX_RQ
;
211 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
212 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
213 q
->make_request_fn
= mfn
;
214 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
215 q
->backing_dev_info
.state
= 0;
216 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
217 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
218 blk_queue_hardsect_size(q
, 512);
219 blk_queue_dma_alignment(q
, 511);
220 blk_queue_congestion_threshold(q
);
221 q
->nr_batching
= BLK_BATCH_REQ
;
223 q
->unplug_thresh
= 4; /* hmm */
224 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
225 if (q
->unplug_delay
== 0)
228 INIT_WORK(&q
->unplug_work
, blk_unplug_work
);
230 q
->unplug_timer
.function
= blk_unplug_timeout
;
231 q
->unplug_timer
.data
= (unsigned long)q
;
234 * by default assume old behaviour and bounce for any highmem page
236 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
239 EXPORT_SYMBOL(blk_queue_make_request
);
241 static void rq_init(struct request_queue
*q
, struct request
*rq
)
243 INIT_LIST_HEAD(&rq
->queuelist
);
244 INIT_LIST_HEAD(&rq
->donelist
);
247 rq
->bio
= rq
->biotail
= NULL
;
248 INIT_HLIST_NODE(&rq
->hash
);
249 RB_CLEAR_NODE(&rq
->rb_node
);
257 rq
->nr_phys_segments
= 0;
260 rq
->end_io_data
= NULL
;
261 rq
->completion_data
= NULL
;
266 * blk_queue_ordered - does this queue support ordered writes
267 * @q: the request queue
268 * @ordered: one of QUEUE_ORDERED_*
269 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
272 * For journalled file systems, doing ordered writes on a commit
273 * block instead of explicitly doing wait_on_buffer (which is bad
274 * for performance) can be a big win. Block drivers supporting this
275 * feature should call this function and indicate so.
278 int blk_queue_ordered(struct request_queue
*q
, unsigned ordered
,
279 prepare_flush_fn
*prepare_flush_fn
)
281 if (ordered
& (QUEUE_ORDERED_PREFLUSH
| QUEUE_ORDERED_POSTFLUSH
) &&
282 prepare_flush_fn
== NULL
) {
283 printk(KERN_ERR
"blk_queue_ordered: prepare_flush_fn required\n");
287 if (ordered
!= QUEUE_ORDERED_NONE
&&
288 ordered
!= QUEUE_ORDERED_DRAIN
&&
289 ordered
!= QUEUE_ORDERED_DRAIN_FLUSH
&&
290 ordered
!= QUEUE_ORDERED_DRAIN_FUA
&&
291 ordered
!= QUEUE_ORDERED_TAG
&&
292 ordered
!= QUEUE_ORDERED_TAG_FLUSH
&&
293 ordered
!= QUEUE_ORDERED_TAG_FUA
) {
294 printk(KERN_ERR
"blk_queue_ordered: bad value %d\n", ordered
);
298 q
->ordered
= ordered
;
299 q
->next_ordered
= ordered
;
300 q
->prepare_flush_fn
= prepare_flush_fn
;
305 EXPORT_SYMBOL(blk_queue_ordered
);
308 * blk_queue_issue_flush_fn - set function for issuing a flush
309 * @q: the request queue
310 * @iff: the function to be called issuing the flush
313 * If a driver supports issuing a flush command, the support is notified
314 * to the block layer by defining it through this call.
317 void blk_queue_issue_flush_fn(struct request_queue
*q
, issue_flush_fn
*iff
)
319 q
->issue_flush_fn
= iff
;
322 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
325 * Cache flushing for ordered writes handling
327 inline unsigned blk_ordered_cur_seq(struct request_queue
*q
)
331 return 1 << ffz(q
->ordseq
);
334 unsigned blk_ordered_req_seq(struct request
*rq
)
336 struct request_queue
*q
= rq
->q
;
338 BUG_ON(q
->ordseq
== 0);
340 if (rq
== &q
->pre_flush_rq
)
341 return QUEUE_ORDSEQ_PREFLUSH
;
342 if (rq
== &q
->bar_rq
)
343 return QUEUE_ORDSEQ_BAR
;
344 if (rq
== &q
->post_flush_rq
)
345 return QUEUE_ORDSEQ_POSTFLUSH
;
348 * !fs requests don't need to follow barrier ordering. Always
349 * put them at the front. This fixes the following deadlock.
351 * http://thread.gmane.org/gmane.linux.kernel/537473
353 if (!blk_fs_request(rq
))
354 return QUEUE_ORDSEQ_DRAIN
;
356 if ((rq
->cmd_flags
& REQ_ORDERED_COLOR
) ==
357 (q
->orig_bar_rq
->cmd_flags
& REQ_ORDERED_COLOR
))
358 return QUEUE_ORDSEQ_DRAIN
;
360 return QUEUE_ORDSEQ_DONE
;
363 void blk_ordered_complete_seq(struct request_queue
*q
, unsigned seq
, int error
)
368 if (error
&& !q
->orderr
)
371 BUG_ON(q
->ordseq
& seq
);
374 if (blk_ordered_cur_seq(q
) != QUEUE_ORDSEQ_DONE
)
378 * Okay, sequence complete.
381 uptodate
= q
->orderr
? q
->orderr
: 1;
385 end_that_request_first(rq
, uptodate
, rq
->hard_nr_sectors
);
386 end_that_request_last(rq
, uptodate
);
389 static void pre_flush_end_io(struct request
*rq
, int error
)
391 elv_completed_request(rq
->q
, rq
);
392 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_PREFLUSH
, error
);
395 static void bar_end_io(struct request
*rq
, int error
)
397 elv_completed_request(rq
->q
, rq
);
398 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_BAR
, error
);
401 static void post_flush_end_io(struct request
*rq
, int error
)
403 elv_completed_request(rq
->q
, rq
);
404 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_POSTFLUSH
, error
);
407 static void queue_flush(struct request_queue
*q
, unsigned which
)
410 rq_end_io_fn
*end_io
;
412 if (which
== QUEUE_ORDERED_PREFLUSH
) {
413 rq
= &q
->pre_flush_rq
;
414 end_io
= pre_flush_end_io
;
416 rq
= &q
->post_flush_rq
;
417 end_io
= post_flush_end_io
;
420 rq
->cmd_flags
= REQ_HARDBARRIER
;
422 rq
->elevator_private
= NULL
;
423 rq
->elevator_private2
= NULL
;
424 rq
->rq_disk
= q
->bar_rq
.rq_disk
;
426 q
->prepare_flush_fn(q
, rq
);
428 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
431 static inline struct request
*start_ordered(struct request_queue
*q
,
436 q
->ordered
= q
->next_ordered
;
437 q
->ordseq
|= QUEUE_ORDSEQ_STARTED
;
440 * Prep proxy barrier request.
442 blkdev_dequeue_request(rq
);
447 if (bio_data_dir(q
->orig_bar_rq
->bio
) == WRITE
)
448 rq
->cmd_flags
|= REQ_RW
;
449 rq
->cmd_flags
|= q
->ordered
& QUEUE_ORDERED_FUA
? REQ_FUA
: 0;
450 rq
->elevator_private
= NULL
;
451 rq
->elevator_private2
= NULL
;
452 init_request_from_bio(rq
, q
->orig_bar_rq
->bio
);
453 rq
->end_io
= bar_end_io
;
456 * Queue ordered sequence. As we stack them at the head, we
457 * need to queue in reverse order. Note that we rely on that
458 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
459 * request gets inbetween ordered sequence.
461 if (q
->ordered
& QUEUE_ORDERED_POSTFLUSH
)
462 queue_flush(q
, QUEUE_ORDERED_POSTFLUSH
);
464 q
->ordseq
|= QUEUE_ORDSEQ_POSTFLUSH
;
466 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
468 if (q
->ordered
& QUEUE_ORDERED_PREFLUSH
) {
469 queue_flush(q
, QUEUE_ORDERED_PREFLUSH
);
470 rq
= &q
->pre_flush_rq
;
472 q
->ordseq
|= QUEUE_ORDSEQ_PREFLUSH
;
474 if ((q
->ordered
& QUEUE_ORDERED_TAG
) || q
->in_flight
== 0)
475 q
->ordseq
|= QUEUE_ORDSEQ_DRAIN
;
482 int blk_do_ordered(struct request_queue
*q
, struct request
**rqp
)
484 struct request
*rq
= *rqp
;
485 int is_barrier
= blk_fs_request(rq
) && blk_barrier_rq(rq
);
491 if (q
->next_ordered
!= QUEUE_ORDERED_NONE
) {
492 *rqp
= start_ordered(q
, rq
);
496 * This can happen when the queue switches to
497 * ORDERED_NONE while this request is on it.
499 blkdev_dequeue_request(rq
);
500 end_that_request_first(rq
, -EOPNOTSUPP
,
501 rq
->hard_nr_sectors
);
502 end_that_request_last(rq
, -EOPNOTSUPP
);
509 * Ordered sequence in progress
512 /* Special requests are not subject to ordering rules. */
513 if (!blk_fs_request(rq
) &&
514 rq
!= &q
->pre_flush_rq
&& rq
!= &q
->post_flush_rq
)
517 if (q
->ordered
& QUEUE_ORDERED_TAG
) {
518 /* Ordered by tag. Blocking the next barrier is enough. */
519 if (is_barrier
&& rq
!= &q
->bar_rq
)
522 /* Ordered by draining. Wait for turn. */
523 WARN_ON(blk_ordered_req_seq(rq
) < blk_ordered_cur_seq(q
));
524 if (blk_ordered_req_seq(rq
) > blk_ordered_cur_seq(q
))
531 static int flush_dry_bio_endio(struct bio
*bio
, unsigned int bytes
, int error
)
533 struct request_queue
*q
= bio
->bi_private
;
536 * This is dry run, restore bio_sector and size. We'll finish
537 * this request again with the original bi_end_io after an
538 * error occurs or post flush is complete.
546 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
547 bio
->bi_size
= q
->bi_size
;
548 bio
->bi_sector
-= (q
->bi_size
>> 9);
554 static int ordered_bio_endio(struct request
*rq
, struct bio
*bio
,
555 unsigned int nbytes
, int error
)
557 struct request_queue
*q
= rq
->q
;
561 if (&q
->bar_rq
!= rq
)
565 * Okay, this is the barrier request in progress, dry finish it.
567 if (error
&& !q
->orderr
)
570 endio
= bio
->bi_end_io
;
571 private = bio
->bi_private
;
572 bio
->bi_end_io
= flush_dry_bio_endio
;
575 bio_endio(bio
, nbytes
, error
);
577 bio
->bi_end_io
= endio
;
578 bio
->bi_private
= private;
584 * blk_queue_bounce_limit - set bounce buffer limit for queue
585 * @q: the request queue for the device
586 * @dma_addr: bus address limit
589 * Different hardware can have different requirements as to what pages
590 * it can do I/O directly to. A low level driver can call
591 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
592 * buffers for doing I/O to pages residing above @page.
594 void blk_queue_bounce_limit(struct request_queue
*q
, u64 dma_addr
)
596 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
599 q
->bounce_gfp
= GFP_NOIO
;
600 #if BITS_PER_LONG == 64
601 /* Assume anything <= 4GB can be handled by IOMMU.
602 Actually some IOMMUs can handle everything, but I don't
603 know of a way to test this here. */
604 if (bounce_pfn
< (min_t(u64
,0xffffffff,BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
606 q
->bounce_pfn
= max_low_pfn
;
608 if (bounce_pfn
< blk_max_low_pfn
)
610 q
->bounce_pfn
= bounce_pfn
;
613 init_emergency_isa_pool();
614 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
615 q
->bounce_pfn
= bounce_pfn
;
619 EXPORT_SYMBOL(blk_queue_bounce_limit
);
622 * blk_queue_max_sectors - set max sectors for a request for this queue
623 * @q: the request queue for the device
624 * @max_sectors: max sectors in the usual 512b unit
627 * Enables a low level driver to set an upper limit on the size of
630 void blk_queue_max_sectors(struct request_queue
*q
, unsigned int max_sectors
)
632 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
633 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
634 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
637 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
638 q
->max_hw_sectors
= q
->max_sectors
= max_sectors
;
640 q
->max_sectors
= BLK_DEF_MAX_SECTORS
;
641 q
->max_hw_sectors
= max_sectors
;
645 EXPORT_SYMBOL(blk_queue_max_sectors
);
648 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
649 * @q: the request queue for the device
650 * @max_segments: max number of segments
653 * Enables a low level driver to set an upper limit on the number of
654 * physical data segments in a request. This would be the largest sized
655 * scatter list the driver could handle.
657 void blk_queue_max_phys_segments(struct request_queue
*q
,
658 unsigned short max_segments
)
662 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
665 q
->max_phys_segments
= max_segments
;
668 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
671 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
672 * @q: the request queue for the device
673 * @max_segments: max number of segments
676 * Enables a low level driver to set an upper limit on the number of
677 * hw data segments in a request. This would be the largest number of
678 * address/length pairs the host adapter can actually give as once
681 void blk_queue_max_hw_segments(struct request_queue
*q
,
682 unsigned short max_segments
)
686 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
689 q
->max_hw_segments
= max_segments
;
692 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
695 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
696 * @q: the request queue for the device
697 * @max_size: max size of segment in bytes
700 * Enables a low level driver to set an upper limit on the size of a
703 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
705 if (max_size
< PAGE_CACHE_SIZE
) {
706 max_size
= PAGE_CACHE_SIZE
;
707 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
710 q
->max_segment_size
= max_size
;
713 EXPORT_SYMBOL(blk_queue_max_segment_size
);
716 * blk_queue_hardsect_size - set hardware sector size for the queue
717 * @q: the request queue for the device
718 * @size: the hardware sector size, in bytes
721 * This should typically be set to the lowest possible sector size
722 * that the hardware can operate on (possible without reverting to
723 * even internal read-modify-write operations). Usually the default
724 * of 512 covers most hardware.
726 void blk_queue_hardsect_size(struct request_queue
*q
, unsigned short size
)
728 q
->hardsect_size
= size
;
731 EXPORT_SYMBOL(blk_queue_hardsect_size
);
734 * Returns the minimum that is _not_ zero, unless both are zero.
736 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
739 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
740 * @t: the stacking driver (top)
741 * @b: the underlying device (bottom)
743 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
745 /* zero is "infinity" */
746 t
->max_sectors
= min_not_zero(t
->max_sectors
,b
->max_sectors
);
747 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
,b
->max_hw_sectors
);
749 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
750 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
751 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
752 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
753 if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
))
754 clear_bit(QUEUE_FLAG_CLUSTER
, &t
->queue_flags
);
757 EXPORT_SYMBOL(blk_queue_stack_limits
);
760 * blk_queue_segment_boundary - set boundary rules for segment merging
761 * @q: the request queue for the device
762 * @mask: the memory boundary mask
764 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
766 if (mask
< PAGE_CACHE_SIZE
- 1) {
767 mask
= PAGE_CACHE_SIZE
- 1;
768 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
771 q
->seg_boundary_mask
= mask
;
774 EXPORT_SYMBOL(blk_queue_segment_boundary
);
777 * blk_queue_dma_alignment - set dma length and memory alignment
778 * @q: the request queue for the device
779 * @mask: alignment mask
782 * set required memory and length aligment for direct dma transactions.
783 * this is used when buiding direct io requests for the queue.
786 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
788 q
->dma_alignment
= mask
;
791 EXPORT_SYMBOL(blk_queue_dma_alignment
);
794 * blk_queue_find_tag - find a request by its tag and queue
795 * @q: The request queue for the device
796 * @tag: The tag of the request
799 * Should be used when a device returns a tag and you want to match
802 * no locks need be held.
804 struct request
*blk_queue_find_tag(struct request_queue
*q
, int tag
)
806 return blk_map_queue_find_tag(q
->queue_tags
, tag
);
809 EXPORT_SYMBOL(blk_queue_find_tag
);
812 * __blk_free_tags - release a given set of tag maintenance info
813 * @bqt: the tag map to free
815 * Tries to free the specified @bqt@. Returns true if it was
816 * actually freed and false if there are still references using it
818 static int __blk_free_tags(struct blk_queue_tag
*bqt
)
822 retval
= atomic_dec_and_test(&bqt
->refcnt
);
825 BUG_ON(!list_empty(&bqt
->busy_list
));
827 kfree(bqt
->tag_index
);
828 bqt
->tag_index
= NULL
;
841 * __blk_queue_free_tags - release tag maintenance info
842 * @q: the request queue for the device
845 * blk_cleanup_queue() will take care of calling this function, if tagging
846 * has been used. So there's no need to call this directly.
848 static void __blk_queue_free_tags(struct request_queue
*q
)
850 struct blk_queue_tag
*bqt
= q
->queue_tags
;
855 __blk_free_tags(bqt
);
857 q
->queue_tags
= NULL
;
858 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
863 * blk_free_tags - release a given set of tag maintenance info
864 * @bqt: the tag map to free
866 * For externally managed @bqt@ frees the map. Callers of this
867 * function must guarantee to have released all the queues that
868 * might have been using this tag map.
870 void blk_free_tags(struct blk_queue_tag
*bqt
)
872 if (unlikely(!__blk_free_tags(bqt
)))
875 EXPORT_SYMBOL(blk_free_tags
);
878 * blk_queue_free_tags - release tag maintenance info
879 * @q: the request queue for the device
882 * This is used to disabled tagged queuing to a device, yet leave
885 void blk_queue_free_tags(struct request_queue
*q
)
887 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
890 EXPORT_SYMBOL(blk_queue_free_tags
);
893 init_tag_map(struct request_queue
*q
, struct blk_queue_tag
*tags
, int depth
)
895 struct request
**tag_index
;
896 unsigned long *tag_map
;
899 if (q
&& depth
> q
->nr_requests
* 2) {
900 depth
= q
->nr_requests
* 2;
901 printk(KERN_ERR
"%s: adjusted depth to %d\n",
902 __FUNCTION__
, depth
);
905 tag_index
= kzalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
909 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
910 tag_map
= kzalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
914 tags
->real_max_depth
= depth
;
915 tags
->max_depth
= depth
;
916 tags
->tag_index
= tag_index
;
917 tags
->tag_map
= tag_map
;
925 static struct blk_queue_tag
*__blk_queue_init_tags(struct request_queue
*q
,
928 struct blk_queue_tag
*tags
;
930 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
934 if (init_tag_map(q
, tags
, depth
))
937 INIT_LIST_HEAD(&tags
->busy_list
);
939 atomic_set(&tags
->refcnt
, 1);
947 * blk_init_tags - initialize the tag info for an external tag map
948 * @depth: the maximum queue depth supported
949 * @tags: the tag to use
951 struct blk_queue_tag
*blk_init_tags(int depth
)
953 return __blk_queue_init_tags(NULL
, depth
);
955 EXPORT_SYMBOL(blk_init_tags
);
958 * blk_queue_init_tags - initialize the queue tag info
959 * @q: the request queue for the device
960 * @depth: the maximum queue depth supported
961 * @tags: the tag to use
963 int blk_queue_init_tags(struct request_queue
*q
, int depth
,
964 struct blk_queue_tag
*tags
)
968 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
970 if (!tags
&& !q
->queue_tags
) {
971 tags
= __blk_queue_init_tags(q
, depth
);
975 } else if (q
->queue_tags
) {
976 if ((rc
= blk_queue_resize_tags(q
, depth
)))
978 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
981 atomic_inc(&tags
->refcnt
);
984 * assign it, all done
986 q
->queue_tags
= tags
;
987 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
994 EXPORT_SYMBOL(blk_queue_init_tags
);
997 * blk_queue_resize_tags - change the queueing depth
998 * @q: the request queue for the device
999 * @new_depth: the new max command queueing depth
1002 * Must be called with the queue lock held.
1004 int blk_queue_resize_tags(struct request_queue
*q
, int new_depth
)
1006 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1007 struct request
**tag_index
;
1008 unsigned long *tag_map
;
1009 int max_depth
, nr_ulongs
;
1015 * if we already have large enough real_max_depth. just
1016 * adjust max_depth. *NOTE* as requests with tag value
1017 * between new_depth and real_max_depth can be in-flight, tag
1018 * map can not be shrunk blindly here.
1020 if (new_depth
<= bqt
->real_max_depth
) {
1021 bqt
->max_depth
= new_depth
;
1026 * Currently cannot replace a shared tag map with a new
1027 * one, so error out if this is the case
1029 if (atomic_read(&bqt
->refcnt
) != 1)
1033 * save the old state info, so we can copy it back
1035 tag_index
= bqt
->tag_index
;
1036 tag_map
= bqt
->tag_map
;
1037 max_depth
= bqt
->real_max_depth
;
1039 if (init_tag_map(q
, bqt
, new_depth
))
1042 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
1043 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1044 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
1051 EXPORT_SYMBOL(blk_queue_resize_tags
);
1054 * blk_queue_end_tag - end tag operations for a request
1055 * @q: the request queue for the device
1056 * @rq: the request that has completed
1059 * Typically called when end_that_request_first() returns 0, meaning
1060 * all transfers have been done for a request. It's important to call
1061 * this function before end_that_request_last(), as that will put the
1062 * request back on the free list thus corrupting the internal tag list.
1065 * queue lock must be held.
1067 void blk_queue_end_tag(struct request_queue
*q
, struct request
*rq
)
1069 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1074 if (unlikely(tag
>= bqt
->real_max_depth
))
1076 * This can happen after tag depth has been reduced.
1077 * FIXME: how about a warning or info message here?
1081 list_del_init(&rq
->queuelist
);
1082 rq
->cmd_flags
&= ~REQ_QUEUED
;
1085 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
1086 printk(KERN_ERR
"%s: tag %d is missing\n",
1089 bqt
->tag_index
[tag
] = NULL
;
1092 * We use test_and_clear_bit's memory ordering properties here.
1093 * The tag_map bit acts as a lock for tag_index[bit], so we need
1094 * a barrer before clearing the bit (precisely: release semantics).
1095 * Could use clear_bit_unlock when it is merged.
1097 if (unlikely(!test_and_clear_bit(tag
, bqt
->tag_map
))) {
1098 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
1106 EXPORT_SYMBOL(blk_queue_end_tag
);
1109 * blk_queue_start_tag - find a free tag and assign it
1110 * @q: the request queue for the device
1111 * @rq: the block request that needs tagging
1114 * This can either be used as a stand-alone helper, or possibly be
1115 * assigned as the queue &prep_rq_fn (in which case &struct request
1116 * automagically gets a tag assigned). Note that this function
1117 * assumes that any type of request can be queued! if this is not
1118 * true for your device, you must check the request type before
1119 * calling this function. The request will also be removed from
1120 * the request queue, so it's the drivers responsibility to readd
1121 * it if it should need to be restarted for some reason.
1124 * queue lock must be held.
1126 int blk_queue_start_tag(struct request_queue
*q
, struct request
*rq
)
1128 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1131 if (unlikely((rq
->cmd_flags
& REQ_QUEUED
))) {
1133 "%s: request %p for device [%s] already tagged %d",
1135 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
1140 * Protect against shared tag maps, as we may not have exclusive
1141 * access to the tag map.
1144 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
1145 if (tag
>= bqt
->max_depth
)
1148 } while (test_and_set_bit(tag
, bqt
->tag_map
));
1150 * We rely on test_and_set_bit providing lock memory ordering semantics
1151 * (could use test_and_set_bit_lock when it is merged).
1154 rq
->cmd_flags
|= REQ_QUEUED
;
1156 bqt
->tag_index
[tag
] = rq
;
1157 blkdev_dequeue_request(rq
);
1158 list_add(&rq
->queuelist
, &bqt
->busy_list
);
1163 EXPORT_SYMBOL(blk_queue_start_tag
);
1166 * blk_queue_invalidate_tags - invalidate all pending tags
1167 * @q: the request queue for the device
1170 * Hardware conditions may dictate a need to stop all pending requests.
1171 * In this case, we will safely clear the block side of the tag queue and
1172 * readd all requests to the request queue in the right order.
1175 * queue lock must be held.
1177 void blk_queue_invalidate_tags(struct request_queue
*q
)
1179 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1180 struct list_head
*tmp
, *n
;
1183 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1184 rq
= list_entry_rq(tmp
);
1186 if (rq
->tag
== -1) {
1188 "%s: bad tag found on list\n", __FUNCTION__
);
1189 list_del_init(&rq
->queuelist
);
1190 rq
->cmd_flags
&= ~REQ_QUEUED
;
1192 blk_queue_end_tag(q
, rq
);
1194 rq
->cmd_flags
&= ~REQ_STARTED
;
1195 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1199 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1201 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1205 printk("%s: dev %s: type=%x, flags=%x\n", msg
,
1206 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
1209 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1211 rq
->current_nr_sectors
);
1212 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1214 if (blk_pc_request(rq
)) {
1216 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1217 printk("%02x ", rq
->cmd
[bit
]);
1222 EXPORT_SYMBOL(blk_dump_rq_flags
);
1224 void blk_recount_segments(struct request_queue
*q
, struct bio
*bio
)
1227 struct bio
*nxt
= bio
->bi_next
;
1229 rq
.bio
= rq
.biotail
= bio
;
1230 bio
->bi_next
= NULL
;
1231 blk_recalc_rq_segments(&rq
);
1233 bio
->bi_phys_segments
= rq
.nr_phys_segments
;
1234 bio
->bi_hw_segments
= rq
.nr_hw_segments
;
1235 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1237 EXPORT_SYMBOL(blk_recount_segments
);
1239 static void blk_recalc_rq_segments(struct request
*rq
)
1243 unsigned int phys_size
;
1244 unsigned int hw_size
;
1245 struct bio_vec
*bv
, *bvprv
= NULL
;
1249 struct req_iterator iter
;
1250 int high
, highprv
= 1;
1251 struct request_queue
*q
= rq
->q
;
1256 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1257 hw_seg_size
= seg_size
= 0;
1258 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
1259 rq_for_each_segment(bv
, rq
, iter
) {
1261 * the trick here is making sure that a high page is never
1262 * considered part of another segment, since that might
1263 * change with the bounce page.
1265 high
= page_to_pfn(bv
->bv_page
) > q
->bounce_pfn
;
1266 if (high
|| highprv
)
1267 goto new_hw_segment
;
1269 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1271 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1273 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1275 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1276 goto new_hw_segment
;
1278 seg_size
+= bv
->bv_len
;
1279 hw_seg_size
+= bv
->bv_len
;
1284 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1285 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1286 hw_seg_size
+= bv
->bv_len
;
1289 if (nr_hw_segs
== 1 &&
1290 hw_seg_size
> rq
->bio
->bi_hw_front_size
)
1291 rq
->bio
->bi_hw_front_size
= hw_seg_size
;
1292 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1298 seg_size
= bv
->bv_len
;
1302 if (nr_hw_segs
== 1 &&
1303 hw_seg_size
> rq
->bio
->bi_hw_front_size
)
1304 rq
->bio
->bi_hw_front_size
= hw_seg_size
;
1305 if (hw_seg_size
> rq
->biotail
->bi_hw_back_size
)
1306 rq
->biotail
->bi_hw_back_size
= hw_seg_size
;
1307 rq
->nr_phys_segments
= nr_phys_segs
;
1308 rq
->nr_hw_segments
= nr_hw_segs
;
1311 static int blk_phys_contig_segment(struct request_queue
*q
, struct bio
*bio
,
1314 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1317 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1319 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1323 * bio and nxt are contigous in memory, check if the queue allows
1324 * these two to be merged into one
1326 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1332 static int blk_hw_contig_segment(struct request_queue
*q
, struct bio
*bio
,
1335 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1336 blk_recount_segments(q
, bio
);
1337 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1338 blk_recount_segments(q
, nxt
);
1339 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1340 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_back_size
+ nxt
->bi_hw_front_size
))
1342 if (bio
->bi_hw_back_size
+ nxt
->bi_hw_front_size
> q
->max_segment_size
)
1349 * map a request to scatterlist, return number of sg entries setup. Caller
1350 * must make sure sg can hold rq->nr_phys_segments entries
1352 int blk_rq_map_sg(struct request_queue
*q
, struct request
*rq
,
1353 struct scatterlist
*sg
)
1355 struct bio_vec
*bvec
, *bvprv
;
1356 struct req_iterator iter
;
1360 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1363 * for each bio in rq
1366 rq_for_each_segment(bvec
, rq
, iter
) {
1367 int nbytes
= bvec
->bv_len
;
1369 if (bvprv
&& cluster
) {
1370 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1373 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1375 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1378 sg
[nsegs
- 1].length
+= nbytes
;
1381 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1382 sg
[nsegs
].page
= bvec
->bv_page
;
1383 sg
[nsegs
].length
= nbytes
;
1384 sg
[nsegs
].offset
= bvec
->bv_offset
;
1389 } /* segments in rq */
1394 EXPORT_SYMBOL(blk_rq_map_sg
);
1397 * the standard queue merge functions, can be overridden with device
1398 * specific ones if so desired
1401 static inline int ll_new_mergeable(struct request_queue
*q
,
1402 struct request
*req
,
1405 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1407 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1408 req
->cmd_flags
|= REQ_NOMERGE
;
1409 if (req
== q
->last_merge
)
1410 q
->last_merge
= NULL
;
1415 * A hw segment is just getting larger, bump just the phys
1418 req
->nr_phys_segments
+= nr_phys_segs
;
1422 static inline int ll_new_hw_segment(struct request_queue
*q
,
1423 struct request
*req
,
1426 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1427 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1429 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1430 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1431 req
->cmd_flags
|= REQ_NOMERGE
;
1432 if (req
== q
->last_merge
)
1433 q
->last_merge
= NULL
;
1438 * This will form the start of a new hw segment. Bump both
1441 req
->nr_hw_segments
+= nr_hw_segs
;
1442 req
->nr_phys_segments
+= nr_phys_segs
;
1446 static int ll_back_merge_fn(struct request_queue
*q
, struct request
*req
,
1449 unsigned short max_sectors
;
1452 if (unlikely(blk_pc_request(req
)))
1453 max_sectors
= q
->max_hw_sectors
;
1455 max_sectors
= q
->max_sectors
;
1457 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1458 req
->cmd_flags
|= REQ_NOMERGE
;
1459 if (req
== q
->last_merge
)
1460 q
->last_merge
= NULL
;
1463 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1464 blk_recount_segments(q
, req
->biotail
);
1465 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1466 blk_recount_segments(q
, bio
);
1467 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1468 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1469 !BIOVEC_VIRT_OVERSIZE(len
)) {
1470 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1473 if (req
->nr_hw_segments
== 1)
1474 req
->bio
->bi_hw_front_size
= len
;
1475 if (bio
->bi_hw_segments
== 1)
1476 bio
->bi_hw_back_size
= len
;
1481 return ll_new_hw_segment(q
, req
, bio
);
1484 static int ll_front_merge_fn(struct request_queue
*q
, struct request
*req
,
1487 unsigned short max_sectors
;
1490 if (unlikely(blk_pc_request(req
)))
1491 max_sectors
= q
->max_hw_sectors
;
1493 max_sectors
= q
->max_sectors
;
1496 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1497 req
->cmd_flags
|= REQ_NOMERGE
;
1498 if (req
== q
->last_merge
)
1499 q
->last_merge
= NULL
;
1502 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1503 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1504 blk_recount_segments(q
, bio
);
1505 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1506 blk_recount_segments(q
, req
->bio
);
1507 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1508 !BIOVEC_VIRT_OVERSIZE(len
)) {
1509 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1512 if (bio
->bi_hw_segments
== 1)
1513 bio
->bi_hw_front_size
= len
;
1514 if (req
->nr_hw_segments
== 1)
1515 req
->biotail
->bi_hw_back_size
= len
;
1520 return ll_new_hw_segment(q
, req
, bio
);
1523 static int ll_merge_requests_fn(struct request_queue
*q
, struct request
*req
,
1524 struct request
*next
)
1526 int total_phys_segments
;
1527 int total_hw_segments
;
1530 * First check if the either of the requests are re-queued
1531 * requests. Can't merge them if they are.
1533 if (req
->special
|| next
->special
)
1537 * Will it become too large?
1539 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1542 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1543 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1544 total_phys_segments
--;
1546 if (total_phys_segments
> q
->max_phys_segments
)
1549 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1550 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1551 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1553 * propagate the combined length to the end of the requests
1555 if (req
->nr_hw_segments
== 1)
1556 req
->bio
->bi_hw_front_size
= len
;
1557 if (next
->nr_hw_segments
== 1)
1558 next
->biotail
->bi_hw_back_size
= len
;
1559 total_hw_segments
--;
1562 if (total_hw_segments
> q
->max_hw_segments
)
1565 /* Merge is OK... */
1566 req
->nr_phys_segments
= total_phys_segments
;
1567 req
->nr_hw_segments
= total_hw_segments
;
1572 * "plug" the device if there are no outstanding requests: this will
1573 * force the transfer to start only after we have put all the requests
1576 * This is called with interrupts off and no requests on the queue and
1577 * with the queue lock held.
1579 void blk_plug_device(struct request_queue
*q
)
1581 WARN_ON(!irqs_disabled());
1584 * don't plug a stopped queue, it must be paired with blk_start_queue()
1585 * which will restart the queueing
1587 if (blk_queue_stopped(q
))
1590 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
)) {
1591 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1592 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
1596 EXPORT_SYMBOL(blk_plug_device
);
1599 * remove the queue from the plugged list, if present. called with
1600 * queue lock held and interrupts disabled.
1602 int blk_remove_plug(struct request_queue
*q
)
1604 WARN_ON(!irqs_disabled());
1606 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1609 del_timer(&q
->unplug_timer
);
1613 EXPORT_SYMBOL(blk_remove_plug
);
1616 * remove the plug and let it rip..
1618 void __generic_unplug_device(struct request_queue
*q
)
1620 if (unlikely(blk_queue_stopped(q
)))
1623 if (!blk_remove_plug(q
))
1628 EXPORT_SYMBOL(__generic_unplug_device
);
1631 * generic_unplug_device - fire a request queue
1632 * @q: The &struct request_queue in question
1635 * Linux uses plugging to build bigger requests queues before letting
1636 * the device have at them. If a queue is plugged, the I/O scheduler
1637 * is still adding and merging requests on the queue. Once the queue
1638 * gets unplugged, the request_fn defined for the queue is invoked and
1639 * transfers started.
1641 void generic_unplug_device(struct request_queue
*q
)
1643 spin_lock_irq(q
->queue_lock
);
1644 __generic_unplug_device(q
);
1645 spin_unlock_irq(q
->queue_lock
);
1647 EXPORT_SYMBOL(generic_unplug_device
);
1649 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1652 struct request_queue
*q
= bdi
->unplug_io_data
;
1655 * devices don't necessarily have an ->unplug_fn defined
1658 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1659 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1665 static void blk_unplug_work(struct work_struct
*work
)
1667 struct request_queue
*q
=
1668 container_of(work
, struct request_queue
, unplug_work
);
1670 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1671 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1676 static void blk_unplug_timeout(unsigned long data
)
1678 struct request_queue
*q
= (struct request_queue
*)data
;
1680 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
1681 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1683 kblockd_schedule_work(&q
->unplug_work
);
1687 * blk_start_queue - restart a previously stopped queue
1688 * @q: The &struct request_queue in question
1691 * blk_start_queue() will clear the stop flag on the queue, and call
1692 * the request_fn for the queue if it was in a stopped state when
1693 * entered. Also see blk_stop_queue(). Queue lock must be held.
1695 void blk_start_queue(struct request_queue
*q
)
1697 WARN_ON(!irqs_disabled());
1699 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1702 * one level of recursion is ok and is much faster than kicking
1703 * the unplug handling
1705 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1707 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1710 kblockd_schedule_work(&q
->unplug_work
);
1714 EXPORT_SYMBOL(blk_start_queue
);
1717 * blk_stop_queue - stop a queue
1718 * @q: The &struct request_queue in question
1721 * The Linux block layer assumes that a block driver will consume all
1722 * entries on the request queue when the request_fn strategy is called.
1723 * Often this will not happen, because of hardware limitations (queue
1724 * depth settings). If a device driver gets a 'queue full' response,
1725 * or if it simply chooses not to queue more I/O at one point, it can
1726 * call this function to prevent the request_fn from being called until
1727 * the driver has signalled it's ready to go again. This happens by calling
1728 * blk_start_queue() to restart queue operations. Queue lock must be held.
1730 void blk_stop_queue(struct request_queue
*q
)
1733 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1735 EXPORT_SYMBOL(blk_stop_queue
);
1738 * blk_sync_queue - cancel any pending callbacks on a queue
1742 * The block layer may perform asynchronous callback activity
1743 * on a queue, such as calling the unplug function after a timeout.
1744 * A block device may call blk_sync_queue to ensure that any
1745 * such activity is cancelled, thus allowing it to release resources
1746 * that the callbacks might use. The caller must already have made sure
1747 * that its ->make_request_fn will not re-add plugging prior to calling
1751 void blk_sync_queue(struct request_queue
*q
)
1753 del_timer_sync(&q
->unplug_timer
);
1755 EXPORT_SYMBOL(blk_sync_queue
);
1758 * blk_run_queue - run a single device queue
1759 * @q: The queue to run
1761 void blk_run_queue(struct request_queue
*q
)
1763 unsigned long flags
;
1765 spin_lock_irqsave(q
->queue_lock
, flags
);
1769 * Only recurse once to avoid overrunning the stack, let the unplug
1770 * handling reinvoke the handler shortly if we already got there.
1772 if (!elv_queue_empty(q
)) {
1773 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1775 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1778 kblockd_schedule_work(&q
->unplug_work
);
1782 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1784 EXPORT_SYMBOL(blk_run_queue
);
1787 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1788 * @kobj: the kobj belonging of the request queue to be released
1791 * blk_cleanup_queue is the pair to blk_init_queue() or
1792 * blk_queue_make_request(). It should be called when a request queue is
1793 * being released; typically when a block device is being de-registered.
1794 * Currently, its primary task it to free all the &struct request
1795 * structures that were allocated to the queue and the queue itself.
1798 * Hopefully the low level driver will have finished any
1799 * outstanding requests first...
1801 static void blk_release_queue(struct kobject
*kobj
)
1803 struct request_queue
*q
=
1804 container_of(kobj
, struct request_queue
, kobj
);
1805 struct request_list
*rl
= &q
->rq
;
1810 mempool_destroy(rl
->rq_pool
);
1813 __blk_queue_free_tags(q
);
1815 blk_trace_shutdown(q
);
1817 kmem_cache_free(requestq_cachep
, q
);
1820 void blk_put_queue(struct request_queue
*q
)
1822 kobject_put(&q
->kobj
);
1824 EXPORT_SYMBOL(blk_put_queue
);
1826 void blk_cleanup_queue(struct request_queue
* q
)
1828 mutex_lock(&q
->sysfs_lock
);
1829 set_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
);
1830 mutex_unlock(&q
->sysfs_lock
);
1833 elevator_exit(q
->elevator
);
1838 EXPORT_SYMBOL(blk_cleanup_queue
);
1840 static int blk_init_free_list(struct request_queue
*q
)
1842 struct request_list
*rl
= &q
->rq
;
1844 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1845 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1847 init_waitqueue_head(&rl
->wait
[READ
]);
1848 init_waitqueue_head(&rl
->wait
[WRITE
]);
1850 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1851 mempool_free_slab
, request_cachep
, q
->node
);
1859 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
1861 return blk_alloc_queue_node(gfp_mask
, -1);
1863 EXPORT_SYMBOL(blk_alloc_queue
);
1865 static struct kobj_type queue_ktype
;
1867 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1869 struct request_queue
*q
;
1871 q
= kmem_cache_alloc_node(requestq_cachep
,
1872 gfp_mask
| __GFP_ZERO
, node_id
);
1876 init_timer(&q
->unplug_timer
);
1878 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
1879 q
->kobj
.ktype
= &queue_ktype
;
1880 kobject_init(&q
->kobj
);
1882 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1883 q
->backing_dev_info
.unplug_io_data
= q
;
1885 mutex_init(&q
->sysfs_lock
);
1889 EXPORT_SYMBOL(blk_alloc_queue_node
);
1892 * blk_init_queue - prepare a request queue for use with a block device
1893 * @rfn: The function to be called to process requests that have been
1894 * placed on the queue.
1895 * @lock: Request queue spin lock
1898 * If a block device wishes to use the standard request handling procedures,
1899 * which sorts requests and coalesces adjacent requests, then it must
1900 * call blk_init_queue(). The function @rfn will be called when there
1901 * are requests on the queue that need to be processed. If the device
1902 * supports plugging, then @rfn may not be called immediately when requests
1903 * are available on the queue, but may be called at some time later instead.
1904 * Plugged queues are generally unplugged when a buffer belonging to one
1905 * of the requests on the queue is needed, or due to memory pressure.
1907 * @rfn is not required, or even expected, to remove all requests off the
1908 * queue, but only as many as it can handle at a time. If it does leave
1909 * requests on the queue, it is responsible for arranging that the requests
1910 * get dealt with eventually.
1912 * The queue spin lock must be held while manipulating the requests on the
1913 * request queue; this lock will be taken also from interrupt context, so irq
1914 * disabling is needed for it.
1916 * Function returns a pointer to the initialized request queue, or NULL if
1917 * it didn't succeed.
1920 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1921 * when the block device is deactivated (such as at module unload).
1924 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1926 return blk_init_queue_node(rfn
, lock
, -1);
1928 EXPORT_SYMBOL(blk_init_queue
);
1930 struct request_queue
*
1931 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1933 struct request_queue
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1939 if (blk_init_free_list(q
)) {
1940 kmem_cache_free(requestq_cachep
, q
);
1945 * if caller didn't supply a lock, they get per-queue locking with
1949 spin_lock_init(&q
->__queue_lock
);
1950 lock
= &q
->__queue_lock
;
1953 q
->request_fn
= rfn
;
1954 q
->prep_rq_fn
= NULL
;
1955 q
->unplug_fn
= generic_unplug_device
;
1956 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1957 q
->queue_lock
= lock
;
1959 blk_queue_segment_boundary(q
, 0xffffffff);
1961 blk_queue_make_request(q
, __make_request
);
1962 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1964 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1965 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1967 q
->sg_reserved_size
= INT_MAX
;
1972 if (!elevator_init(q
, NULL
)) {
1973 blk_queue_congestion_threshold(q
);
1980 EXPORT_SYMBOL(blk_init_queue_node
);
1982 int blk_get_queue(struct request_queue
*q
)
1984 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1985 kobject_get(&q
->kobj
);
1992 EXPORT_SYMBOL(blk_get_queue
);
1994 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
1996 if (rq
->cmd_flags
& REQ_ELVPRIV
)
1997 elv_put_request(q
, rq
);
1998 mempool_free(rq
, q
->rq
.rq_pool
);
2001 static struct request
*
2002 blk_alloc_request(struct request_queue
*q
, int rw
, int priv
, gfp_t gfp_mask
)
2004 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
2010 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2011 * see bio.h and blkdev.h
2013 rq
->cmd_flags
= rw
| REQ_ALLOCED
;
2016 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
2017 mempool_free(rq
, q
->rq
.rq_pool
);
2020 rq
->cmd_flags
|= REQ_ELVPRIV
;
2027 * ioc_batching returns true if the ioc is a valid batching request and
2028 * should be given priority access to a request.
2030 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
2036 * Make sure the process is able to allocate at least 1 request
2037 * even if the batch times out, otherwise we could theoretically
2040 return ioc
->nr_batch_requests
== q
->nr_batching
||
2041 (ioc
->nr_batch_requests
> 0
2042 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
2046 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2047 * will cause the process to be a "batcher" on all queues in the system. This
2048 * is the behaviour we want though - once it gets a wakeup it should be given
2051 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
2053 if (!ioc
|| ioc_batching(q
, ioc
))
2056 ioc
->nr_batch_requests
= q
->nr_batching
;
2057 ioc
->last_waited
= jiffies
;
2060 static void __freed_request(struct request_queue
*q
, int rw
)
2062 struct request_list
*rl
= &q
->rq
;
2064 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
2065 blk_clear_queue_congested(q
, rw
);
2067 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
2068 if (waitqueue_active(&rl
->wait
[rw
]))
2069 wake_up(&rl
->wait
[rw
]);
2071 blk_clear_queue_full(q
, rw
);
2076 * A request has just been released. Account for it, update the full and
2077 * congestion status, wake up any waiters. Called under q->queue_lock.
2079 static void freed_request(struct request_queue
*q
, int rw
, int priv
)
2081 struct request_list
*rl
= &q
->rq
;
2087 __freed_request(q
, rw
);
2089 if (unlikely(rl
->starved
[rw
^ 1]))
2090 __freed_request(q
, rw
^ 1);
2093 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2095 * Get a free request, queue_lock must be held.
2096 * Returns NULL on failure, with queue_lock held.
2097 * Returns !NULL on success, with queue_lock *not held*.
2099 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
2100 struct bio
*bio
, gfp_t gfp_mask
)
2102 struct request
*rq
= NULL
;
2103 struct request_list
*rl
= &q
->rq
;
2104 struct io_context
*ioc
= NULL
;
2105 const int rw
= rw_flags
& 0x01;
2106 int may_queue
, priv
;
2108 may_queue
= elv_may_queue(q
, rw_flags
);
2109 if (may_queue
== ELV_MQUEUE_NO
)
2112 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
2113 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
2114 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
2116 * The queue will fill after this allocation, so set
2117 * it as full, and mark this process as "batching".
2118 * This process will be allowed to complete a batch of
2119 * requests, others will be blocked.
2121 if (!blk_queue_full(q
, rw
)) {
2122 ioc_set_batching(q
, ioc
);
2123 blk_set_queue_full(q
, rw
);
2125 if (may_queue
!= ELV_MQUEUE_MUST
2126 && !ioc_batching(q
, ioc
)) {
2128 * The queue is full and the allocating
2129 * process is not a "batcher", and not
2130 * exempted by the IO scheduler
2136 blk_set_queue_congested(q
, rw
);
2140 * Only allow batching queuers to allocate up to 50% over the defined
2141 * limit of requests, otherwise we could have thousands of requests
2142 * allocated with any setting of ->nr_requests
2144 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
2148 rl
->starved
[rw
] = 0;
2150 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
2154 spin_unlock_irq(q
->queue_lock
);
2156 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
2157 if (unlikely(!rq
)) {
2159 * Allocation failed presumably due to memory. Undo anything
2160 * we might have messed up.
2162 * Allocating task should really be put onto the front of the
2163 * wait queue, but this is pretty rare.
2165 spin_lock_irq(q
->queue_lock
);
2166 freed_request(q
, rw
, priv
);
2169 * in the very unlikely event that allocation failed and no
2170 * requests for this direction was pending, mark us starved
2171 * so that freeing of a request in the other direction will
2172 * notice us. another possible fix would be to split the
2173 * rq mempool into READ and WRITE
2176 if (unlikely(rl
->count
[rw
] == 0))
2177 rl
->starved
[rw
] = 1;
2183 * ioc may be NULL here, and ioc_batching will be false. That's
2184 * OK, if the queue is under the request limit then requests need
2185 * not count toward the nr_batch_requests limit. There will always
2186 * be some limit enforced by BLK_BATCH_TIME.
2188 if (ioc_batching(q
, ioc
))
2189 ioc
->nr_batch_requests
--;
2193 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
2199 * No available requests for this queue, unplug the device and wait for some
2200 * requests to become available.
2202 * Called with q->queue_lock held, and returns with it unlocked.
2204 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
2207 const int rw
= rw_flags
& 0x01;
2210 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
2213 struct request_list
*rl
= &q
->rq
;
2215 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
2216 TASK_UNINTERRUPTIBLE
);
2218 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
2221 struct io_context
*ioc
;
2223 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
2225 __generic_unplug_device(q
);
2226 spin_unlock_irq(q
->queue_lock
);
2230 * After sleeping, we become a "batching" process and
2231 * will be able to allocate at least one request, and
2232 * up to a big batch of them for a small period time.
2233 * See ioc_batching, ioc_set_batching
2235 ioc
= current_io_context(GFP_NOIO
, q
->node
);
2236 ioc_set_batching(q
, ioc
);
2238 spin_lock_irq(q
->queue_lock
);
2240 finish_wait(&rl
->wait
[rw
], &wait
);
2246 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
2250 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2252 spin_lock_irq(q
->queue_lock
);
2253 if (gfp_mask
& __GFP_WAIT
) {
2254 rq
= get_request_wait(q
, rw
, NULL
);
2256 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2258 spin_unlock_irq(q
->queue_lock
);
2260 /* q->queue_lock is unlocked at this point */
2264 EXPORT_SYMBOL(blk_get_request
);
2267 * blk_start_queueing - initiate dispatch of requests to device
2268 * @q: request queue to kick into gear
2270 * This is basically a helper to remove the need to know whether a queue
2271 * is plugged or not if someone just wants to initiate dispatch of requests
2274 * The queue lock must be held with interrupts disabled.
2276 void blk_start_queueing(struct request_queue
*q
)
2278 if (!blk_queue_plugged(q
))
2281 __generic_unplug_device(q
);
2283 EXPORT_SYMBOL(blk_start_queueing
);
2286 * blk_requeue_request - put a request back on queue
2287 * @q: request queue where request should be inserted
2288 * @rq: request to be inserted
2291 * Drivers often keep queueing requests until the hardware cannot accept
2292 * more, when that condition happens we need to put the request back
2293 * on the queue. Must be called with queue lock held.
2295 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
2297 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
2299 if (blk_rq_tagged(rq
))
2300 blk_queue_end_tag(q
, rq
);
2302 elv_requeue_request(q
, rq
);
2305 EXPORT_SYMBOL(blk_requeue_request
);
2308 * blk_insert_request - insert a special request in to a request queue
2309 * @q: request queue where request should be inserted
2310 * @rq: request to be inserted
2311 * @at_head: insert request at head or tail of queue
2312 * @data: private data
2315 * Many block devices need to execute commands asynchronously, so they don't
2316 * block the whole kernel from preemption during request execution. This is
2317 * accomplished normally by inserting aritficial requests tagged as
2318 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2319 * scheduled for actual execution by the request queue.
2321 * We have the option of inserting the head or the tail of the queue.
2322 * Typically we use the tail for new ioctls and so forth. We use the head
2323 * of the queue for things like a QUEUE_FULL message from a device, or a
2324 * host that is unable to accept a particular command.
2326 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
2327 int at_head
, void *data
)
2329 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2330 unsigned long flags
;
2333 * tell I/O scheduler that this isn't a regular read/write (ie it
2334 * must not attempt merges on this) and that it acts as a soft
2337 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
2338 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
2342 spin_lock_irqsave(q
->queue_lock
, flags
);
2345 * If command is tagged, release the tag
2347 if (blk_rq_tagged(rq
))
2348 blk_queue_end_tag(q
, rq
);
2350 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2351 __elv_add_request(q
, rq
, where
, 0);
2352 blk_start_queueing(q
);
2353 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2356 EXPORT_SYMBOL(blk_insert_request
);
2358 static int __blk_rq_unmap_user(struct bio
*bio
)
2363 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2364 bio_unmap_user(bio
);
2366 ret
= bio_uncopy_user(bio
);
2372 int blk_rq_append_bio(struct request_queue
*q
, struct request
*rq
,
2376 blk_rq_bio_prep(q
, rq
, bio
);
2377 else if (!ll_back_merge_fn(q
, rq
, bio
))
2380 rq
->biotail
->bi_next
= bio
;
2383 rq
->data_len
+= bio
->bi_size
;
2387 EXPORT_SYMBOL(blk_rq_append_bio
);
2389 static int __blk_rq_map_user(struct request_queue
*q
, struct request
*rq
,
2390 void __user
*ubuf
, unsigned int len
)
2392 unsigned long uaddr
;
2393 struct bio
*bio
, *orig_bio
;
2396 reading
= rq_data_dir(rq
) == READ
;
2399 * if alignment requirement is satisfied, map in user pages for
2400 * direct dma. else, set up kernel bounce buffers
2402 uaddr
= (unsigned long) ubuf
;
2403 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2404 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2406 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2409 return PTR_ERR(bio
);
2412 blk_queue_bounce(q
, &bio
);
2415 * We link the bounce buffer in and could have to traverse it
2416 * later so we have to get a ref to prevent it from being freed
2420 ret
= blk_rq_append_bio(q
, rq
, bio
);
2422 return bio
->bi_size
;
2424 /* if it was boucned we must call the end io function */
2425 bio_endio(bio
, bio
->bi_size
, 0);
2426 __blk_rq_unmap_user(orig_bio
);
2432 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2433 * @q: request queue where request should be inserted
2434 * @rq: request structure to fill
2435 * @ubuf: the user buffer
2436 * @len: length of user data
2439 * Data will be mapped directly for zero copy io, if possible. Otherwise
2440 * a kernel bounce buffer is used.
2442 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2443 * still in process context.
2445 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2446 * before being submitted to the device, as pages mapped may be out of
2447 * reach. It's the callers responsibility to make sure this happens. The
2448 * original bio must be passed back in to blk_rq_unmap_user() for proper
2451 int blk_rq_map_user(struct request_queue
*q
, struct request
*rq
,
2452 void __user
*ubuf
, unsigned long len
)
2454 unsigned long bytes_read
= 0;
2455 struct bio
*bio
= NULL
;
2458 if (len
> (q
->max_hw_sectors
<< 9))
2463 while (bytes_read
!= len
) {
2464 unsigned long map_len
, end
, start
;
2466 map_len
= min_t(unsigned long, len
- bytes_read
, BIO_MAX_SIZE
);
2467 end
= ((unsigned long)ubuf
+ map_len
+ PAGE_SIZE
- 1)
2469 start
= (unsigned long)ubuf
>> PAGE_SHIFT
;
2472 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2473 * pages. If this happens we just lower the requested
2474 * mapping len by a page so that we can fit
2476 if (end
- start
> BIO_MAX_PAGES
)
2477 map_len
-= PAGE_SIZE
;
2479 ret
= __blk_rq_map_user(q
, rq
, ubuf
, map_len
);
2488 rq
->buffer
= rq
->data
= NULL
;
2491 blk_rq_unmap_user(bio
);
2495 EXPORT_SYMBOL(blk_rq_map_user
);
2498 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2499 * @q: request queue where request should be inserted
2500 * @rq: request to map data to
2501 * @iov: pointer to the iovec
2502 * @iov_count: number of elements in the iovec
2503 * @len: I/O byte count
2506 * Data will be mapped directly for zero copy io, if possible. Otherwise
2507 * a kernel bounce buffer is used.
2509 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2510 * still in process context.
2512 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2513 * before being submitted to the device, as pages mapped may be out of
2514 * reach. It's the callers responsibility to make sure this happens. The
2515 * original bio must be passed back in to blk_rq_unmap_user() for proper
2518 int blk_rq_map_user_iov(struct request_queue
*q
, struct request
*rq
,
2519 struct sg_iovec
*iov
, int iov_count
, unsigned int len
)
2523 if (!iov
|| iov_count
<= 0)
2526 /* we don't allow misaligned data like bio_map_user() does. If the
2527 * user is using sg, they're expected to know the alignment constraints
2528 * and respect them accordingly */
2529 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2531 return PTR_ERR(bio
);
2533 if (bio
->bi_size
!= len
) {
2534 bio_endio(bio
, bio
->bi_size
, 0);
2535 bio_unmap_user(bio
);
2540 blk_rq_bio_prep(q
, rq
, bio
);
2541 rq
->buffer
= rq
->data
= NULL
;
2545 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2548 * blk_rq_unmap_user - unmap a request with user data
2549 * @bio: start of bio list
2552 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2553 * supply the original rq->bio from the blk_rq_map_user() return, since
2554 * the io completion may have changed rq->bio.
2556 int blk_rq_unmap_user(struct bio
*bio
)
2558 struct bio
*mapped_bio
;
2563 if (unlikely(bio_flagged(bio
, BIO_BOUNCED
)))
2564 mapped_bio
= bio
->bi_private
;
2566 ret2
= __blk_rq_unmap_user(mapped_bio
);
2572 bio_put(mapped_bio
);
2578 EXPORT_SYMBOL(blk_rq_unmap_user
);
2581 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2582 * @q: request queue where request should be inserted
2583 * @rq: request to fill
2584 * @kbuf: the kernel buffer
2585 * @len: length of user data
2586 * @gfp_mask: memory allocation flags
2588 int blk_rq_map_kern(struct request_queue
*q
, struct request
*rq
, void *kbuf
,
2589 unsigned int len
, gfp_t gfp_mask
)
2593 if (len
> (q
->max_hw_sectors
<< 9))
2598 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2600 return PTR_ERR(bio
);
2602 if (rq_data_dir(rq
) == WRITE
)
2603 bio
->bi_rw
|= (1 << BIO_RW
);
2605 blk_rq_bio_prep(q
, rq
, bio
);
2606 blk_queue_bounce(q
, &rq
->bio
);
2607 rq
->buffer
= rq
->data
= NULL
;
2611 EXPORT_SYMBOL(blk_rq_map_kern
);
2614 * blk_execute_rq_nowait - insert a request into queue for execution
2615 * @q: queue to insert the request in
2616 * @bd_disk: matching gendisk
2617 * @rq: request to insert
2618 * @at_head: insert request at head or tail of queue
2619 * @done: I/O completion handler
2622 * Insert a fully prepared request at the back of the io scheduler queue
2623 * for execution. Don't wait for completion.
2625 void blk_execute_rq_nowait(struct request_queue
*q
, struct gendisk
*bd_disk
,
2626 struct request
*rq
, int at_head
,
2629 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2631 rq
->rq_disk
= bd_disk
;
2632 rq
->cmd_flags
|= REQ_NOMERGE
;
2634 WARN_ON(irqs_disabled());
2635 spin_lock_irq(q
->queue_lock
);
2636 __elv_add_request(q
, rq
, where
, 1);
2637 __generic_unplug_device(q
);
2638 spin_unlock_irq(q
->queue_lock
);
2640 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
2643 * blk_execute_rq - insert a request into queue for execution
2644 * @q: queue to insert the request in
2645 * @bd_disk: matching gendisk
2646 * @rq: request to insert
2647 * @at_head: insert request at head or tail of queue
2650 * Insert a fully prepared request at the back of the io scheduler queue
2651 * for execution and wait for completion.
2653 int blk_execute_rq(struct request_queue
*q
, struct gendisk
*bd_disk
,
2654 struct request
*rq
, int at_head
)
2656 DECLARE_COMPLETION_ONSTACK(wait
);
2657 char sense
[SCSI_SENSE_BUFFERSIZE
];
2661 * we need an extra reference to the request, so we can look at
2662 * it after io completion
2667 memset(sense
, 0, sizeof(sense
));
2672 rq
->end_io_data
= &wait
;
2673 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2674 wait_for_completion(&wait
);
2682 EXPORT_SYMBOL(blk_execute_rq
);
2685 * blkdev_issue_flush - queue a flush
2686 * @bdev: blockdev to issue flush for
2687 * @error_sector: error sector
2690 * Issue a flush for the block device in question. Caller can supply
2691 * room for storing the error offset in case of a flush error, if they
2692 * wish to. Caller must run wait_for_completion() on its own.
2694 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2696 struct request_queue
*q
;
2698 if (bdev
->bd_disk
== NULL
)
2701 q
= bdev_get_queue(bdev
);
2704 if (!q
->issue_flush_fn
)
2707 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2710 EXPORT_SYMBOL(blkdev_issue_flush
);
2712 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2714 int rw
= rq_data_dir(rq
);
2716 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2720 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2722 disk_round_stats(rq
->rq_disk
);
2723 rq
->rq_disk
->in_flight
++;
2728 * add-request adds a request to the linked list.
2729 * queue lock is held and interrupts disabled, as we muck with the
2730 * request queue list.
2732 static inline void add_request(struct request_queue
* q
, struct request
* req
)
2734 drive_stat_acct(req
, req
->nr_sectors
, 1);
2737 * elevator indicated where it wants this request to be
2738 * inserted at elevator_merge time
2740 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2744 * disk_round_stats() - Round off the performance stats on a struct
2747 * The average IO queue length and utilisation statistics are maintained
2748 * by observing the current state of the queue length and the amount of
2749 * time it has been in this state for.
2751 * Normally, that accounting is done on IO completion, but that can result
2752 * in more than a second's worth of IO being accounted for within any one
2753 * second, leading to >100% utilisation. To deal with that, we call this
2754 * function to do a round-off before returning the results when reading
2755 * /proc/diskstats. This accounts immediately for all queue usage up to
2756 * the current jiffies and restarts the counters again.
2758 void disk_round_stats(struct gendisk
*disk
)
2760 unsigned long now
= jiffies
;
2762 if (now
== disk
->stamp
)
2765 if (disk
->in_flight
) {
2766 __disk_stat_add(disk
, time_in_queue
,
2767 disk
->in_flight
* (now
- disk
->stamp
));
2768 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2773 EXPORT_SYMBOL_GPL(disk_round_stats
);
2776 * queue lock must be held
2778 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
2782 if (unlikely(--req
->ref_count
))
2785 elv_completed_request(q
, req
);
2788 * Request may not have originated from ll_rw_blk. if not,
2789 * it didn't come out of our reserved rq pools
2791 if (req
->cmd_flags
& REQ_ALLOCED
) {
2792 int rw
= rq_data_dir(req
);
2793 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
2795 BUG_ON(!list_empty(&req
->queuelist
));
2796 BUG_ON(!hlist_unhashed(&req
->hash
));
2798 blk_free_request(q
, req
);
2799 freed_request(q
, rw
, priv
);
2803 EXPORT_SYMBOL_GPL(__blk_put_request
);
2805 void blk_put_request(struct request
*req
)
2807 unsigned long flags
;
2808 struct request_queue
*q
= req
->q
;
2811 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2812 * following if (q) test.
2815 spin_lock_irqsave(q
->queue_lock
, flags
);
2816 __blk_put_request(q
, req
);
2817 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2821 EXPORT_SYMBOL(blk_put_request
);
2824 * blk_end_sync_rq - executes a completion event on a request
2825 * @rq: request to complete
2826 * @error: end io status of the request
2828 void blk_end_sync_rq(struct request
*rq
, int error
)
2830 struct completion
*waiting
= rq
->end_io_data
;
2832 rq
->end_io_data
= NULL
;
2833 __blk_put_request(rq
->q
, rq
);
2836 * complete last, if this is a stack request the process (and thus
2837 * the rq pointer) could be invalid right after this complete()
2841 EXPORT_SYMBOL(blk_end_sync_rq
);
2844 * Has to be called with the request spinlock acquired
2846 static int attempt_merge(struct request_queue
*q
, struct request
*req
,
2847 struct request
*next
)
2849 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2855 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2858 if (rq_data_dir(req
) != rq_data_dir(next
)
2859 || req
->rq_disk
!= next
->rq_disk
2864 * If we are allowed to merge, then append bio list
2865 * from next to rq and release next. merge_requests_fn
2866 * will have updated segment counts, update sector
2869 if (!ll_merge_requests_fn(q
, req
, next
))
2873 * At this point we have either done a back merge
2874 * or front merge. We need the smaller start_time of
2875 * the merged requests to be the current request
2876 * for accounting purposes.
2878 if (time_after(req
->start_time
, next
->start_time
))
2879 req
->start_time
= next
->start_time
;
2881 req
->biotail
->bi_next
= next
->bio
;
2882 req
->biotail
= next
->biotail
;
2884 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2886 elv_merge_requests(q
, req
, next
);
2889 disk_round_stats(req
->rq_disk
);
2890 req
->rq_disk
->in_flight
--;
2893 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2895 __blk_put_request(q
, next
);
2899 static inline int attempt_back_merge(struct request_queue
*q
,
2902 struct request
*next
= elv_latter_request(q
, rq
);
2905 return attempt_merge(q
, rq
, next
);
2910 static inline int attempt_front_merge(struct request_queue
*q
,
2913 struct request
*prev
= elv_former_request(q
, rq
);
2916 return attempt_merge(q
, prev
, rq
);
2921 static void init_request_from_bio(struct request
*req
, struct bio
*bio
)
2923 req
->cmd_type
= REQ_TYPE_FS
;
2926 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2928 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2929 req
->cmd_flags
|= REQ_FAILFAST
;
2932 * REQ_BARRIER implies no merging, but lets make it explicit
2934 if (unlikely(bio_barrier(bio
)))
2935 req
->cmd_flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2938 req
->cmd_flags
|= REQ_RW_SYNC
;
2939 if (bio_rw_meta(bio
))
2940 req
->cmd_flags
|= REQ_RW_META
;
2943 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
2944 req
->ioprio
= bio_prio(bio
);
2945 req
->start_time
= jiffies
;
2946 blk_rq_bio_prep(req
->q
, req
, bio
);
2949 static int __make_request(struct request_queue
*q
, struct bio
*bio
)
2951 struct request
*req
;
2952 int el_ret
, nr_sectors
, barrier
, err
;
2953 const unsigned short prio
= bio_prio(bio
);
2954 const int sync
= bio_sync(bio
);
2957 nr_sectors
= bio_sectors(bio
);
2960 * low level driver can indicate that it wants pages above a
2961 * certain limit bounced to low memory (ie for highmem, or even
2962 * ISA dma in theory)
2964 blk_queue_bounce(q
, &bio
);
2966 barrier
= bio_barrier(bio
);
2967 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
2972 spin_lock_irq(q
->queue_lock
);
2974 if (unlikely(barrier
) || elv_queue_empty(q
))
2977 el_ret
= elv_merge(q
, &req
, bio
);
2979 case ELEVATOR_BACK_MERGE
:
2980 BUG_ON(!rq_mergeable(req
));
2982 if (!ll_back_merge_fn(q
, req
, bio
))
2985 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
2987 req
->biotail
->bi_next
= bio
;
2989 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2990 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2991 drive_stat_acct(req
, nr_sectors
, 0);
2992 if (!attempt_back_merge(q
, req
))
2993 elv_merged_request(q
, req
, el_ret
);
2996 case ELEVATOR_FRONT_MERGE
:
2997 BUG_ON(!rq_mergeable(req
));
2999 if (!ll_front_merge_fn(q
, req
, bio
))
3002 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
3004 bio
->bi_next
= req
->bio
;
3008 * may not be valid. if the low level driver said
3009 * it didn't need a bounce buffer then it better
3010 * not touch req->buffer either...
3012 req
->buffer
= bio_data(bio
);
3013 req
->current_nr_sectors
= bio_cur_sectors(bio
);
3014 req
->hard_cur_sectors
= req
->current_nr_sectors
;
3015 req
->sector
= req
->hard_sector
= bio
->bi_sector
;
3016 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
3017 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
3018 drive_stat_acct(req
, nr_sectors
, 0);
3019 if (!attempt_front_merge(q
, req
))
3020 elv_merged_request(q
, req
, el_ret
);
3023 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3030 * This sync check and mask will be re-done in init_request_from_bio(),
3031 * but we need to set it earlier to expose the sync flag to the
3032 * rq allocator and io schedulers.
3034 rw_flags
= bio_data_dir(bio
);
3036 rw_flags
|= REQ_RW_SYNC
;
3039 * Grab a free request. This is might sleep but can not fail.
3040 * Returns with the queue unlocked.
3042 req
= get_request_wait(q
, rw_flags
, bio
);
3045 * After dropping the lock and possibly sleeping here, our request
3046 * may now be mergeable after it had proven unmergeable (above).
3047 * We don't worry about that case for efficiency. It won't happen
3048 * often, and the elevators are able to handle it.
3050 init_request_from_bio(req
, bio
);
3052 spin_lock_irq(q
->queue_lock
);
3053 if (elv_queue_empty(q
))
3055 add_request(q
, req
);
3058 __generic_unplug_device(q
);
3060 spin_unlock_irq(q
->queue_lock
);
3064 bio_endio(bio
, nr_sectors
<< 9, err
);
3069 * If bio->bi_dev is a partition, remap the location
3071 static inline void blk_partition_remap(struct bio
*bio
)
3073 struct block_device
*bdev
= bio
->bi_bdev
;
3075 if (bdev
!= bdev
->bd_contains
) {
3076 struct hd_struct
*p
= bdev
->bd_part
;
3077 const int rw
= bio_data_dir(bio
);
3079 p
->sectors
[rw
] += bio_sectors(bio
);
3082 bio
->bi_sector
+= p
->start_sect
;
3083 bio
->bi_bdev
= bdev
->bd_contains
;
3085 blk_add_trace_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
3086 bdev
->bd_dev
, bio
->bi_sector
,
3087 bio
->bi_sector
- p
->start_sect
);
3091 static void handle_bad_sector(struct bio
*bio
)
3093 char b
[BDEVNAME_SIZE
];
3095 printk(KERN_INFO
"attempt to access beyond end of device\n");
3096 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
3097 bdevname(bio
->bi_bdev
, b
),
3099 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
3100 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
3102 set_bit(BIO_EOF
, &bio
->bi_flags
);
3105 #ifdef CONFIG_FAIL_MAKE_REQUEST
3107 static DECLARE_FAULT_ATTR(fail_make_request
);
3109 static int __init
setup_fail_make_request(char *str
)
3111 return setup_fault_attr(&fail_make_request
, str
);
3113 __setup("fail_make_request=", setup_fail_make_request
);
3115 static int should_fail_request(struct bio
*bio
)
3117 if ((bio
->bi_bdev
->bd_disk
->flags
& GENHD_FL_FAIL
) ||
3118 (bio
->bi_bdev
->bd_part
&& bio
->bi_bdev
->bd_part
->make_it_fail
))
3119 return should_fail(&fail_make_request
, bio
->bi_size
);
3124 static int __init
fail_make_request_debugfs(void)
3126 return init_fault_attr_dentries(&fail_make_request
,
3127 "fail_make_request");
3130 late_initcall(fail_make_request_debugfs
);
3132 #else /* CONFIG_FAIL_MAKE_REQUEST */
3134 static inline int should_fail_request(struct bio
*bio
)
3139 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3142 * generic_make_request: hand a buffer to its device driver for I/O
3143 * @bio: The bio describing the location in memory and on the device.
3145 * generic_make_request() is used to make I/O requests of block
3146 * devices. It is passed a &struct bio, which describes the I/O that needs
3149 * generic_make_request() does not return any status. The
3150 * success/failure status of the request, along with notification of
3151 * completion, is delivered asynchronously through the bio->bi_end_io
3152 * function described (one day) else where.
3154 * The caller of generic_make_request must make sure that bi_io_vec
3155 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3156 * set to describe the device address, and the
3157 * bi_end_io and optionally bi_private are set to describe how
3158 * completion notification should be signaled.
3160 * generic_make_request and the drivers it calls may use bi_next if this
3161 * bio happens to be merged with someone else, and may change bi_dev and
3162 * bi_sector for remaps as it sees fit. So the values of these fields
3163 * should NOT be depended on after the call to generic_make_request.
3165 static inline void __generic_make_request(struct bio
*bio
)
3167 struct request_queue
*q
;
3169 sector_t old_sector
;
3170 int ret
, nr_sectors
= bio_sectors(bio
);
3174 /* Test device or partition size, when known. */
3175 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3177 sector_t sector
= bio
->bi_sector
;
3179 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
3181 * This may well happen - the kernel calls bread()
3182 * without checking the size of the device, e.g., when
3183 * mounting a device.
3185 handle_bad_sector(bio
);
3191 * Resolve the mapping until finished. (drivers are
3192 * still free to implement/resolve their own stacking
3193 * by explicitly returning 0)
3195 * NOTE: we don't repeat the blk_size check for each new device.
3196 * Stacking drivers are expected to know what they are doing.
3201 char b
[BDEVNAME_SIZE
];
3203 q
= bdev_get_queue(bio
->bi_bdev
);
3206 "generic_make_request: Trying to access "
3207 "nonexistent block-device %s (%Lu)\n",
3208 bdevname(bio
->bi_bdev
, b
),
3209 (long long) bio
->bi_sector
);
3211 bio_endio(bio
, bio
->bi_size
, -EIO
);
3215 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
3216 printk("bio too big device %s (%u > %u)\n",
3217 bdevname(bio
->bi_bdev
, b
),
3223 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
3226 if (should_fail_request(bio
))
3230 * If this device has partitions, remap block n
3231 * of partition p to block n+start(p) of the disk.
3233 blk_partition_remap(bio
);
3235 if (old_sector
!= -1)
3236 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
3239 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
3241 old_sector
= bio
->bi_sector
;
3242 old_dev
= bio
->bi_bdev
->bd_dev
;
3244 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3246 sector_t sector
= bio
->bi_sector
;
3248 if (maxsector
< nr_sectors
||
3249 maxsector
- nr_sectors
< sector
) {
3251 * This may well happen - partitions are not
3252 * checked to make sure they are within the size
3253 * of the whole device.
3255 handle_bad_sector(bio
);
3260 ret
= q
->make_request_fn(q
, bio
);
3265 * We only want one ->make_request_fn to be active at a time,
3266 * else stack usage with stacked devices could be a problem.
3267 * So use current->bio_{list,tail} to keep a list of requests
3268 * submited by a make_request_fn function.
3269 * current->bio_tail is also used as a flag to say if
3270 * generic_make_request is currently active in this task or not.
3271 * If it is NULL, then no make_request is active. If it is non-NULL,
3272 * then a make_request is active, and new requests should be added
3275 void generic_make_request(struct bio
*bio
)
3277 if (current
->bio_tail
) {
3278 /* make_request is active */
3279 *(current
->bio_tail
) = bio
;
3280 bio
->bi_next
= NULL
;
3281 current
->bio_tail
= &bio
->bi_next
;
3284 /* following loop may be a bit non-obvious, and so deserves some
3286 * Before entering the loop, bio->bi_next is NULL (as all callers
3287 * ensure that) so we have a list with a single bio.
3288 * We pretend that we have just taken it off a longer list, so
3289 * we assign bio_list to the next (which is NULL) and bio_tail
3290 * to &bio_list, thus initialising the bio_list of new bios to be
3291 * added. __generic_make_request may indeed add some more bios
3292 * through a recursive call to generic_make_request. If it
3293 * did, we find a non-NULL value in bio_list and re-enter the loop
3294 * from the top. In this case we really did just take the bio
3295 * of the top of the list (no pretending) and so fixup bio_list and
3296 * bio_tail or bi_next, and call into __generic_make_request again.
3298 * The loop was structured like this to make only one call to
3299 * __generic_make_request (which is important as it is large and
3300 * inlined) and to keep the structure simple.
3302 BUG_ON(bio
->bi_next
);
3304 current
->bio_list
= bio
->bi_next
;
3305 if (bio
->bi_next
== NULL
)
3306 current
->bio_tail
= ¤t
->bio_list
;
3308 bio
->bi_next
= NULL
;
3309 __generic_make_request(bio
);
3310 bio
= current
->bio_list
;
3312 current
->bio_tail
= NULL
; /* deactivate */
3315 EXPORT_SYMBOL(generic_make_request
);
3318 * submit_bio: submit a bio to the block device layer for I/O
3319 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3320 * @bio: The &struct bio which describes the I/O
3322 * submit_bio() is very similar in purpose to generic_make_request(), and
3323 * uses that function to do most of the work. Both are fairly rough
3324 * interfaces, @bio must be presetup and ready for I/O.
3327 void submit_bio(int rw
, struct bio
*bio
)
3329 int count
= bio_sectors(bio
);
3331 BIO_BUG_ON(!bio
->bi_size
);
3332 BIO_BUG_ON(!bio
->bi_io_vec
);
3335 count_vm_events(PGPGOUT
, count
);
3337 task_io_account_read(bio
->bi_size
);
3338 count_vm_events(PGPGIN
, count
);
3341 if (unlikely(block_dump
)) {
3342 char b
[BDEVNAME_SIZE
];
3343 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
3344 current
->comm
, current
->pid
,
3345 (rw
& WRITE
) ? "WRITE" : "READ",
3346 (unsigned long long)bio
->bi_sector
,
3347 bdevname(bio
->bi_bdev
,b
));
3350 generic_make_request(bio
);
3353 EXPORT_SYMBOL(submit_bio
);
3355 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3357 if (blk_fs_request(rq
)) {
3358 rq
->hard_sector
+= nsect
;
3359 rq
->hard_nr_sectors
-= nsect
;
3362 * Move the I/O submission pointers ahead if required.
3364 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3365 (rq
->sector
<= rq
->hard_sector
)) {
3366 rq
->sector
= rq
->hard_sector
;
3367 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3368 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3369 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3370 rq
->buffer
= bio_data(rq
->bio
);
3374 * if total number of sectors is less than the first segment
3375 * size, something has gone terribly wrong
3377 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3378 printk("blk: request botched\n");
3379 rq
->nr_sectors
= rq
->current_nr_sectors
;
3384 static int __end_that_request_first(struct request
*req
, int uptodate
,
3387 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3390 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
3393 * extend uptodate bool to allow < 0 value to be direct io error
3396 if (end_io_error(uptodate
))
3397 error
= !uptodate
? -EIO
: uptodate
;
3400 * for a REQ_BLOCK_PC request, we want to carry any eventual
3401 * sense key with us all the way through
3403 if (!blk_pc_request(req
))
3407 if (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))
3408 printk("end_request: I/O error, dev %s, sector %llu\n",
3409 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3410 (unsigned long long)req
->sector
);
3413 if (blk_fs_request(req
) && req
->rq_disk
) {
3414 const int rw
= rq_data_dir(req
);
3416 disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3419 total_bytes
= bio_nbytes
= 0;
3420 while ((bio
= req
->bio
) != NULL
) {
3423 if (nr_bytes
>= bio
->bi_size
) {
3424 req
->bio
= bio
->bi_next
;
3425 nbytes
= bio
->bi_size
;
3426 if (!ordered_bio_endio(req
, bio
, nbytes
, error
))
3427 bio_endio(bio
, nbytes
, error
);
3431 int idx
= bio
->bi_idx
+ next_idx
;
3433 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3434 blk_dump_rq_flags(req
, "__end_that");
3435 printk("%s: bio idx %d >= vcnt %d\n",
3437 bio
->bi_idx
, bio
->bi_vcnt
);
3441 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3442 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3445 * not a complete bvec done
3447 if (unlikely(nbytes
> nr_bytes
)) {
3448 bio_nbytes
+= nr_bytes
;
3449 total_bytes
+= nr_bytes
;
3454 * advance to the next vector
3457 bio_nbytes
+= nbytes
;
3460 total_bytes
+= nbytes
;
3463 if ((bio
= req
->bio
)) {
3465 * end more in this run, or just return 'not-done'
3467 if (unlikely(nr_bytes
<= 0))
3479 * if the request wasn't completed, update state
3482 if (!ordered_bio_endio(req
, bio
, bio_nbytes
, error
))
3483 bio_endio(bio
, bio_nbytes
, error
);
3484 bio
->bi_idx
+= next_idx
;
3485 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3486 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3489 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3490 blk_recalc_rq_segments(req
);
3495 * end_that_request_first - end I/O on a request
3496 * @req: the request being processed
3497 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3498 * @nr_sectors: number of sectors to end I/O on
3501 * Ends I/O on a number of sectors attached to @req, and sets it up
3502 * for the next range of segments (if any) in the cluster.
3505 * 0 - we are done with this request, call end_that_request_last()
3506 * 1 - still buffers pending for this request
3508 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3510 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3513 EXPORT_SYMBOL(end_that_request_first
);
3516 * end_that_request_chunk - end I/O on a request
3517 * @req: the request being processed
3518 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3519 * @nr_bytes: number of bytes to complete
3522 * Ends I/O on a number of bytes attached to @req, and sets it up
3523 * for the next range of segments (if any). Like end_that_request_first(),
3524 * but deals with bytes instead of sectors.
3527 * 0 - we are done with this request, call end_that_request_last()
3528 * 1 - still buffers pending for this request
3530 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3532 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3535 EXPORT_SYMBOL(end_that_request_chunk
);
3538 * splice the completion data to a local structure and hand off to
3539 * process_completion_queue() to complete the requests
3541 static void blk_done_softirq(struct softirq_action
*h
)
3543 struct list_head
*cpu_list
, local_list
;
3545 local_irq_disable();
3546 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3547 list_replace_init(cpu_list
, &local_list
);
3550 while (!list_empty(&local_list
)) {
3551 struct request
*rq
= list_entry(local_list
.next
, struct request
, donelist
);
3553 list_del_init(&rq
->donelist
);
3554 rq
->q
->softirq_done_fn(rq
);
3558 static int __cpuinit
blk_cpu_notify(struct notifier_block
*self
, unsigned long action
,
3562 * If a CPU goes away, splice its entries to the current CPU
3563 * and trigger a run of the softirq
3565 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
3566 int cpu
= (unsigned long) hcpu
;
3568 local_irq_disable();
3569 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
3570 &__get_cpu_var(blk_cpu_done
));
3571 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3579 static struct notifier_block blk_cpu_notifier __cpuinitdata
= {
3580 .notifier_call
= blk_cpu_notify
,
3584 * blk_complete_request - end I/O on a request
3585 * @req: the request being processed
3588 * Ends all I/O on a request. It does not handle partial completions,
3589 * unless the driver actually implements this in its completion callback
3590 * through requeueing. Theh actual completion happens out-of-order,
3591 * through a softirq handler. The user must have registered a completion
3592 * callback through blk_queue_softirq_done().
3595 void blk_complete_request(struct request
*req
)
3597 struct list_head
*cpu_list
;
3598 unsigned long flags
;
3600 BUG_ON(!req
->q
->softirq_done_fn
);
3602 local_irq_save(flags
);
3604 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3605 list_add_tail(&req
->donelist
, cpu_list
);
3606 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3608 local_irq_restore(flags
);
3611 EXPORT_SYMBOL(blk_complete_request
);
3614 * queue lock must be held
3616 void end_that_request_last(struct request
*req
, int uptodate
)
3618 struct gendisk
*disk
= req
->rq_disk
;
3622 * extend uptodate bool to allow < 0 value to be direct io error
3625 if (end_io_error(uptodate
))
3626 error
= !uptodate
? -EIO
: uptodate
;
3628 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3629 laptop_io_completion();
3632 * Account IO completion. bar_rq isn't accounted as a normal
3633 * IO on queueing nor completion. Accounting the containing
3634 * request is enough.
3636 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
3637 unsigned long duration
= jiffies
- req
->start_time
;
3638 const int rw
= rq_data_dir(req
);
3640 __disk_stat_inc(disk
, ios
[rw
]);
3641 __disk_stat_add(disk
, ticks
[rw
], duration
);
3642 disk_round_stats(disk
);
3646 req
->end_io(req
, error
);
3648 __blk_put_request(req
->q
, req
);
3651 EXPORT_SYMBOL(end_that_request_last
);
3653 void end_request(struct request
*req
, int uptodate
)
3655 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3656 add_disk_randomness(req
->rq_disk
);
3657 blkdev_dequeue_request(req
);
3658 end_that_request_last(req
, uptodate
);
3662 EXPORT_SYMBOL(end_request
);
3664 static void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
3667 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3668 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
3670 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3671 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3672 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3673 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3674 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3675 rq
->buffer
= bio_data(bio
);
3676 rq
->data_len
= bio
->bi_size
;
3678 rq
->bio
= rq
->biotail
= bio
;
3681 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
3684 int kblockd_schedule_work(struct work_struct
*work
)
3686 return queue_work(kblockd_workqueue
, work
);
3689 EXPORT_SYMBOL(kblockd_schedule_work
);
3691 void kblockd_flush_work(struct work_struct
*work
)
3693 cancel_work_sync(work
);
3695 EXPORT_SYMBOL(kblockd_flush_work
);
3697 int __init
blk_dev_init(void)
3701 kblockd_workqueue
= create_workqueue("kblockd");
3702 if (!kblockd_workqueue
)
3703 panic("Failed to create kblockd\n");
3705 request_cachep
= kmem_cache_create("blkdev_requests",
3706 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3708 requestq_cachep
= kmem_cache_create("blkdev_queue",
3709 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
3711 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3712 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
);
3714 for_each_possible_cpu(i
)
3715 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
3717 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
3718 register_hotcpu_notifier(&blk_cpu_notifier
);
3720 blk_max_low_pfn
= max_low_pfn
- 1;
3721 blk_max_pfn
= max_pfn
- 1;
3727 * IO Context helper functions
3729 void put_io_context(struct io_context
*ioc
)
3734 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3736 if (atomic_dec_and_test(&ioc
->refcount
)) {
3737 struct cfq_io_context
*cic
;
3740 if (ioc
->aic
&& ioc
->aic
->dtor
)
3741 ioc
->aic
->dtor(ioc
->aic
);
3742 if (ioc
->cic_root
.rb_node
!= NULL
) {
3743 struct rb_node
*n
= rb_first(&ioc
->cic_root
);
3745 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
3750 kmem_cache_free(iocontext_cachep
, ioc
);
3753 EXPORT_SYMBOL(put_io_context
);
3755 /* Called by the exitting task */
3756 void exit_io_context(void)
3758 struct io_context
*ioc
;
3759 struct cfq_io_context
*cic
;
3762 ioc
= current
->io_context
;
3763 current
->io_context
= NULL
;
3764 task_unlock(current
);
3767 if (ioc
->aic
&& ioc
->aic
->exit
)
3768 ioc
->aic
->exit(ioc
->aic
);
3769 if (ioc
->cic_root
.rb_node
!= NULL
) {
3770 cic
= rb_entry(rb_first(&ioc
->cic_root
), struct cfq_io_context
, rb_node
);
3774 put_io_context(ioc
);
3778 * If the current task has no IO context then create one and initialise it.
3779 * Otherwise, return its existing IO context.
3781 * This returned IO context doesn't have a specifically elevated refcount,
3782 * but since the current task itself holds a reference, the context can be
3783 * used in general code, so long as it stays within `current` context.
3785 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
)
3787 struct task_struct
*tsk
= current
;
3788 struct io_context
*ret
;
3790 ret
= tsk
->io_context
;
3794 ret
= kmem_cache_alloc_node(iocontext_cachep
, gfp_flags
, node
);
3796 atomic_set(&ret
->refcount
, 1);
3797 ret
->task
= current
;
3798 ret
->ioprio_changed
= 0;
3799 ret
->last_waited
= jiffies
; /* doesn't matter... */
3800 ret
->nr_batch_requests
= 0; /* because this is 0 */
3802 ret
->cic_root
.rb_node
= NULL
;
3803 ret
->ioc_data
= NULL
;
3804 /* make sure set_task_ioprio() sees the settings above */
3806 tsk
->io_context
= ret
;
3813 * If the current task has no IO context then create one and initialise it.
3814 * If it does have a context, take a ref on it.
3816 * This is always called in the context of the task which submitted the I/O.
3818 struct io_context
*get_io_context(gfp_t gfp_flags
, int node
)
3820 struct io_context
*ret
;
3821 ret
= current_io_context(gfp_flags
, node
);
3823 atomic_inc(&ret
->refcount
);
3826 EXPORT_SYMBOL(get_io_context
);
3828 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3830 struct io_context
*src
= *psrc
;
3831 struct io_context
*dst
= *pdst
;
3834 BUG_ON(atomic_read(&src
->refcount
) == 0);
3835 atomic_inc(&src
->refcount
);
3836 put_io_context(dst
);
3840 EXPORT_SYMBOL(copy_io_context
);
3842 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3844 struct io_context
*temp
;
3849 EXPORT_SYMBOL(swap_io_context
);
3854 struct queue_sysfs_entry
{
3855 struct attribute attr
;
3856 ssize_t (*show
)(struct request_queue
*, char *);
3857 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3861 queue_var_show(unsigned int var
, char *page
)
3863 return sprintf(page
, "%d\n", var
);
3867 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3869 char *p
= (char *) page
;
3871 *var
= simple_strtoul(p
, &p
, 10);
3875 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3877 return queue_var_show(q
->nr_requests
, (page
));
3881 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3883 struct request_list
*rl
= &q
->rq
;
3885 int ret
= queue_var_store(&nr
, page
, count
);
3886 if (nr
< BLKDEV_MIN_RQ
)
3889 spin_lock_irq(q
->queue_lock
);
3890 q
->nr_requests
= nr
;
3891 blk_queue_congestion_threshold(q
);
3893 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3894 blk_set_queue_congested(q
, READ
);
3895 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3896 blk_clear_queue_congested(q
, READ
);
3898 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3899 blk_set_queue_congested(q
, WRITE
);
3900 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3901 blk_clear_queue_congested(q
, WRITE
);
3903 if (rl
->count
[READ
] >= q
->nr_requests
) {
3904 blk_set_queue_full(q
, READ
);
3905 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3906 blk_clear_queue_full(q
, READ
);
3907 wake_up(&rl
->wait
[READ
]);
3910 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3911 blk_set_queue_full(q
, WRITE
);
3912 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3913 blk_clear_queue_full(q
, WRITE
);
3914 wake_up(&rl
->wait
[WRITE
]);
3916 spin_unlock_irq(q
->queue_lock
);
3920 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3922 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3924 return queue_var_show(ra_kb
, (page
));
3928 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3930 unsigned long ra_kb
;
3931 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3933 spin_lock_irq(q
->queue_lock
);
3934 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3935 spin_unlock_irq(q
->queue_lock
);
3940 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3942 int max_sectors_kb
= q
->max_sectors
>> 1;
3944 return queue_var_show(max_sectors_kb
, (page
));
3948 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3950 unsigned long max_sectors_kb
,
3951 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3952 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3953 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3956 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3959 * Take the queue lock to update the readahead and max_sectors
3960 * values synchronously:
3962 spin_lock_irq(q
->queue_lock
);
3964 * Trim readahead window as well, if necessary:
3966 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3967 if (ra_kb
> max_sectors_kb
)
3968 q
->backing_dev_info
.ra_pages
=
3969 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3971 q
->max_sectors
= max_sectors_kb
<< 1;
3972 spin_unlock_irq(q
->queue_lock
);
3977 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3979 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3981 return queue_var_show(max_hw_sectors_kb
, (page
));
3985 static struct queue_sysfs_entry queue_requests_entry
= {
3986 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3987 .show
= queue_requests_show
,
3988 .store
= queue_requests_store
,
3991 static struct queue_sysfs_entry queue_ra_entry
= {
3992 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3993 .show
= queue_ra_show
,
3994 .store
= queue_ra_store
,
3997 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3998 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3999 .show
= queue_max_sectors_show
,
4000 .store
= queue_max_sectors_store
,
4003 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
4004 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
4005 .show
= queue_max_hw_sectors_show
,
4008 static struct queue_sysfs_entry queue_iosched_entry
= {
4009 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
4010 .show
= elv_iosched_show
,
4011 .store
= elv_iosched_store
,
4014 static struct attribute
*default_attrs
[] = {
4015 &queue_requests_entry
.attr
,
4016 &queue_ra_entry
.attr
,
4017 &queue_max_hw_sectors_entry
.attr
,
4018 &queue_max_sectors_entry
.attr
,
4019 &queue_iosched_entry
.attr
,
4023 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4026 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
4028 struct queue_sysfs_entry
*entry
= to_queue(attr
);
4029 struct request_queue
*q
=
4030 container_of(kobj
, struct request_queue
, kobj
);
4035 mutex_lock(&q
->sysfs_lock
);
4036 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
4037 mutex_unlock(&q
->sysfs_lock
);
4040 res
= entry
->show(q
, page
);
4041 mutex_unlock(&q
->sysfs_lock
);
4046 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
4047 const char *page
, size_t length
)
4049 struct queue_sysfs_entry
*entry
= to_queue(attr
);
4050 struct request_queue
*q
= container_of(kobj
, struct request_queue
, kobj
);
4056 mutex_lock(&q
->sysfs_lock
);
4057 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
4058 mutex_unlock(&q
->sysfs_lock
);
4061 res
= entry
->store(q
, page
, length
);
4062 mutex_unlock(&q
->sysfs_lock
);
4066 static struct sysfs_ops queue_sysfs_ops
= {
4067 .show
= queue_attr_show
,
4068 .store
= queue_attr_store
,
4071 static struct kobj_type queue_ktype
= {
4072 .sysfs_ops
= &queue_sysfs_ops
,
4073 .default_attrs
= default_attrs
,
4074 .release
= blk_release_queue
,
4077 int blk_register_queue(struct gendisk
*disk
)
4081 struct request_queue
*q
= disk
->queue
;
4083 if (!q
|| !q
->request_fn
)
4086 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
4088 ret
= kobject_add(&q
->kobj
);
4092 kobject_uevent(&q
->kobj
, KOBJ_ADD
);
4094 ret
= elv_register_queue(q
);
4096 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
4097 kobject_del(&q
->kobj
);
4104 void blk_unregister_queue(struct gendisk
*disk
)
4106 struct request_queue
*q
= disk
->queue
;
4108 if (q
&& q
->request_fn
) {
4109 elv_unregister_queue(q
);
4111 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
4112 kobject_del(&q
->kobj
);
4113 kobject_put(&disk
->kobj
);