x86: cpa: move clflush_cache_range()
[wrt350n-kernel.git] / drivers / net / e1000e / es2lan.c
blob88657adf965f29ac11386dea0d9da95a19088bd0
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
34 #include <linux/netdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/delay.h>
37 #include <linux/pci.h>
39 #include "e1000.h"
41 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
42 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
43 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
45 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
46 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
47 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
49 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
50 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
67 /* 1=Reverse Auto-Negotiation */
69 /* MAC Specific Control Register (Page 2, Register 21) */
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71 #define GG82563_MSCR_TX_CLK_MASK 0x0007
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
73 #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
78 /* DSP Distance Register (Page 5, Register 26) */
79 #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
80 1 = 50-80M
81 2 = 80-110M
82 3 = 110-140M
83 4 = >140M */
85 /* Kumeran Mode Control Register (Page 193, Register 16) */
86 #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
88 /* Power Management Control Register (Page 193, Register 20) */
89 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
90 /* 1=Enable SERDES Electrical Idle */
92 /* In-Band Control Register (Page 194, Register 18) */
93 #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
95 /* A table for the GG82563 cable length where the range is defined
96 * with a lower bound at "index" and the upper bound at
97 * "index + 5".
99 static const u16 e1000_gg82563_cable_length_table[] =
100 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
102 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
103 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
104 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
105 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
106 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
107 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
108 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
111 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
112 * @hw: pointer to the HW structure
114 * This is a function pointer entry point called by the api module.
116 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
118 struct e1000_phy_info *phy = &hw->phy;
119 s32 ret_val;
121 if (hw->media_type != e1000_media_type_copper) {
122 phy->type = e1000_phy_none;
123 return 0;
126 phy->addr = 1;
127 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
128 phy->reset_delay_us = 100;
129 phy->type = e1000_phy_gg82563;
131 /* This can only be done after all function pointers are setup. */
132 ret_val = e1000e_get_phy_id(hw);
134 /* Verify phy id */
135 if (phy->id != GG82563_E_PHY_ID)
136 return -E1000_ERR_PHY;
138 return ret_val;
142 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
143 * @hw: pointer to the HW structure
145 * This is a function pointer entry point called by the api module.
147 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
149 struct e1000_nvm_info *nvm = &hw->nvm;
150 u32 eecd = er32(EECD);
151 u16 size;
153 nvm->opcode_bits = 8;
154 nvm->delay_usec = 1;
155 switch (nvm->override) {
156 case e1000_nvm_override_spi_large:
157 nvm->page_size = 32;
158 nvm->address_bits = 16;
159 break;
160 case e1000_nvm_override_spi_small:
161 nvm->page_size = 8;
162 nvm->address_bits = 8;
163 break;
164 default:
165 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
166 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
167 break;
170 nvm->type = e1000_nvm_eeprom_spi;
172 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
173 E1000_EECD_SIZE_EX_SHIFT);
175 /* Added to a constant, "size" becomes the left-shift value
176 * for setting word_size.
178 size += NVM_WORD_SIZE_BASE_SHIFT;
179 nvm->word_size = 1 << size;
181 return 0;
185 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
186 * @hw: pointer to the HW structure
188 * This is a function pointer entry point called by the api module.
190 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
192 struct e1000_hw *hw = &adapter->hw;
193 struct e1000_mac_info *mac = &hw->mac;
194 struct e1000_mac_operations *func = &mac->ops;
196 /* Set media type */
197 switch (adapter->pdev->device) {
198 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
199 hw->media_type = e1000_media_type_internal_serdes;
200 break;
201 default:
202 hw->media_type = e1000_media_type_copper;
203 break;
206 /* Set mta register count */
207 mac->mta_reg_count = 128;
208 /* Set rar entry count */
209 mac->rar_entry_count = E1000_RAR_ENTRIES;
210 /* Set if manageability features are enabled. */
211 mac->arc_subsystem_valid =
212 (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
214 /* check for link */
215 switch (hw->media_type) {
216 case e1000_media_type_copper:
217 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
218 func->check_for_link = e1000e_check_for_copper_link;
219 break;
220 case e1000_media_type_fiber:
221 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
222 func->check_for_link = e1000e_check_for_fiber_link;
223 break;
224 case e1000_media_type_internal_serdes:
225 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
226 func->check_for_link = e1000e_check_for_serdes_link;
227 break;
228 default:
229 return -E1000_ERR_CONFIG;
230 break;
233 return 0;
236 static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter)
238 struct e1000_hw *hw = &adapter->hw;
239 s32 rc;
241 rc = e1000_init_mac_params_80003es2lan(adapter);
242 if (rc)
243 return rc;
245 rc = e1000_init_nvm_params_80003es2lan(hw);
246 if (rc)
247 return rc;
249 rc = e1000_init_phy_params_80003es2lan(hw);
250 if (rc)
251 return rc;
253 return 0;
257 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
258 * @hw: pointer to the HW structure
260 * A wrapper to acquire access rights to the correct PHY. This is a
261 * function pointer entry point called by the api module.
263 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
265 u16 mask;
267 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
269 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
273 * e1000_release_phy_80003es2lan - Release rights to access PHY
274 * @hw: pointer to the HW structure
276 * A wrapper to release access rights to the correct PHY. This is a
277 * function pointer entry point called by the api module.
279 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
281 u16 mask;
283 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
284 e1000_release_swfw_sync_80003es2lan(hw, mask);
288 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
289 * @hw: pointer to the HW structure
291 * Acquire the semaphore to access the EEPROM. This is a function
292 * pointer entry point called by the api module.
294 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
296 s32 ret_val;
298 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
299 if (ret_val)
300 return ret_val;
302 ret_val = e1000e_acquire_nvm(hw);
304 if (ret_val)
305 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
307 return ret_val;
311 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
312 * @hw: pointer to the HW structure
314 * Release the semaphore used to access the EEPROM. This is a
315 * function pointer entry point called by the api module.
317 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
319 e1000e_release_nvm(hw);
320 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
324 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
325 * @hw: pointer to the HW structure
326 * @mask: specifies which semaphore to acquire
328 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
329 * will also specify which port we're acquiring the lock for.
331 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
333 u32 swfw_sync;
334 u32 swmask = mask;
335 u32 fwmask = mask << 16;
336 s32 i = 0;
337 s32 timeout = 200;
339 while (i < timeout) {
340 if (e1000e_get_hw_semaphore(hw))
341 return -E1000_ERR_SWFW_SYNC;
343 swfw_sync = er32(SW_FW_SYNC);
344 if (!(swfw_sync & (fwmask | swmask)))
345 break;
347 /* Firmware currently using resource (fwmask)
348 * or other software thread using resource (swmask) */
349 e1000e_put_hw_semaphore(hw);
350 mdelay(5);
351 i++;
354 if (i == timeout) {
355 hw_dbg(hw,
356 "Driver can't access resource, SW_FW_SYNC timeout.\n");
357 return -E1000_ERR_SWFW_SYNC;
360 swfw_sync |= swmask;
361 ew32(SW_FW_SYNC, swfw_sync);
363 e1000e_put_hw_semaphore(hw);
365 return 0;
369 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
370 * @hw: pointer to the HW structure
371 * @mask: specifies which semaphore to acquire
373 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
374 * will also specify which port we're releasing the lock for.
376 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
378 u32 swfw_sync;
380 while (e1000e_get_hw_semaphore(hw) != 0);
381 /* Empty */
383 swfw_sync = er32(SW_FW_SYNC);
384 swfw_sync &= ~mask;
385 ew32(SW_FW_SYNC, swfw_sync);
387 e1000e_put_hw_semaphore(hw);
391 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
392 * @hw: pointer to the HW structure
393 * @offset: offset of the register to read
394 * @data: pointer to the data returned from the operation
396 * Read the GG82563 PHY register. This is a function pointer entry
397 * point called by the api module.
399 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
400 u32 offset, u16 *data)
402 s32 ret_val;
403 u32 page_select;
404 u16 temp;
406 /* Select Configuration Page */
407 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
408 page_select = GG82563_PHY_PAGE_SELECT;
409 else
410 /* Use Alternative Page Select register to access
411 * registers 30 and 31
413 page_select = GG82563_PHY_PAGE_SELECT_ALT;
415 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
416 ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
417 if (ret_val)
418 return ret_val;
420 /* The "ready" bit in the MDIC register may be incorrectly set
421 * before the device has completed the "Page Select" MDI
422 * transaction. So we wait 200us after each MDI command...
424 udelay(200);
426 /* ...and verify the command was successful. */
427 ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
429 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
430 ret_val = -E1000_ERR_PHY;
431 return ret_val;
434 udelay(200);
436 ret_val = e1000e_read_phy_reg_m88(hw,
437 MAX_PHY_REG_ADDRESS & offset,
438 data);
440 udelay(200);
442 return ret_val;
446 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
447 * @hw: pointer to the HW structure
448 * @offset: offset of the register to read
449 * @data: value to write to the register
451 * Write to the GG82563 PHY register. This is a function pointer entry
452 * point called by the api module.
454 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
455 u32 offset, u16 data)
457 s32 ret_val;
458 u32 page_select;
459 u16 temp;
461 /* Select Configuration Page */
462 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
463 page_select = GG82563_PHY_PAGE_SELECT;
464 else
465 /* Use Alternative Page Select register to access
466 * registers 30 and 31
468 page_select = GG82563_PHY_PAGE_SELECT_ALT;
470 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
471 ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
472 if (ret_val)
473 return ret_val;
476 /* The "ready" bit in the MDIC register may be incorrectly set
477 * before the device has completed the "Page Select" MDI
478 * transaction. So we wait 200us after each MDI command...
480 udelay(200);
482 /* ...and verify the command was successful. */
483 ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
485 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp)
486 return -E1000_ERR_PHY;
488 udelay(200);
490 ret_val = e1000e_write_phy_reg_m88(hw,
491 MAX_PHY_REG_ADDRESS & offset,
492 data);
494 udelay(200);
496 return ret_val;
500 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
501 * @hw: pointer to the HW structure
502 * @offset: offset of the register to read
503 * @words: number of words to write
504 * @data: buffer of data to write to the NVM
506 * Write "words" of data to the ESB2 NVM. This is a function
507 * pointer entry point called by the api module.
509 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
510 u16 words, u16 *data)
512 return e1000e_write_nvm_spi(hw, offset, words, data);
516 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
517 * @hw: pointer to the HW structure
519 * Wait a specific amount of time for manageability processes to complete.
520 * This is a function pointer entry point called by the phy module.
522 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
524 s32 timeout = PHY_CFG_TIMEOUT;
525 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
527 if (hw->bus.func == 1)
528 mask = E1000_NVM_CFG_DONE_PORT_1;
530 while (timeout) {
531 if (er32(EEMNGCTL) & mask)
532 break;
533 msleep(1);
534 timeout--;
536 if (!timeout) {
537 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
538 return -E1000_ERR_RESET;
541 return 0;
545 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
546 * @hw: pointer to the HW structure
548 * Force the speed and duplex settings onto the PHY. This is a
549 * function pointer entry point called by the phy module.
551 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
553 s32 ret_val;
554 u16 phy_data;
555 bool link;
557 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
558 * forced whenever speed and duplex are forced.
560 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
561 if (ret_val)
562 return ret_val;
564 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
565 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
566 if (ret_val)
567 return ret_val;
569 hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
571 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
572 if (ret_val)
573 return ret_val;
575 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
577 /* Reset the phy to commit changes. */
578 phy_data |= MII_CR_RESET;
580 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
581 if (ret_val)
582 return ret_val;
584 udelay(1);
586 if (hw->phy.wait_for_link) {
587 hw_dbg(hw, "Waiting for forced speed/duplex link "
588 "on GG82563 phy.\n");
590 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
591 100000, &link);
592 if (ret_val)
593 return ret_val;
595 if (!link) {
596 /* We didn't get link.
597 * Reset the DSP and cross our fingers.
599 ret_val = e1000e_phy_reset_dsp(hw);
600 if (ret_val)
601 return ret_val;
604 /* Try once more */
605 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
606 100000, &link);
607 if (ret_val)
608 return ret_val;
611 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
612 if (ret_val)
613 return ret_val;
615 /* Resetting the phy means we need to verify the TX_CLK corresponds
616 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
618 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
619 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
620 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
621 else
622 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
624 /* In addition, we must re-enable CRS on Tx for both half and full
625 * duplex.
627 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
628 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
630 return ret_val;
634 * e1000_get_cable_length_80003es2lan - Set approximate cable length
635 * @hw: pointer to the HW structure
637 * Find the approximate cable length as measured by the GG82563 PHY.
638 * This is a function pointer entry point called by the phy module.
640 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
642 struct e1000_phy_info *phy = &hw->phy;
643 s32 ret_val;
644 u16 phy_data;
645 u16 index;
647 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
648 if (ret_val)
649 return ret_val;
651 index = phy_data & GG82563_DSPD_CABLE_LENGTH;
652 phy->min_cable_length = e1000_gg82563_cable_length_table[index];
653 phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
655 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
657 return 0;
661 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
662 * @hw: pointer to the HW structure
663 * @speed: pointer to speed buffer
664 * @duplex: pointer to duplex buffer
666 * Retrieve the current speed and duplex configuration.
667 * This is a function pointer entry point called by the api module.
669 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
670 u16 *duplex)
672 s32 ret_val;
674 if (hw->media_type == e1000_media_type_copper) {
675 ret_val = e1000e_get_speed_and_duplex_copper(hw,
676 speed,
677 duplex);
678 if (ret_val)
679 return ret_val;
680 if (*speed == SPEED_1000)
681 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
682 else
683 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
684 *duplex);
685 } else {
686 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
687 speed,
688 duplex);
691 return ret_val;
695 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
696 * @hw: pointer to the HW structure
698 * Perform a global reset to the ESB2 controller.
699 * This is a function pointer entry point called by the api module.
701 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
703 u32 ctrl;
704 u32 icr;
705 s32 ret_val;
707 /* Prevent the PCI-E bus from sticking if there is no TLP connection
708 * on the last TLP read/write transaction when MAC is reset.
710 ret_val = e1000e_disable_pcie_master(hw);
711 if (ret_val)
712 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
714 hw_dbg(hw, "Masking off all interrupts\n");
715 ew32(IMC, 0xffffffff);
717 ew32(RCTL, 0);
718 ew32(TCTL, E1000_TCTL_PSP);
719 e1e_flush();
721 msleep(10);
723 ctrl = er32(CTRL);
725 hw_dbg(hw, "Issuing a global reset to MAC\n");
726 ew32(CTRL, ctrl | E1000_CTRL_RST);
728 ret_val = e1000e_get_auto_rd_done(hw);
729 if (ret_val)
730 /* We don't want to continue accessing MAC registers. */
731 return ret_val;
733 /* Clear any pending interrupt events. */
734 ew32(IMC, 0xffffffff);
735 icr = er32(ICR);
737 return 0;
741 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
742 * @hw: pointer to the HW structure
744 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
745 * This is a function pointer entry point called by the api module.
747 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
749 struct e1000_mac_info *mac = &hw->mac;
750 u32 reg_data;
751 s32 ret_val;
752 u16 i;
754 e1000_initialize_hw_bits_80003es2lan(hw);
756 /* Initialize identification LED */
757 ret_val = e1000e_id_led_init(hw);
758 if (ret_val) {
759 hw_dbg(hw, "Error initializing identification LED\n");
760 return ret_val;
763 /* Disabling VLAN filtering */
764 hw_dbg(hw, "Initializing the IEEE VLAN\n");
765 e1000e_clear_vfta(hw);
767 /* Setup the receive address. */
768 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
770 /* Zero out the Multicast HASH table */
771 hw_dbg(hw, "Zeroing the MTA\n");
772 for (i = 0; i < mac->mta_reg_count; i++)
773 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
775 /* Setup link and flow control */
776 ret_val = e1000e_setup_link(hw);
778 /* Set the transmit descriptor write-back policy */
779 reg_data = er32(TXDCTL);
780 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
781 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
782 ew32(TXDCTL, reg_data);
784 /* ...for both queues. */
785 reg_data = er32(TXDCTL1);
786 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
787 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
788 ew32(TXDCTL1, reg_data);
790 /* Enable retransmit on late collisions */
791 reg_data = er32(TCTL);
792 reg_data |= E1000_TCTL_RTLC;
793 ew32(TCTL, reg_data);
795 /* Configure Gigabit Carry Extend Padding */
796 reg_data = er32(TCTL_EXT);
797 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
798 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
799 ew32(TCTL_EXT, reg_data);
801 /* Configure Transmit Inter-Packet Gap */
802 reg_data = er32(TIPG);
803 reg_data &= ~E1000_TIPG_IPGT_MASK;
804 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
805 ew32(TIPG, reg_data);
807 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
808 reg_data &= ~0x00100000;
809 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
811 /* Clear all of the statistics registers (clear on read). It is
812 * important that we do this after we have tried to establish link
813 * because the symbol error count will increment wildly if there
814 * is no link.
816 e1000_clear_hw_cntrs_80003es2lan(hw);
818 return ret_val;
822 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
823 * @hw: pointer to the HW structure
825 * Initializes required hardware-dependent bits needed for normal operation.
827 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
829 u32 reg;
831 /* Transmit Descriptor Control 0 */
832 reg = er32(TXDCTL);
833 reg |= (1 << 22);
834 ew32(TXDCTL, reg);
836 /* Transmit Descriptor Control 1 */
837 reg = er32(TXDCTL1);
838 reg |= (1 << 22);
839 ew32(TXDCTL1, reg);
841 /* Transmit Arbitration Control 0 */
842 reg = er32(TARC0);
843 reg &= ~(0xF << 27); /* 30:27 */
844 if (hw->media_type != e1000_media_type_copper)
845 reg &= ~(1 << 20);
846 ew32(TARC0, reg);
848 /* Transmit Arbitration Control 1 */
849 reg = er32(TARC1);
850 if (er32(TCTL) & E1000_TCTL_MULR)
851 reg &= ~(1 << 28);
852 else
853 reg |= (1 << 28);
854 ew32(TARC1, reg);
858 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
859 * @hw: pointer to the HW structure
861 * Setup some GG82563 PHY registers for obtaining link
863 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
865 struct e1000_phy_info *phy = &hw->phy;
866 s32 ret_val;
867 u32 ctrl_ext;
868 u16 data;
870 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
871 &data);
872 if (ret_val)
873 return ret_val;
875 data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
876 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
877 data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
879 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
880 data);
881 if (ret_val)
882 return ret_val;
884 /* Options:
885 * MDI/MDI-X = 0 (default)
886 * 0 - Auto for all speeds
887 * 1 - MDI mode
888 * 2 - MDI-X mode
889 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
891 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
892 if (ret_val)
893 return ret_val;
895 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
897 switch (phy->mdix) {
898 case 1:
899 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
900 break;
901 case 2:
902 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
903 break;
904 case 0:
905 default:
906 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
907 break;
910 /* Options:
911 * disable_polarity_correction = 0 (default)
912 * Automatic Correction for Reversed Cable Polarity
913 * 0 - Disabled
914 * 1 - Enabled
916 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
917 if (phy->disable_polarity_correction)
918 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
920 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
921 if (ret_val)
922 return ret_val;
924 /* SW Reset the PHY so all changes take effect */
925 ret_val = e1000e_commit_phy(hw);
926 if (ret_val) {
927 hw_dbg(hw, "Error Resetting the PHY\n");
928 return ret_val;
931 /* Bypass RX and TX FIFO's */
932 ret_val = e1000e_write_kmrn_reg(hw,
933 E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
934 E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
935 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
936 if (ret_val)
937 return ret_val;
939 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
940 if (ret_val)
941 return ret_val;
943 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
944 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
945 if (ret_val)
946 return ret_val;
948 ctrl_ext = er32(CTRL_EXT);
949 ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
950 ew32(CTRL_EXT, ctrl_ext);
952 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
953 if (ret_val)
954 return ret_val;
956 /* Do not init these registers when the HW is in IAMT mode, since the
957 * firmware will have already initialized them. We only initialize
958 * them if the HW is not in IAMT mode.
960 if (!e1000e_check_mng_mode(hw)) {
961 /* Enable Electrical Idle on the PHY */
962 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
963 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
964 if (ret_val)
965 return ret_val;
967 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
968 if (ret_val)
969 return ret_val;
971 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
972 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
973 if (ret_val)
974 return ret_val;
977 /* Workaround: Disable padding in Kumeran interface in the MAC
978 * and in the PHY to avoid CRC errors.
980 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
981 if (ret_val)
982 return ret_val;
984 data |= GG82563_ICR_DIS_PADDING;
985 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
986 if (ret_val)
987 return ret_val;
989 return 0;
993 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
994 * @hw: pointer to the HW structure
996 * Essentially a wrapper for setting up all things "copper" related.
997 * This is a function pointer entry point called by the mac module.
999 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1001 u32 ctrl;
1002 s32 ret_val;
1003 u16 reg_data;
1005 ctrl = er32(CTRL);
1006 ctrl |= E1000_CTRL_SLU;
1007 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1008 ew32(CTRL, ctrl);
1010 /* Set the mac to wait the maximum time between each
1011 * iteration and increase the max iterations when
1012 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1013 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1014 if (ret_val)
1015 return ret_val;
1016 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1017 if (ret_val)
1018 return ret_val;
1019 reg_data |= 0x3F;
1020 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1021 if (ret_val)
1022 return ret_val;
1023 ret_val = e1000e_read_kmrn_reg(hw,
1024 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1025 &reg_data);
1026 if (ret_val)
1027 return ret_val;
1028 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1029 ret_val = e1000e_write_kmrn_reg(hw,
1030 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1031 reg_data);
1032 if (ret_val)
1033 return ret_val;
1035 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1036 if (ret_val)
1037 return ret_val;
1039 ret_val = e1000e_setup_copper_link(hw);
1041 return 0;
1045 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1046 * @hw: pointer to the HW structure
1047 * @duplex: current duplex setting
1049 * Configure the KMRN interface by applying last minute quirks for
1050 * 10/100 operation.
1052 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1054 s32 ret_val;
1055 u32 tipg;
1056 u16 reg_data;
1058 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1059 ret_val = e1000e_write_kmrn_reg(hw,
1060 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1061 reg_data);
1062 if (ret_val)
1063 return ret_val;
1065 /* Configure Transmit Inter-Packet Gap */
1066 tipg = er32(TIPG);
1067 tipg &= ~E1000_TIPG_IPGT_MASK;
1068 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1069 ew32(TIPG, tipg);
1071 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1072 if (ret_val)
1073 return ret_val;
1075 if (duplex == HALF_DUPLEX)
1076 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1077 else
1078 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1080 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1082 return 0;
1086 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1087 * @hw: pointer to the HW structure
1089 * Configure the KMRN interface by applying last minute quirks for
1090 * gigabit operation.
1092 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1094 s32 ret_val;
1095 u16 reg_data;
1096 u32 tipg;
1098 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1099 ret_val = e1000e_write_kmrn_reg(hw,
1100 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1101 reg_data);
1102 if (ret_val)
1103 return ret_val;
1105 /* Configure Transmit Inter-Packet Gap */
1106 tipg = er32(TIPG);
1107 tipg &= ~E1000_TIPG_IPGT_MASK;
1108 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1109 ew32(TIPG, tipg);
1111 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1112 if (ret_val)
1113 return ret_val;
1115 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1116 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1118 return ret_val;
1122 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1123 * @hw: pointer to the HW structure
1125 * Clears the hardware counters by reading the counter registers.
1127 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1129 u32 temp;
1131 e1000e_clear_hw_cntrs_base(hw);
1133 temp = er32(PRC64);
1134 temp = er32(PRC127);
1135 temp = er32(PRC255);
1136 temp = er32(PRC511);
1137 temp = er32(PRC1023);
1138 temp = er32(PRC1522);
1139 temp = er32(PTC64);
1140 temp = er32(PTC127);
1141 temp = er32(PTC255);
1142 temp = er32(PTC511);
1143 temp = er32(PTC1023);
1144 temp = er32(PTC1522);
1146 temp = er32(ALGNERRC);
1147 temp = er32(RXERRC);
1148 temp = er32(TNCRS);
1149 temp = er32(CEXTERR);
1150 temp = er32(TSCTC);
1151 temp = er32(TSCTFC);
1153 temp = er32(MGTPRC);
1154 temp = er32(MGTPDC);
1155 temp = er32(MGTPTC);
1157 temp = er32(IAC);
1158 temp = er32(ICRXOC);
1160 temp = er32(ICRXPTC);
1161 temp = er32(ICRXATC);
1162 temp = er32(ICTXPTC);
1163 temp = er32(ICTXATC);
1164 temp = er32(ICTXQEC);
1165 temp = er32(ICTXQMTC);
1166 temp = er32(ICRXDMTC);
1169 static struct e1000_mac_operations es2_mac_ops = {
1170 .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
1171 /* check_for_link dependent on media type */
1172 .cleanup_led = e1000e_cleanup_led_generic,
1173 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
1174 .get_bus_info = e1000e_get_bus_info_pcie,
1175 .get_link_up_info = e1000_get_link_up_info_80003es2lan,
1176 .led_on = e1000e_led_on_generic,
1177 .led_off = e1000e_led_off_generic,
1178 .mc_addr_list_update = e1000e_mc_addr_list_update_generic,
1179 .reset_hw = e1000_reset_hw_80003es2lan,
1180 .init_hw = e1000_init_hw_80003es2lan,
1181 .setup_link = e1000e_setup_link,
1182 /* setup_physical_interface dependent on media type */
1185 static struct e1000_phy_operations es2_phy_ops = {
1186 .acquire_phy = e1000_acquire_phy_80003es2lan,
1187 .check_reset_block = e1000e_check_reset_block_generic,
1188 .commit_phy = e1000e_phy_sw_reset,
1189 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
1190 .get_cfg_done = e1000_get_cfg_done_80003es2lan,
1191 .get_cable_length = e1000_get_cable_length_80003es2lan,
1192 .get_phy_info = e1000e_get_phy_info_m88,
1193 .read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan,
1194 .release_phy = e1000_release_phy_80003es2lan,
1195 .reset_phy = e1000e_phy_hw_reset_generic,
1196 .set_d0_lplu_state = NULL,
1197 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1198 .write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan,
1201 static struct e1000_nvm_operations es2_nvm_ops = {
1202 .acquire_nvm = e1000_acquire_nvm_80003es2lan,
1203 .read_nvm = e1000e_read_nvm_eerd,
1204 .release_nvm = e1000_release_nvm_80003es2lan,
1205 .update_nvm = e1000e_update_nvm_checksum_generic,
1206 .valid_led_default = e1000e_valid_led_default,
1207 .validate_nvm = e1000e_validate_nvm_checksum_generic,
1208 .write_nvm = e1000_write_nvm_80003es2lan,
1211 struct e1000_info e1000_es2_info = {
1212 .mac = e1000_80003es2lan,
1213 .flags = FLAG_HAS_HW_VLAN_FILTER
1214 | FLAG_HAS_JUMBO_FRAMES
1215 | FLAG_HAS_STATS_PTC_PRC
1216 | FLAG_HAS_WOL
1217 | FLAG_APME_IN_CTRL3
1218 | FLAG_RX_CSUM_ENABLED
1219 | FLAG_HAS_CTRLEXT_ON_LOAD
1220 | FLAG_HAS_STATS_ICR_ICT
1221 | FLAG_RX_NEEDS_RESTART /* errata */
1222 | FLAG_TARC_SET_BIT_ZERO /* errata */
1223 | FLAG_APME_CHECK_PORT_B
1224 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1225 | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1226 .pba = 38,
1227 .get_invariants = e1000_get_invariants_80003es2lan,
1228 .mac_ops = &es2_mac_ops,
1229 .phy_ops = &es2_phy_ops,
1230 .nvm_ops = &es2_nvm_ops,