1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/tcp.h>
35 #include <linux/ipv6.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
48 #define DRV_VERSION "1.0.8-k2"
49 char igb_driver_name
[] = "igb";
50 char igb_driver_version
[] = DRV_VERSION
;
51 static const char igb_driver_string
[] =
52 "Intel(R) Gigabit Ethernet Network Driver";
53 static const char igb_copyright
[] = "Copyright (c) 2007 Intel Corporation.";
56 static const struct e1000_info
*igb_info_tbl
[] = {
57 [board_82575
] = &e1000_82575_info
,
60 static struct pci_device_id igb_pci_tbl
[] = {
61 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
62 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
63 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
64 /* required last entry */
68 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
70 void igb_reset(struct igb_adapter
*);
71 static int igb_setup_all_tx_resources(struct igb_adapter
*);
72 static int igb_setup_all_rx_resources(struct igb_adapter
*);
73 static void igb_free_all_tx_resources(struct igb_adapter
*);
74 static void igb_free_all_rx_resources(struct igb_adapter
*);
75 static void igb_free_tx_resources(struct igb_adapter
*, struct igb_ring
*);
76 static void igb_free_rx_resources(struct igb_adapter
*, struct igb_ring
*);
77 void igb_update_stats(struct igb_adapter
*);
78 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
79 static void __devexit
igb_remove(struct pci_dev
*pdev
);
80 static int igb_sw_init(struct igb_adapter
*);
81 static int igb_open(struct net_device
*);
82 static int igb_close(struct net_device
*);
83 static void igb_configure_tx(struct igb_adapter
*);
84 static void igb_configure_rx(struct igb_adapter
*);
85 static void igb_setup_rctl(struct igb_adapter
*);
86 static void igb_clean_all_tx_rings(struct igb_adapter
*);
87 static void igb_clean_all_rx_rings(struct igb_adapter
*);
88 static void igb_clean_tx_ring(struct igb_adapter
*, struct igb_ring
*);
89 static void igb_clean_rx_ring(struct igb_adapter
*, struct igb_ring
*);
90 static void igb_set_multi(struct net_device
*);
91 static void igb_update_phy_info(unsigned long);
92 static void igb_watchdog(unsigned long);
93 static void igb_watchdog_task(struct work_struct
*);
94 static int igb_xmit_frame_ring_adv(struct sk_buff
*, struct net_device
*,
96 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*);
97 static struct net_device_stats
*igb_get_stats(struct net_device
*);
98 static int igb_change_mtu(struct net_device
*, int);
99 static int igb_set_mac(struct net_device
*, void *);
100 static irqreturn_t
igb_intr(int irq
, void *);
101 static irqreturn_t
igb_intr_msi(int irq
, void *);
102 static irqreturn_t
igb_msix_other(int irq
, void *);
103 static irqreturn_t
igb_msix_rx(int irq
, void *);
104 static irqreturn_t
igb_msix_tx(int irq
, void *);
105 static int igb_clean_rx_ring_msix(struct napi_struct
*, int);
106 static bool igb_clean_tx_irq(struct igb_adapter
*, struct igb_ring
*);
107 static int igb_clean(struct napi_struct
*, int);
108 static bool igb_clean_rx_irq_adv(struct igb_adapter
*,
109 struct igb_ring
*, int *, int);
110 static void igb_alloc_rx_buffers_adv(struct igb_adapter
*,
111 struct igb_ring
*, int);
112 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
113 static void igb_tx_timeout(struct net_device
*);
114 static void igb_reset_task(struct work_struct
*);
115 static void igb_vlan_rx_register(struct net_device
*, struct vlan_group
*);
116 static void igb_vlan_rx_add_vid(struct net_device
*, u16
);
117 static void igb_vlan_rx_kill_vid(struct net_device
*, u16
);
118 static void igb_restore_vlan(struct igb_adapter
*);
120 static int igb_suspend(struct pci_dev
*, pm_message_t
);
122 static int igb_resume(struct pci_dev
*);
124 static void igb_shutdown(struct pci_dev
*);
126 #ifdef CONFIG_NET_POLL_CONTROLLER
127 /* for netdump / net console */
128 static void igb_netpoll(struct net_device
*);
131 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
132 pci_channel_state_t
);
133 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
134 static void igb_io_resume(struct pci_dev
*);
136 static struct pci_error_handlers igb_err_handler
= {
137 .error_detected
= igb_io_error_detected
,
138 .slot_reset
= igb_io_slot_reset
,
139 .resume
= igb_io_resume
,
143 static struct pci_driver igb_driver
= {
144 .name
= igb_driver_name
,
145 .id_table
= igb_pci_tbl
,
147 .remove
= __devexit_p(igb_remove
),
149 /* Power Managment Hooks */
150 .suspend
= igb_suspend
,
151 .resume
= igb_resume
,
153 .shutdown
= igb_shutdown
,
154 .err_handler
= &igb_err_handler
157 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
158 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION
);
164 * igb_get_hw_dev_name - return device name string
165 * used by hardware layer to print debugging information
167 char *igb_get_hw_dev_name(struct e1000_hw
*hw
)
169 struct igb_adapter
*adapter
= hw
->back
;
170 return adapter
->netdev
->name
;
175 * igb_init_module - Driver Registration Routine
177 * igb_init_module is the first routine called when the driver is
178 * loaded. All it does is register with the PCI subsystem.
180 static int __init
igb_init_module(void)
183 printk(KERN_INFO
"%s - version %s\n",
184 igb_driver_string
, igb_driver_version
);
186 printk(KERN_INFO
"%s\n", igb_copyright
);
188 ret
= pci_register_driver(&igb_driver
);
192 module_init(igb_init_module
);
195 * igb_exit_module - Driver Exit Cleanup Routine
197 * igb_exit_module is called just before the driver is removed
200 static void __exit
igb_exit_module(void)
202 pci_unregister_driver(&igb_driver
);
205 module_exit(igb_exit_module
);
208 * igb_alloc_queues - Allocate memory for all rings
209 * @adapter: board private structure to initialize
211 * We allocate one ring per queue at run-time since we don't know the
212 * number of queues at compile-time.
214 static int igb_alloc_queues(struct igb_adapter
*adapter
)
218 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
219 sizeof(struct igb_ring
), GFP_KERNEL
);
220 if (!adapter
->tx_ring
)
223 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
224 sizeof(struct igb_ring
), GFP_KERNEL
);
225 if (!adapter
->rx_ring
) {
226 kfree(adapter
->tx_ring
);
230 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
231 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
232 ring
->adapter
= adapter
;
233 ring
->itr_register
= E1000_ITR
;
235 if (!ring
->napi
.poll
)
236 netif_napi_add(adapter
->netdev
, &ring
->napi
, igb_clean
,
237 adapter
->napi
.weight
/
238 adapter
->num_rx_queues
);
243 #define IGB_N0_QUEUE -1
244 static void igb_assign_vector(struct igb_adapter
*adapter
, int rx_queue
,
245 int tx_queue
, int msix_vector
)
248 struct e1000_hw
*hw
= &adapter
->hw
;
249 /* The 82575 assigns vectors using a bitmask, which matches the
250 bitmask for the EICR/EIMS/EIMC registers. To assign one
251 or more queues to a vector, we write the appropriate bits
252 into the MSIXBM register for that vector. */
253 if (rx_queue
> IGB_N0_QUEUE
) {
254 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
255 adapter
->rx_ring
[rx_queue
].eims_value
= msixbm
;
257 if (tx_queue
> IGB_N0_QUEUE
) {
258 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
259 adapter
->tx_ring
[tx_queue
].eims_value
=
260 E1000_EICR_TX_QUEUE0
<< tx_queue
;
262 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
266 * igb_configure_msix - Configure MSI-X hardware
268 * igb_configure_msix sets up the hardware to properly
269 * generate MSI-X interrupts.
271 static void igb_configure_msix(struct igb_adapter
*adapter
)
275 struct e1000_hw
*hw
= &adapter
->hw
;
277 adapter
->eims_enable_mask
= 0;
279 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
280 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
281 igb_assign_vector(adapter
, IGB_N0_QUEUE
, i
, vector
++);
282 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
283 if (tx_ring
->itr_val
)
284 writel(1000000000 / (tx_ring
->itr_val
* 256),
285 hw
->hw_addr
+ tx_ring
->itr_register
);
287 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
290 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
291 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
292 igb_assign_vector(adapter
, i
, IGB_N0_QUEUE
, vector
++);
293 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
294 if (rx_ring
->itr_val
)
295 writel(1000000000 / (rx_ring
->itr_val
* 256),
296 hw
->hw_addr
+ rx_ring
->itr_register
);
298 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
302 /* set vector for other causes, i.e. link changes */
303 array_wr32(E1000_MSIXBM(0), vector
++,
306 /* disable IAM for ICR interrupt bits */
309 tmp
= rd32(E1000_CTRL_EXT
);
310 /* enable MSI-X PBA support*/
311 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
313 /* Auto-Mask interrupts upon ICR read. */
314 tmp
|= E1000_CTRL_EXT_EIAME
;
315 tmp
|= E1000_CTRL_EXT_IRCA
;
317 wr32(E1000_CTRL_EXT
, tmp
);
318 adapter
->eims_enable_mask
|= E1000_EIMS_OTHER
;
324 * igb_request_msix - Initialize MSI-X interrupts
326 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
329 static int igb_request_msix(struct igb_adapter
*adapter
)
331 struct net_device
*netdev
= adapter
->netdev
;
332 int i
, err
= 0, vector
= 0;
336 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
337 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
338 sprintf(ring
->name
, "%s-tx%d", netdev
->name
, i
);
339 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
340 &igb_msix_tx
, 0, ring
->name
,
341 &(adapter
->tx_ring
[i
]));
344 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
345 ring
->itr_val
= adapter
->itr
;
348 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
349 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
350 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
351 sprintf(ring
->name
, "%s-rx%d", netdev
->name
, i
);
353 memcpy(ring
->name
, netdev
->name
, IFNAMSIZ
);
354 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
355 &igb_msix_rx
, 0, ring
->name
,
356 &(adapter
->rx_ring
[i
]));
359 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
360 ring
->itr_val
= adapter
->itr
;
364 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
365 &igb_msix_other
, 0, netdev
->name
, netdev
);
369 adapter
->napi
.poll
= igb_clean_rx_ring_msix
;
370 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
371 adapter
->rx_ring
[i
].napi
.poll
= adapter
->napi
.poll
;
372 igb_configure_msix(adapter
);
378 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
380 if (adapter
->msix_entries
) {
381 pci_disable_msix(adapter
->pdev
);
382 kfree(adapter
->msix_entries
);
383 adapter
->msix_entries
= NULL
;
384 } else if (adapter
->msi_enabled
)
385 pci_disable_msi(adapter
->pdev
);
391 * igb_set_interrupt_capability - set MSI or MSI-X if supported
393 * Attempt to configure interrupts using the best available
394 * capabilities of the hardware and kernel.
396 static void igb_set_interrupt_capability(struct igb_adapter
*adapter
)
401 numvecs
= adapter
->num_tx_queues
+ adapter
->num_rx_queues
+ 1;
402 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
404 if (!adapter
->msix_entries
)
407 for (i
= 0; i
< numvecs
; i
++)
408 adapter
->msix_entries
[i
].entry
= i
;
410 err
= pci_enable_msix(adapter
->pdev
,
411 adapter
->msix_entries
,
416 igb_reset_interrupt_capability(adapter
);
418 /* If we can't do MSI-X, try MSI */
420 adapter
->num_rx_queues
= 1;
421 if (!pci_enable_msi(adapter
->pdev
))
422 adapter
->msi_enabled
= 1;
427 * igb_request_irq - initialize interrupts
429 * Attempts to configure interrupts using the best available
430 * capabilities of the hardware and kernel.
432 static int igb_request_irq(struct igb_adapter
*adapter
)
434 struct net_device
*netdev
= adapter
->netdev
;
435 struct e1000_hw
*hw
= &adapter
->hw
;
438 if (adapter
->msix_entries
) {
439 err
= igb_request_msix(adapter
);
441 struct e1000_hw
*hw
= &adapter
->hw
;
442 /* enable IAM, auto-mask,
443 * DO NOT USE EIAME or IAME in legacy mode */
444 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
447 /* fall back to MSI */
448 igb_reset_interrupt_capability(adapter
);
449 if (!pci_enable_msi(adapter
->pdev
))
450 adapter
->msi_enabled
= 1;
451 igb_free_all_tx_resources(adapter
);
452 igb_free_all_rx_resources(adapter
);
453 adapter
->num_rx_queues
= 1;
454 igb_alloc_queues(adapter
);
456 if (adapter
->msi_enabled
) {
457 err
= request_irq(adapter
->pdev
->irq
, &igb_intr_msi
, 0,
458 netdev
->name
, netdev
);
461 /* fall back to legacy interrupts */
462 igb_reset_interrupt_capability(adapter
);
463 adapter
->msi_enabled
= 0;
466 err
= request_irq(adapter
->pdev
->irq
, &igb_intr
, IRQF_SHARED
,
467 netdev
->name
, netdev
);
470 dev_err(&adapter
->pdev
->dev
, "Error %d getting interrupt\n",
475 /* enable IAM, auto-mask */
476 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
482 static void igb_free_irq(struct igb_adapter
*adapter
)
484 struct net_device
*netdev
= adapter
->netdev
;
486 if (adapter
->msix_entries
) {
489 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
490 free_irq(adapter
->msix_entries
[vector
++].vector
,
491 &(adapter
->tx_ring
[i
]));
492 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
493 free_irq(adapter
->msix_entries
[vector
++].vector
,
494 &(adapter
->rx_ring
[i
]));
496 free_irq(adapter
->msix_entries
[vector
++].vector
, netdev
);
500 free_irq(adapter
->pdev
->irq
, netdev
);
504 * igb_irq_disable - Mask off interrupt generation on the NIC
505 * @adapter: board private structure
507 static void igb_irq_disable(struct igb_adapter
*adapter
)
509 struct e1000_hw
*hw
= &adapter
->hw
;
511 if (adapter
->msix_entries
) {
512 wr32(E1000_EIMC
, ~0);
517 synchronize_irq(adapter
->pdev
->irq
);
521 * igb_irq_enable - Enable default interrupt generation settings
522 * @adapter: board private structure
524 static void igb_irq_enable(struct igb_adapter
*adapter
)
526 struct e1000_hw
*hw
= &adapter
->hw
;
528 if (adapter
->msix_entries
) {
530 adapter
->eims_enable_mask
);
532 adapter
->eims_enable_mask
);
533 wr32(E1000_IMS
, E1000_IMS_LSC
);
535 wr32(E1000_IMS
, IMS_ENABLE_MASK
);
538 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
540 struct net_device
*netdev
= adapter
->netdev
;
541 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
542 u16 old_vid
= adapter
->mng_vlan_id
;
543 if (adapter
->vlgrp
) {
544 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
545 if (adapter
->hw
.mng_cookie
.status
&
546 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
547 igb_vlan_rx_add_vid(netdev
, vid
);
548 adapter
->mng_vlan_id
= vid
;
550 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
552 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
554 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
555 igb_vlan_rx_kill_vid(netdev
, old_vid
);
557 adapter
->mng_vlan_id
= vid
;
562 * igb_release_hw_control - release control of the h/w to f/w
563 * @adapter: address of board private structure
565 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
566 * For ASF and Pass Through versions of f/w this means that the
567 * driver is no longer loaded.
570 static void igb_release_hw_control(struct igb_adapter
*adapter
)
572 struct e1000_hw
*hw
= &adapter
->hw
;
575 /* Let firmware take over control of h/w */
576 ctrl_ext
= rd32(E1000_CTRL_EXT
);
578 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
583 * igb_get_hw_control - get control of the h/w from f/w
584 * @adapter: address of board private structure
586 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
587 * For ASF and Pass Through versions of f/w this means that
588 * the driver is loaded.
591 static void igb_get_hw_control(struct igb_adapter
*adapter
)
593 struct e1000_hw
*hw
= &adapter
->hw
;
596 /* Let firmware know the driver has taken over */
597 ctrl_ext
= rd32(E1000_CTRL_EXT
);
599 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
602 static void igb_init_manageability(struct igb_adapter
*adapter
)
604 struct e1000_hw
*hw
= &adapter
->hw
;
606 if (adapter
->en_mng_pt
) {
607 u32 manc2h
= rd32(E1000_MANC2H
);
608 u32 manc
= rd32(E1000_MANC
);
610 /* disable hardware interception of ARP */
611 manc
&= ~(E1000_MANC_ARP_EN
);
613 /* enable receiving management packets to the host */
614 /* this will probably generate destination unreachable messages
615 * from the host OS, but the packets will be handled on SMBUS */
616 manc
|= E1000_MANC_EN_MNG2HOST
;
617 #define E1000_MNG2HOST_PORT_623 (1 << 5)
618 #define E1000_MNG2HOST_PORT_664 (1 << 6)
619 manc2h
|= E1000_MNG2HOST_PORT_623
;
620 manc2h
|= E1000_MNG2HOST_PORT_664
;
621 wr32(E1000_MANC2H
, manc2h
);
623 wr32(E1000_MANC
, manc
);
627 static void igb_release_manageability(struct igb_adapter
*adapter
)
629 struct e1000_hw
*hw
= &adapter
->hw
;
631 if (adapter
->en_mng_pt
) {
632 u32 manc
= rd32(E1000_MANC
);
634 /* re-enable hardware interception of ARP */
635 manc
|= E1000_MANC_ARP_EN
;
636 manc
&= ~E1000_MANC_EN_MNG2HOST
;
638 /* don't explicitly have to mess with MANC2H since
639 * MANC has an enable disable that gates MANC2H */
641 /* XXX stop the hardware watchdog ? */
642 wr32(E1000_MANC
, manc
);
647 * igb_configure - configure the hardware for RX and TX
648 * @adapter: private board structure
650 static void igb_configure(struct igb_adapter
*adapter
)
652 struct net_device
*netdev
= adapter
->netdev
;
655 igb_get_hw_control(adapter
);
656 igb_set_multi(netdev
);
658 igb_restore_vlan(adapter
);
659 igb_init_manageability(adapter
);
661 igb_configure_tx(adapter
);
662 igb_setup_rctl(adapter
);
663 igb_configure_rx(adapter
);
664 /* call IGB_DESC_UNUSED which always leaves
665 * at least 1 descriptor unused to make sure
666 * next_to_use != next_to_clean */
667 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
668 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
669 igb_alloc_rx_buffers_adv(adapter
, ring
, IGB_DESC_UNUSED(ring
));
673 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
678 * igb_up - Open the interface and prepare it to handle traffic
679 * @adapter: board private structure
682 int igb_up(struct igb_adapter
*adapter
)
684 struct e1000_hw
*hw
= &adapter
->hw
;
687 /* hardware has been reset, we need to reload some things */
688 igb_configure(adapter
);
690 clear_bit(__IGB_DOWN
, &adapter
->state
);
692 napi_enable(&adapter
->napi
);
694 if (adapter
->msix_entries
) {
695 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
696 napi_enable(&adapter
->rx_ring
[i
].napi
);
697 igb_configure_msix(adapter
);
700 /* Clear any pending interrupts. */
702 igb_irq_enable(adapter
);
704 /* Fire a link change interrupt to start the watchdog. */
705 wr32(E1000_ICS
, E1000_ICS_LSC
);
709 void igb_down(struct igb_adapter
*adapter
)
711 struct e1000_hw
*hw
= &adapter
->hw
;
712 struct net_device
*netdev
= adapter
->netdev
;
716 /* signal that we're down so the interrupt handler does not
717 * reschedule our watchdog timer */
718 set_bit(__IGB_DOWN
, &adapter
->state
);
720 /* disable receives in the hardware */
721 rctl
= rd32(E1000_RCTL
);
722 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
723 /* flush and sleep below */
725 netif_stop_queue(netdev
);
727 /* disable transmits in the hardware */
728 tctl
= rd32(E1000_TCTL
);
729 tctl
&= ~E1000_TCTL_EN
;
730 wr32(E1000_TCTL
, tctl
);
731 /* flush both disables and wait for them to finish */
735 napi_disable(&adapter
->napi
);
737 if (adapter
->msix_entries
)
738 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
739 napi_disable(&adapter
->rx_ring
[i
].napi
);
740 igb_irq_disable(adapter
);
742 del_timer_sync(&adapter
->watchdog_timer
);
743 del_timer_sync(&adapter
->phy_info_timer
);
745 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
746 netif_carrier_off(netdev
);
747 adapter
->link_speed
= 0;
748 adapter
->link_duplex
= 0;
751 igb_clean_all_tx_rings(adapter
);
752 igb_clean_all_rx_rings(adapter
);
755 void igb_reinit_locked(struct igb_adapter
*adapter
)
757 WARN_ON(in_interrupt());
758 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
762 clear_bit(__IGB_RESETTING
, &adapter
->state
);
765 void igb_reset(struct igb_adapter
*adapter
)
767 struct e1000_hw
*hw
= &adapter
->hw
;
768 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
769 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
772 /* Repartition Pba for greater than 9k mtu
773 * To take effect CTRL.RST is required.
777 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
778 /* adjust PBA for jumbo frames */
779 wr32(E1000_PBA
, pba
);
781 /* To maintain wire speed transmits, the Tx FIFO should be
782 * large enough to accommodate two full transmit packets,
783 * rounded up to the next 1KB and expressed in KB. Likewise,
784 * the Rx FIFO should be large enough to accommodate at least
785 * one full receive packet and is similarly rounded up and
786 * expressed in KB. */
787 pba
= rd32(E1000_PBA
);
788 /* upper 16 bits has Tx packet buffer allocation size in KB */
789 tx_space
= pba
>> 16;
790 /* lower 16 bits has Rx packet buffer allocation size in KB */
792 /* the tx fifo also stores 16 bytes of information about the tx
793 * but don't include ethernet FCS because hardware appends it */
794 min_tx_space
= (adapter
->max_frame_size
+
795 sizeof(struct e1000_tx_desc
) -
797 min_tx_space
= ALIGN(min_tx_space
, 1024);
799 /* software strips receive CRC, so leave room for it */
800 min_rx_space
= adapter
->max_frame_size
;
801 min_rx_space
= ALIGN(min_rx_space
, 1024);
804 /* If current Tx allocation is less than the min Tx FIFO size,
805 * and the min Tx FIFO size is less than the current Rx FIFO
806 * allocation, take space away from current Rx allocation */
807 if (tx_space
< min_tx_space
&&
808 ((min_tx_space
- tx_space
) < pba
)) {
809 pba
= pba
- (min_tx_space
- tx_space
);
811 /* if short on rx space, rx wins and must trump tx
813 if (pba
< min_rx_space
)
817 wr32(E1000_PBA
, pba
);
819 /* flow control settings */
820 /* The high water mark must be low enough to fit one full frame
821 * (or the size used for early receive) above it in the Rx FIFO.
822 * Set it to the lower of:
823 * - 90% of the Rx FIFO size, or
824 * - the full Rx FIFO size minus one full frame */
825 hwm
= min(((pba
<< 10) * 9 / 10),
826 ((pba
<< 10) - adapter
->max_frame_size
));
828 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
829 fc
->low_water
= fc
->high_water
- 8;
830 fc
->pause_time
= 0xFFFF;
832 fc
->type
= fc
->original_type
;
834 /* Allow time for pending master requests to run */
835 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
838 if (adapter
->hw
.mac
.ops
.init_hw(&adapter
->hw
))
839 dev_err(&adapter
->pdev
->dev
, "Hardware Error\n");
841 igb_update_mng_vlan(adapter
);
843 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
844 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
846 igb_reset_adaptive(&adapter
->hw
);
847 adapter
->hw
.phy
.ops
.get_phy_info(&adapter
->hw
);
848 igb_release_manageability(adapter
);
852 * igb_probe - Device Initialization Routine
853 * @pdev: PCI device information struct
854 * @ent: entry in igb_pci_tbl
856 * Returns 0 on success, negative on failure
858 * igb_probe initializes an adapter identified by a pci_dev structure.
859 * The OS initialization, configuring of the adapter private structure,
860 * and a hardware reset occur.
862 static int __devinit
igb_probe(struct pci_dev
*pdev
,
863 const struct pci_device_id
*ent
)
865 struct net_device
*netdev
;
866 struct igb_adapter
*adapter
;
868 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
869 unsigned long mmio_start
, mmio_len
;
870 static int cards_found
;
871 int i
, err
, pci_using_dac
;
873 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
876 err
= pci_enable_device(pdev
);
881 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
883 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
887 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
889 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
891 dev_err(&pdev
->dev
, "No usable DMA "
892 "configuration, aborting\n");
898 err
= pci_request_regions(pdev
, igb_driver_name
);
902 pci_set_master(pdev
);
905 netdev
= alloc_etherdev(sizeof(struct igb_adapter
));
907 goto err_alloc_etherdev
;
909 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
911 pci_set_drvdata(pdev
, netdev
);
912 adapter
= netdev_priv(netdev
);
913 adapter
->netdev
= netdev
;
914 adapter
->pdev
= pdev
;
917 adapter
->msg_enable
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
919 mmio_start
= pci_resource_start(pdev
, 0);
920 mmio_len
= pci_resource_len(pdev
, 0);
923 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
924 if (!adapter
->hw
.hw_addr
)
927 netdev
->open
= &igb_open
;
928 netdev
->stop
= &igb_close
;
929 netdev
->get_stats
= &igb_get_stats
;
930 netdev
->set_multicast_list
= &igb_set_multi
;
931 netdev
->set_mac_address
= &igb_set_mac
;
932 netdev
->change_mtu
= &igb_change_mtu
;
933 netdev
->do_ioctl
= &igb_ioctl
;
934 igb_set_ethtool_ops(netdev
);
935 netdev
->tx_timeout
= &igb_tx_timeout
;
936 netdev
->watchdog_timeo
= 5 * HZ
;
937 netif_napi_add(netdev
, &adapter
->napi
, igb_clean
, 64);
938 netdev
->vlan_rx_register
= igb_vlan_rx_register
;
939 netdev
->vlan_rx_add_vid
= igb_vlan_rx_add_vid
;
940 netdev
->vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
;
941 #ifdef CONFIG_NET_POLL_CONTROLLER
942 netdev
->poll_controller
= igb_netpoll
;
944 netdev
->hard_start_xmit
= &igb_xmit_frame_adv
;
946 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
948 netdev
->mem_start
= mmio_start
;
949 netdev
->mem_end
= mmio_start
+ mmio_len
;
951 adapter
->bd_number
= cards_found
;
953 /* PCI config space info */
954 hw
->vendor_id
= pdev
->vendor
;
955 hw
->device_id
= pdev
->device
;
956 hw
->revision_id
= pdev
->revision
;
957 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
958 hw
->subsystem_device_id
= pdev
->subsystem_device
;
960 /* setup the private structure */
962 /* Copy the default MAC, PHY and NVM function pointers */
963 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
964 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
965 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
966 /* Initialize skew-specific constants */
967 err
= ei
->get_invariants(hw
);
971 err
= igb_sw_init(adapter
);
975 igb_get_bus_info_pcie(hw
);
977 hw
->phy
.autoneg_wait_to_complete
= false;
978 hw
->mac
.adaptive_ifs
= true;
981 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
982 hw
->phy
.mdix
= AUTO_ALL_MODES
;
983 hw
->phy
.disable_polarity_correction
= false;
984 hw
->phy
.ms_type
= e1000_ms_hw_default
;
987 if (igb_check_reset_block(hw
))
989 "PHY reset is blocked due to SOL/IDER session.\n");
991 netdev
->features
= NETIF_F_SG
|
995 NETIF_F_HW_VLAN_FILTER
;
997 netdev
->features
|= NETIF_F_TSO
;
999 netdev
->features
|= NETIF_F_TSO6
;
1001 netdev
->features
|= NETIF_F_HIGHDMA
;
1003 netdev
->features
|= NETIF_F_LLTX
;
1004 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(&adapter
->hw
);
1006 /* before reading the NVM, reset the controller to put the device in a
1007 * known good starting state */
1008 hw
->mac
.ops
.reset_hw(hw
);
1010 /* make sure the NVM is good */
1011 if (igb_validate_nvm_checksum(hw
) < 0) {
1012 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
1017 /* copy the MAC address out of the NVM */
1018 if (hw
->mac
.ops
.read_mac_addr(hw
))
1019 dev_err(&pdev
->dev
, "NVM Read Error\n");
1021 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1022 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1024 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1025 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
1030 init_timer(&adapter
->watchdog_timer
);
1031 adapter
->watchdog_timer
.function
= &igb_watchdog
;
1032 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1034 init_timer(&adapter
->phy_info_timer
);
1035 adapter
->phy_info_timer
.function
= &igb_update_phy_info
;
1036 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1038 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
1039 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
1041 /* Initialize link & ring properties that are user-changeable */
1042 adapter
->tx_ring
->count
= 256;
1043 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1044 adapter
->tx_ring
[i
].count
= adapter
->tx_ring
->count
;
1045 adapter
->rx_ring
->count
= 256;
1046 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1047 adapter
->rx_ring
[i
].count
= adapter
->rx_ring
->count
;
1049 adapter
->fc_autoneg
= true;
1050 hw
->mac
.autoneg
= true;
1051 hw
->phy
.autoneg_advertised
= 0x2f;
1053 hw
->fc
.original_type
= e1000_fc_default
;
1054 hw
->fc
.type
= e1000_fc_default
;
1056 adapter
->itr_setting
= 3;
1057 adapter
->itr
= IGB_START_ITR
;
1059 igb_validate_mdi_setting(hw
);
1061 adapter
->rx_csum
= 1;
1063 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1064 * enable the ACPI Magic Packet filter
1067 if (hw
->bus
.func
== 0 ||
1068 hw
->device_id
== E1000_DEV_ID_82575EB_COPPER
)
1069 hw
->nvm
.ops
.read_nvm(hw
, NVM_INIT_CONTROL3_PORT_A
, 1,
1072 if (eeprom_data
& eeprom_apme_mask
)
1073 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1075 /* now that we have the eeprom settings, apply the special cases where
1076 * the eeprom may be wrong or the board simply won't support wake on
1077 * lan on a particular port */
1078 switch (pdev
->device
) {
1079 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1080 adapter
->eeprom_wol
= 0;
1082 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1083 /* Wake events only supported on port A for dual fiber
1084 * regardless of eeprom setting */
1085 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
1086 adapter
->eeprom_wol
= 0;
1090 /* initialize the wol settings based on the eeprom settings */
1091 adapter
->wol
= adapter
->eeprom_wol
;
1093 /* reset the hardware with the new settings */
1096 /* let the f/w know that the h/w is now under the control of the
1098 igb_get_hw_control(adapter
);
1100 /* tell the stack to leave us alone until igb_open() is called */
1101 netif_carrier_off(netdev
);
1102 netif_stop_queue(netdev
);
1104 strcpy(netdev
->name
, "eth%d");
1105 err
= register_netdev(netdev
);
1109 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
1110 /* print bus type/speed/width info */
1111 dev_info(&pdev
->dev
,
1112 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1114 ((hw
->bus
.speed
== e1000_bus_speed_2500
)
1115 ? "2.5Gb/s" : "unknown"),
1116 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
)
1117 ? "Width x4" : (hw
->bus
.width
== e1000_bus_width_pcie_x1
)
1118 ? "Width x1" : "unknown"),
1119 netdev
->dev_addr
[0], netdev
->dev_addr
[1], netdev
->dev_addr
[2],
1120 netdev
->dev_addr
[3], netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
1122 igb_read_part_num(hw
, &part_num
);
1123 dev_info(&pdev
->dev
, "%s: PBA No: %06x-%03x\n", netdev
->name
,
1124 (part_num
>> 8), (part_num
& 0xff));
1126 dev_info(&pdev
->dev
,
1127 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1128 adapter
->msix_entries
? "MSI-X" :
1129 adapter
->msi_enabled
? "MSI" : "legacy",
1130 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
1136 igb_release_hw_control(adapter
);
1138 if (!igb_check_reset_block(hw
))
1139 hw
->phy
.ops
.reset_phy(hw
);
1141 if (hw
->flash_address
)
1142 iounmap(hw
->flash_address
);
1144 igb_remove_device(hw
);
1145 kfree(adapter
->tx_ring
);
1146 kfree(adapter
->rx_ring
);
1149 iounmap(hw
->hw_addr
);
1151 free_netdev(netdev
);
1153 pci_release_regions(pdev
);
1156 pci_disable_device(pdev
);
1161 * igb_remove - Device Removal Routine
1162 * @pdev: PCI device information struct
1164 * igb_remove is called by the PCI subsystem to alert the driver
1165 * that it should release a PCI device. The could be caused by a
1166 * Hot-Plug event, or because the driver is going to be removed from
1169 static void __devexit
igb_remove(struct pci_dev
*pdev
)
1171 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1172 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1174 /* flush_scheduled work may reschedule our watchdog task, so
1175 * explicitly disable watchdog tasks from being rescheduled */
1176 set_bit(__IGB_DOWN
, &adapter
->state
);
1177 del_timer_sync(&adapter
->watchdog_timer
);
1178 del_timer_sync(&adapter
->phy_info_timer
);
1180 flush_scheduled_work();
1183 igb_release_manageability(adapter
);
1185 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1186 * would have already happened in close and is redundant. */
1187 igb_release_hw_control(adapter
);
1189 unregister_netdev(netdev
);
1191 if (!igb_check_reset_block(&adapter
->hw
))
1192 adapter
->hw
.phy
.ops
.reset_phy(&adapter
->hw
);
1194 igb_remove_device(&adapter
->hw
);
1195 igb_reset_interrupt_capability(adapter
);
1197 kfree(adapter
->tx_ring
);
1198 kfree(adapter
->rx_ring
);
1200 iounmap(adapter
->hw
.hw_addr
);
1201 if (adapter
->hw
.flash_address
)
1202 iounmap(adapter
->hw
.flash_address
);
1203 pci_release_regions(pdev
);
1205 free_netdev(netdev
);
1207 pci_disable_device(pdev
);
1211 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1212 * @adapter: board private structure to initialize
1214 * igb_sw_init initializes the Adapter private data structure.
1215 * Fields are initialized based on PCI device information and
1216 * OS network device settings (MTU size).
1218 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
1220 struct e1000_hw
*hw
= &adapter
->hw
;
1221 struct net_device
*netdev
= adapter
->netdev
;
1222 struct pci_dev
*pdev
= adapter
->pdev
;
1224 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
1226 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1227 adapter
->rx_ps_hdr_size
= 0; /* disable packet split */
1228 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1229 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1231 /* Number of supported queues. */
1232 /* Having more queues than CPUs doesn't make sense. */
1233 adapter
->num_tx_queues
= 1;
1234 adapter
->num_rx_queues
= min(IGB_MAX_RX_QUEUES
, num_online_cpus());
1236 igb_set_interrupt_capability(adapter
);
1238 if (igb_alloc_queues(adapter
)) {
1239 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1243 /* Explicitly disable IRQ since the NIC can be in any state. */
1244 igb_irq_disable(adapter
);
1246 set_bit(__IGB_DOWN
, &adapter
->state
);
1251 * igb_open - Called when a network interface is made active
1252 * @netdev: network interface device structure
1254 * Returns 0 on success, negative value on failure
1256 * The open entry point is called when a network interface is made
1257 * active by the system (IFF_UP). At this point all resources needed
1258 * for transmit and receive operations are allocated, the interrupt
1259 * handler is registered with the OS, the watchdog timer is started,
1260 * and the stack is notified that the interface is ready.
1262 static int igb_open(struct net_device
*netdev
)
1264 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1265 struct e1000_hw
*hw
= &adapter
->hw
;
1269 /* disallow open during test */
1270 if (test_bit(__IGB_TESTING
, &adapter
->state
))
1273 /* allocate transmit descriptors */
1274 err
= igb_setup_all_tx_resources(adapter
);
1278 /* allocate receive descriptors */
1279 err
= igb_setup_all_rx_resources(adapter
);
1283 /* e1000_power_up_phy(adapter); */
1285 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1286 if ((adapter
->hw
.mng_cookie
.status
&
1287 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
1288 igb_update_mng_vlan(adapter
);
1290 /* before we allocate an interrupt, we must be ready to handle it.
1291 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1292 * as soon as we call pci_request_irq, so we have to setup our
1293 * clean_rx handler before we do so. */
1294 igb_configure(adapter
);
1296 err
= igb_request_irq(adapter
);
1300 /* From here on the code is the same as igb_up() */
1301 clear_bit(__IGB_DOWN
, &adapter
->state
);
1303 napi_enable(&adapter
->napi
);
1304 if (adapter
->msix_entries
)
1305 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1306 napi_enable(&adapter
->rx_ring
[i
].napi
);
1308 igb_irq_enable(adapter
);
1310 /* Clear any pending interrupts. */
1312 /* Fire a link status change interrupt to start the watchdog. */
1313 wr32(E1000_ICS
, E1000_ICS_LSC
);
1318 igb_release_hw_control(adapter
);
1319 /* e1000_power_down_phy(adapter); */
1320 igb_free_all_rx_resources(adapter
);
1322 igb_free_all_tx_resources(adapter
);
1330 * igb_close - Disables a network interface
1331 * @netdev: network interface device structure
1333 * Returns 0, this is not allowed to fail
1335 * The close entry point is called when an interface is de-activated
1336 * by the OS. The hardware is still under the driver's control, but
1337 * needs to be disabled. A global MAC reset is issued to stop the
1338 * hardware, and all transmit and receive resources are freed.
1340 static int igb_close(struct net_device
*netdev
)
1342 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1344 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
1347 igb_free_irq(adapter
);
1349 igb_free_all_tx_resources(adapter
);
1350 igb_free_all_rx_resources(adapter
);
1352 /* kill manageability vlan ID if supported, but not if a vlan with
1353 * the same ID is registered on the host OS (let 8021q kill it) */
1354 if ((adapter
->hw
.mng_cookie
.status
&
1355 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1357 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
1358 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1364 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1365 * @adapter: board private structure
1366 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1368 * Return 0 on success, negative on failure
1371 int igb_setup_tx_resources(struct igb_adapter
*adapter
,
1372 struct igb_ring
*tx_ring
)
1374 struct pci_dev
*pdev
= adapter
->pdev
;
1377 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1378 tx_ring
->buffer_info
= vmalloc(size
);
1379 if (!tx_ring
->buffer_info
)
1381 memset(tx_ring
->buffer_info
, 0, size
);
1383 /* round up to nearest 4K */
1384 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
)
1386 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1388 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
1394 tx_ring
->adapter
= adapter
;
1395 tx_ring
->next_to_use
= 0;
1396 tx_ring
->next_to_clean
= 0;
1397 spin_lock_init(&tx_ring
->tx_clean_lock
);
1398 spin_lock_init(&tx_ring
->tx_lock
);
1402 vfree(tx_ring
->buffer_info
);
1403 dev_err(&adapter
->pdev
->dev
,
1404 "Unable to allocate memory for the transmit descriptor ring\n");
1409 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1410 * (Descriptors) for all queues
1411 * @adapter: board private structure
1413 * Return 0 on success, negative on failure
1415 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
1419 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1420 err
= igb_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1422 dev_err(&adapter
->pdev
->dev
,
1423 "Allocation for Tx Queue %u failed\n", i
);
1424 for (i
--; i
>= 0; i
--)
1425 igb_free_tx_resources(adapter
,
1426 &adapter
->tx_ring
[i
]);
1435 * igb_configure_tx - Configure transmit Unit after Reset
1436 * @adapter: board private structure
1438 * Configure the Tx unit of the MAC after a reset.
1440 static void igb_configure_tx(struct igb_adapter
*adapter
)
1443 struct e1000_hw
*hw
= &adapter
->hw
;
1448 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1449 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
1451 wr32(E1000_TDLEN(i
),
1452 ring
->count
* sizeof(struct e1000_tx_desc
));
1454 wr32(E1000_TDBAL(i
),
1455 tdba
& 0x00000000ffffffffULL
);
1456 wr32(E1000_TDBAH(i
), tdba
>> 32);
1458 tdwba
= ring
->dma
+ ring
->count
* sizeof(struct e1000_tx_desc
);
1459 tdwba
|= 1; /* enable head wb */
1460 wr32(E1000_TDWBAL(i
),
1461 tdwba
& 0x00000000ffffffffULL
);
1462 wr32(E1000_TDWBAH(i
), tdwba
>> 32);
1464 ring
->head
= E1000_TDH(i
);
1465 ring
->tail
= E1000_TDT(i
);
1466 writel(0, hw
->hw_addr
+ ring
->tail
);
1467 writel(0, hw
->hw_addr
+ ring
->head
);
1468 txdctl
= rd32(E1000_TXDCTL(i
));
1469 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1470 wr32(E1000_TXDCTL(i
), txdctl
);
1472 /* Turn off Relaxed Ordering on head write-backs. The
1473 * writebacks MUST be delivered in order or it will
1474 * completely screw up our bookeeping.
1476 txctrl
= rd32(E1000_DCA_TXCTRL(i
));
1477 txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1478 wr32(E1000_DCA_TXCTRL(i
), txctrl
);
1483 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1485 /* Program the Transmit Control Register */
1487 tctl
= rd32(E1000_TCTL
);
1488 tctl
&= ~E1000_TCTL_CT
;
1489 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1490 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1492 igb_config_collision_dist(hw
);
1494 /* Setup Transmit Descriptor Settings for eop descriptor */
1495 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_RS
;
1497 /* Enable transmits */
1498 tctl
|= E1000_TCTL_EN
;
1500 wr32(E1000_TCTL
, tctl
);
1504 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1505 * @adapter: board private structure
1506 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1508 * Returns 0 on success, negative on failure
1511 int igb_setup_rx_resources(struct igb_adapter
*adapter
,
1512 struct igb_ring
*rx_ring
)
1514 struct pci_dev
*pdev
= adapter
->pdev
;
1517 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1518 rx_ring
->buffer_info
= vmalloc(size
);
1519 if (!rx_ring
->buffer_info
)
1521 memset(rx_ring
->buffer_info
, 0, size
);
1523 desc_len
= sizeof(union e1000_adv_rx_desc
);
1525 /* Round up to nearest 4K */
1526 rx_ring
->size
= rx_ring
->count
* desc_len
;
1527 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1529 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
1535 rx_ring
->next_to_clean
= 0;
1536 rx_ring
->next_to_use
= 0;
1537 rx_ring
->pending_skb
= NULL
;
1539 rx_ring
->adapter
= adapter
;
1540 /* FIXME: do we want to setup ring->napi->poll here? */
1541 rx_ring
->napi
.poll
= adapter
->napi
.poll
;
1546 vfree(rx_ring
->buffer_info
);
1547 dev_err(&adapter
->pdev
->dev
, "Unable to allocate memory for "
1548 "the receive descriptor ring\n");
1553 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1554 * (Descriptors) for all queues
1555 * @adapter: board private structure
1557 * Return 0 on success, negative on failure
1559 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
1563 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1564 err
= igb_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1566 dev_err(&adapter
->pdev
->dev
,
1567 "Allocation for Rx Queue %u failed\n", i
);
1568 for (i
--; i
>= 0; i
--)
1569 igb_free_rx_resources(adapter
,
1570 &adapter
->rx_ring
[i
]);
1579 * igb_setup_rctl - configure the receive control registers
1580 * @adapter: Board private structure
1582 static void igb_setup_rctl(struct igb_adapter
*adapter
)
1584 struct e1000_hw
*hw
= &adapter
->hw
;
1589 rctl
= rd32(E1000_RCTL
);
1591 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1593 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1594 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1595 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1597 /* disable the stripping of CRC because it breaks
1598 * BMC firmware connected over SMBUS
1599 rctl |= E1000_RCTL_SECRC;
1602 rctl
&= ~E1000_RCTL_SBP
;
1604 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1605 rctl
&= ~E1000_RCTL_LPE
;
1607 rctl
|= E1000_RCTL_LPE
;
1608 if (adapter
->rx_buffer_len
<= IGB_RXBUFFER_2048
) {
1609 /* Setup buffer sizes */
1610 rctl
&= ~E1000_RCTL_SZ_4096
;
1611 rctl
|= E1000_RCTL_BSEX
;
1612 switch (adapter
->rx_buffer_len
) {
1613 case IGB_RXBUFFER_256
:
1614 rctl
|= E1000_RCTL_SZ_256
;
1615 rctl
&= ~E1000_RCTL_BSEX
;
1617 case IGB_RXBUFFER_512
:
1618 rctl
|= E1000_RCTL_SZ_512
;
1619 rctl
&= ~E1000_RCTL_BSEX
;
1621 case IGB_RXBUFFER_1024
:
1622 rctl
|= E1000_RCTL_SZ_1024
;
1623 rctl
&= ~E1000_RCTL_BSEX
;
1625 case IGB_RXBUFFER_2048
:
1627 rctl
|= E1000_RCTL_SZ_2048
;
1628 rctl
&= ~E1000_RCTL_BSEX
;
1630 case IGB_RXBUFFER_4096
:
1631 rctl
|= E1000_RCTL_SZ_4096
;
1633 case IGB_RXBUFFER_8192
:
1634 rctl
|= E1000_RCTL_SZ_8192
;
1636 case IGB_RXBUFFER_16384
:
1637 rctl
|= E1000_RCTL_SZ_16384
;
1641 rctl
&= ~E1000_RCTL_BSEX
;
1642 srrctl
= adapter
->rx_buffer_len
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1645 /* 82575 and greater support packet-split where the protocol
1646 * header is placed in skb->data and the packet data is
1647 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1648 * In the case of a non-split, skb->data is linearly filled,
1649 * followed by the page buffers. Therefore, skb->data is
1650 * sized to hold the largest protocol header.
1652 /* allocations using alloc_page take too long for regular MTU
1653 * so only enable packet split for jumbo frames */
1654 if (rctl
& E1000_RCTL_LPE
) {
1655 adapter
->rx_ps_hdr_size
= IGB_RXBUFFER_128
;
1656 srrctl
= adapter
->rx_ps_hdr_size
<<
1657 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1658 /* buffer size is ALWAYS one page */
1659 srrctl
|= PAGE_SIZE
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1660 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1662 adapter
->rx_ps_hdr_size
= 0;
1663 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1666 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1667 wr32(E1000_SRRCTL(i
), srrctl
);
1669 wr32(E1000_RCTL
, rctl
);
1673 * igb_configure_rx - Configure receive Unit after Reset
1674 * @adapter: board private structure
1676 * Configure the Rx unit of the MAC after a reset.
1678 static void igb_configure_rx(struct igb_adapter
*adapter
)
1681 struct e1000_hw
*hw
= &adapter
->hw
;
1686 /* disable receives while setting up the descriptors */
1687 rctl
= rd32(E1000_RCTL
);
1688 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1692 if (adapter
->itr_setting
> 3)
1694 1000000000 / (adapter
->itr
* 256));
1696 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1697 * the Base and Length of the Rx Descriptor Ring */
1698 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1699 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
1701 wr32(E1000_RDBAL(i
),
1702 rdba
& 0x00000000ffffffffULL
);
1703 wr32(E1000_RDBAH(i
), rdba
>> 32);
1704 wr32(E1000_RDLEN(i
),
1705 ring
->count
* sizeof(union e1000_adv_rx_desc
));
1707 ring
->head
= E1000_RDH(i
);
1708 ring
->tail
= E1000_RDT(i
);
1709 writel(0, hw
->hw_addr
+ ring
->tail
);
1710 writel(0, hw
->hw_addr
+ ring
->head
);
1712 rxdctl
= rd32(E1000_RXDCTL(i
));
1713 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1714 rxdctl
&= 0xFFF00000;
1715 rxdctl
|= IGB_RX_PTHRESH
;
1716 rxdctl
|= IGB_RX_HTHRESH
<< 8;
1717 rxdctl
|= IGB_RX_WTHRESH
<< 16;
1718 wr32(E1000_RXDCTL(i
), rxdctl
);
1721 if (adapter
->num_rx_queues
> 1) {
1730 get_random_bytes(&random
[0], 40);
1733 for (j
= 0; j
< (32 * 4); j
++) {
1735 (j
% adapter
->num_rx_queues
) << shift
;
1738 hw
->hw_addr
+ E1000_RETA(0) + (j
& ~3));
1740 mrqc
= E1000_MRQC_ENABLE_RSS_4Q
;
1742 /* Fill out hash function seeds */
1743 for (j
= 0; j
< 10; j
++)
1744 array_wr32(E1000_RSSRK(0), j
, random
[j
]);
1746 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4
|
1747 E1000_MRQC_RSS_FIELD_IPV4_TCP
);
1748 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6
|
1749 E1000_MRQC_RSS_FIELD_IPV6_TCP
);
1750 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4_UDP
|
1751 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
1752 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX
|
1753 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
1756 wr32(E1000_MRQC
, mrqc
);
1758 /* Multiqueue and raw packet checksumming are mutually
1759 * exclusive. Note that this not the same as TCP/IP
1760 * checksumming, which works fine. */
1761 rxcsum
= rd32(E1000_RXCSUM
);
1762 rxcsum
|= E1000_RXCSUM_PCSD
;
1763 wr32(E1000_RXCSUM
, rxcsum
);
1765 /* Enable Receive Checksum Offload for TCP and UDP */
1766 rxcsum
= rd32(E1000_RXCSUM
);
1767 if (adapter
->rx_csum
) {
1768 rxcsum
|= E1000_RXCSUM_TUOFL
;
1770 /* Enable IPv4 payload checksum for UDP fragments
1771 * Must be used in conjunction with packet-split. */
1772 if (adapter
->rx_ps_hdr_size
)
1773 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1775 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1776 /* don't need to clear IPPCSE as it defaults to 0 */
1778 wr32(E1000_RXCSUM
, rxcsum
);
1783 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
1785 wr32(E1000_RLPML
, adapter
->max_frame_size
);
1787 /* Enable Receives */
1788 wr32(E1000_RCTL
, rctl
);
1792 * igb_free_tx_resources - Free Tx Resources per Queue
1793 * @adapter: board private structure
1794 * @tx_ring: Tx descriptor ring for a specific queue
1796 * Free all transmit software resources
1798 static void igb_free_tx_resources(struct igb_adapter
*adapter
,
1799 struct igb_ring
*tx_ring
)
1801 struct pci_dev
*pdev
= adapter
->pdev
;
1803 igb_clean_tx_ring(adapter
, tx_ring
);
1805 vfree(tx_ring
->buffer_info
);
1806 tx_ring
->buffer_info
= NULL
;
1808 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
1810 tx_ring
->desc
= NULL
;
1814 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1815 * @adapter: board private structure
1817 * Free all transmit software resources
1819 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
1823 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1824 igb_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1827 static void igb_unmap_and_free_tx_resource(struct igb_adapter
*adapter
,
1828 struct igb_buffer
*buffer_info
)
1830 if (buffer_info
->dma
) {
1831 pci_unmap_page(adapter
->pdev
,
1833 buffer_info
->length
,
1835 buffer_info
->dma
= 0;
1837 if (buffer_info
->skb
) {
1838 dev_kfree_skb_any(buffer_info
->skb
);
1839 buffer_info
->skb
= NULL
;
1841 buffer_info
->time_stamp
= 0;
1842 /* buffer_info must be completely set up in the transmit path */
1846 * igb_clean_tx_ring - Free Tx Buffers
1847 * @adapter: board private structure
1848 * @tx_ring: ring to be cleaned
1850 static void igb_clean_tx_ring(struct igb_adapter
*adapter
,
1851 struct igb_ring
*tx_ring
)
1853 struct igb_buffer
*buffer_info
;
1857 if (!tx_ring
->buffer_info
)
1859 /* Free all the Tx ring sk_buffs */
1861 for (i
= 0; i
< tx_ring
->count
; i
++) {
1862 buffer_info
= &tx_ring
->buffer_info
[i
];
1863 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
1866 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1867 memset(tx_ring
->buffer_info
, 0, size
);
1869 /* Zero out the descriptor ring */
1871 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1873 tx_ring
->next_to_use
= 0;
1874 tx_ring
->next_to_clean
= 0;
1876 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1877 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1881 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1882 * @adapter: board private structure
1884 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
1888 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1889 igb_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1893 * igb_free_rx_resources - Free Rx Resources
1894 * @adapter: board private structure
1895 * @rx_ring: ring to clean the resources from
1897 * Free all receive software resources
1899 static void igb_free_rx_resources(struct igb_adapter
*adapter
,
1900 struct igb_ring
*rx_ring
)
1902 struct pci_dev
*pdev
= adapter
->pdev
;
1904 igb_clean_rx_ring(adapter
, rx_ring
);
1906 vfree(rx_ring
->buffer_info
);
1907 rx_ring
->buffer_info
= NULL
;
1909 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
1911 rx_ring
->desc
= NULL
;
1915 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1916 * @adapter: board private structure
1918 * Free all receive software resources
1920 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
1924 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1925 igb_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1929 * igb_clean_rx_ring - Free Rx Buffers per Queue
1930 * @adapter: board private structure
1931 * @rx_ring: ring to free buffers from
1933 static void igb_clean_rx_ring(struct igb_adapter
*adapter
,
1934 struct igb_ring
*rx_ring
)
1936 struct igb_buffer
*buffer_info
;
1937 struct pci_dev
*pdev
= adapter
->pdev
;
1941 if (!rx_ring
->buffer_info
)
1943 /* Free all the Rx ring sk_buffs */
1944 for (i
= 0; i
< rx_ring
->count
; i
++) {
1945 buffer_info
= &rx_ring
->buffer_info
[i
];
1946 if (buffer_info
->dma
) {
1947 if (adapter
->rx_ps_hdr_size
)
1948 pci_unmap_single(pdev
, buffer_info
->dma
,
1949 adapter
->rx_ps_hdr_size
,
1950 PCI_DMA_FROMDEVICE
);
1952 pci_unmap_single(pdev
, buffer_info
->dma
,
1953 adapter
->rx_buffer_len
,
1954 PCI_DMA_FROMDEVICE
);
1955 buffer_info
->dma
= 0;
1958 if (buffer_info
->skb
) {
1959 dev_kfree_skb(buffer_info
->skb
);
1960 buffer_info
->skb
= NULL
;
1962 if (buffer_info
->page
) {
1963 pci_unmap_page(pdev
, buffer_info
->page_dma
,
1964 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
1965 put_page(buffer_info
->page
);
1966 buffer_info
->page
= NULL
;
1967 buffer_info
->page_dma
= 0;
1971 /* there also may be some cached data from a chained receive */
1972 if (rx_ring
->pending_skb
) {
1973 dev_kfree_skb(rx_ring
->pending_skb
);
1974 rx_ring
->pending_skb
= NULL
;
1977 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1978 memset(rx_ring
->buffer_info
, 0, size
);
1980 /* Zero out the descriptor ring */
1981 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1983 rx_ring
->next_to_clean
= 0;
1984 rx_ring
->next_to_use
= 0;
1986 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1987 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1991 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1992 * @adapter: board private structure
1994 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
1998 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1999 igb_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2003 * igb_set_mac - Change the Ethernet Address of the NIC
2004 * @netdev: network interface device structure
2005 * @p: pointer to an address structure
2007 * Returns 0 on success, negative on failure
2009 static int igb_set_mac(struct net_device
*netdev
, void *p
)
2011 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2012 struct sockaddr
*addr
= p
;
2014 if (!is_valid_ether_addr(addr
->sa_data
))
2015 return -EADDRNOTAVAIL
;
2017 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2018 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2020 adapter
->hw
.mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
2026 * igb_set_multi - Multicast and Promiscuous mode set
2027 * @netdev: network interface device structure
2029 * The set_multi entry point is called whenever the multicast address
2030 * list or the network interface flags are updated. This routine is
2031 * responsible for configuring the hardware for proper multicast,
2032 * promiscuous mode, and all-multi behavior.
2034 static void igb_set_multi(struct net_device
*netdev
)
2036 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2037 struct e1000_hw
*hw
= &adapter
->hw
;
2038 struct e1000_mac_info
*mac
= &hw
->mac
;
2039 struct dev_mc_list
*mc_ptr
;
2044 /* Check for Promiscuous and All Multicast modes */
2046 rctl
= rd32(E1000_RCTL
);
2048 if (netdev
->flags
& IFF_PROMISC
)
2049 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2050 else if (netdev
->flags
& IFF_ALLMULTI
) {
2051 rctl
|= E1000_RCTL_MPE
;
2052 rctl
&= ~E1000_RCTL_UPE
;
2054 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2056 wr32(E1000_RCTL
, rctl
);
2058 if (!netdev
->mc_count
) {
2059 /* nothing to program, so clear mc list */
2060 igb_update_mc_addr_list(hw
, NULL
, 0, 1,
2061 mac
->rar_entry_count
);
2065 mta_list
= kzalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2069 /* The shared function expects a packed array of only addresses. */
2070 mc_ptr
= netdev
->mc_list
;
2072 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2075 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
, ETH_ALEN
);
2076 mc_ptr
= mc_ptr
->next
;
2078 igb_update_mc_addr_list(hw
, mta_list
, i
, 1, mac
->rar_entry_count
);
2082 /* Need to wait a few seconds after link up to get diagnostic information from
2084 static void igb_update_phy_info(unsigned long data
)
2086 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
2087 adapter
->hw
.phy
.ops
.get_phy_info(&adapter
->hw
);
2091 * igb_watchdog - Timer Call-back
2092 * @data: pointer to adapter cast into an unsigned long
2094 static void igb_watchdog(unsigned long data
)
2096 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
2097 /* Do the rest outside of interrupt context */
2098 schedule_work(&adapter
->watchdog_task
);
2101 static void igb_watchdog_task(struct work_struct
*work
)
2103 struct igb_adapter
*adapter
= container_of(work
,
2104 struct igb_adapter
, watchdog_task
);
2105 struct e1000_hw
*hw
= &adapter
->hw
;
2107 struct net_device
*netdev
= adapter
->netdev
;
2108 struct igb_ring
*tx_ring
= adapter
->tx_ring
;
2109 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2113 if ((netif_carrier_ok(netdev
)) &&
2114 (rd32(E1000_STATUS
) & E1000_STATUS_LU
))
2117 ret_val
= hw
->mac
.ops
.check_for_link(&adapter
->hw
);
2118 if ((ret_val
== E1000_ERR_PHY
) &&
2119 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2121 E1000_PHY_CTRL_GBE_DISABLE
))
2122 dev_info(&adapter
->pdev
->dev
,
2123 "Gigabit has been disabled, downgrading speed\n");
2125 if ((hw
->phy
.media_type
== e1000_media_type_internal_serdes
) &&
2126 !(rd32(E1000_TXCW
) & E1000_TXCW_ANE
))
2127 link
= mac
->serdes_has_link
;
2129 link
= rd32(E1000_STATUS
) &
2133 if (!netif_carrier_ok(netdev
)) {
2135 hw
->mac
.ops
.get_speed_and_duplex(&adapter
->hw
,
2136 &adapter
->link_speed
,
2137 &adapter
->link_duplex
);
2139 ctrl
= rd32(E1000_CTRL
);
2140 dev_info(&adapter
->pdev
->dev
,
2141 "NIC Link is Up %d Mbps %s, "
2142 "Flow Control: %s\n",
2143 adapter
->link_speed
,
2144 adapter
->link_duplex
== FULL_DUPLEX
?
2145 "Full Duplex" : "Half Duplex",
2146 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2147 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2148 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2149 E1000_CTRL_TFCE
) ? "TX" : "None")));
2151 /* tweak tx_queue_len according to speed/duplex and
2152 * adjust the timeout factor */
2153 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2154 adapter
->tx_timeout_factor
= 1;
2155 switch (adapter
->link_speed
) {
2157 netdev
->tx_queue_len
= 10;
2158 adapter
->tx_timeout_factor
= 14;
2161 netdev
->tx_queue_len
= 100;
2162 /* maybe add some timeout factor ? */
2166 netif_carrier_on(netdev
);
2167 netif_wake_queue(netdev
);
2169 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2170 mod_timer(&adapter
->phy_info_timer
,
2171 round_jiffies(jiffies
+ 2 * HZ
));
2174 if (netif_carrier_ok(netdev
)) {
2175 adapter
->link_speed
= 0;
2176 adapter
->link_duplex
= 0;
2177 dev_info(&adapter
->pdev
->dev
, "NIC Link is Down\n");
2178 netif_carrier_off(netdev
);
2179 netif_stop_queue(netdev
);
2180 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2181 mod_timer(&adapter
->phy_info_timer
,
2182 round_jiffies(jiffies
+ 2 * HZ
));
2187 igb_update_stats(adapter
);
2189 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2190 adapter
->tpt_old
= adapter
->stats
.tpt
;
2191 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2192 adapter
->colc_old
= adapter
->stats
.colc
;
2194 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
2195 adapter
->gorc_old
= adapter
->stats
.gorc
;
2196 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
2197 adapter
->gotc_old
= adapter
->stats
.gotc
;
2199 igb_update_adaptive(&adapter
->hw
);
2201 if (!netif_carrier_ok(netdev
)) {
2202 if (IGB_DESC_UNUSED(tx_ring
) + 1 < tx_ring
->count
) {
2203 /* We've lost link, so the controller stops DMA,
2204 * but we've got queued Tx work that's never going
2205 * to get done, so reset controller to flush Tx.
2206 * (Do the reset outside of interrupt context). */
2207 adapter
->tx_timeout_count
++;
2208 schedule_work(&adapter
->reset_task
);
2212 /* Cause software interrupt to ensure rx ring is cleaned */
2213 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
2215 /* Force detection of hung controller every watchdog period */
2216 tx_ring
->detect_tx_hung
= true;
2218 /* Reset the timer */
2219 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2220 mod_timer(&adapter
->watchdog_timer
,
2221 round_jiffies(jiffies
+ 2 * HZ
));
2224 enum latency_range
{
2228 latency_invalid
= 255
2232 static void igb_lower_rx_eitr(struct igb_adapter
*adapter
,
2233 struct igb_ring
*rx_ring
)
2235 struct e1000_hw
*hw
= &adapter
->hw
;
2238 new_val
= rx_ring
->itr_val
/ 2;
2239 if (new_val
< IGB_MIN_DYN_ITR
)
2240 new_val
= IGB_MIN_DYN_ITR
;
2242 if (new_val
!= rx_ring
->itr_val
) {
2243 rx_ring
->itr_val
= new_val
;
2244 wr32(rx_ring
->itr_register
,
2245 1000000000 / (new_val
* 256));
2249 static void igb_raise_rx_eitr(struct igb_adapter
*adapter
,
2250 struct igb_ring
*rx_ring
)
2252 struct e1000_hw
*hw
= &adapter
->hw
;
2255 new_val
= rx_ring
->itr_val
* 2;
2256 if (new_val
> IGB_MAX_DYN_ITR
)
2257 new_val
= IGB_MAX_DYN_ITR
;
2259 if (new_val
!= rx_ring
->itr_val
) {
2260 rx_ring
->itr_val
= new_val
;
2261 wr32(rx_ring
->itr_register
,
2262 1000000000 / (new_val
* 256));
2267 * igb_update_itr - update the dynamic ITR value based on statistics
2268 * Stores a new ITR value based on packets and byte
2269 * counts during the last interrupt. The advantage of per interrupt
2270 * computation is faster updates and more accurate ITR for the current
2271 * traffic pattern. Constants in this function were computed
2272 * based on theoretical maximum wire speed and thresholds were set based
2273 * on testing data as well as attempting to minimize response time
2274 * while increasing bulk throughput.
2275 * this functionality is controlled by the InterruptThrottleRate module
2276 * parameter (see igb_param.c)
2277 * NOTE: These calculations are only valid when operating in a single-
2278 * queue environment.
2279 * @adapter: pointer to adapter
2280 * @itr_setting: current adapter->itr
2281 * @packets: the number of packets during this measurement interval
2282 * @bytes: the number of bytes during this measurement interval
2284 static unsigned int igb_update_itr(struct igb_adapter
*adapter
, u16 itr_setting
,
2285 int packets
, int bytes
)
2287 unsigned int retval
= itr_setting
;
2290 goto update_itr_done
;
2292 switch (itr_setting
) {
2293 case lowest_latency
:
2294 /* handle TSO and jumbo frames */
2295 if (bytes
/packets
> 8000)
2296 retval
= bulk_latency
;
2297 else if ((packets
< 5) && (bytes
> 512))
2298 retval
= low_latency
;
2300 case low_latency
: /* 50 usec aka 20000 ints/s */
2301 if (bytes
> 10000) {
2302 /* this if handles the TSO accounting */
2303 if (bytes
/packets
> 8000) {
2304 retval
= bulk_latency
;
2305 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
2306 retval
= bulk_latency
;
2307 } else if ((packets
> 35)) {
2308 retval
= lowest_latency
;
2310 } else if (bytes
/packets
> 2000) {
2311 retval
= bulk_latency
;
2312 } else if (packets
<= 2 && bytes
< 512) {
2313 retval
= lowest_latency
;
2316 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2317 if (bytes
> 25000) {
2319 retval
= low_latency
;
2320 } else if (bytes
< 6000) {
2321 retval
= low_latency
;
2330 static void igb_set_itr(struct igb_adapter
*adapter
, u16 itr_register
,
2334 u32 new_itr
= adapter
->itr
;
2336 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2337 if (adapter
->link_speed
!= SPEED_1000
) {
2343 adapter
->rx_itr
= igb_update_itr(adapter
,
2345 adapter
->rx_ring
->total_packets
,
2346 adapter
->rx_ring
->total_bytes
);
2347 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2348 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2349 adapter
->rx_itr
= low_latency
;
2352 adapter
->tx_itr
= igb_update_itr(adapter
,
2354 adapter
->tx_ring
->total_packets
,
2355 adapter
->tx_ring
->total_bytes
);
2356 /* conservative mode (itr 3) eliminates the
2357 * lowest_latency setting */
2358 if (adapter
->itr_setting
== 3 &&
2359 adapter
->tx_itr
== lowest_latency
)
2360 adapter
->tx_itr
= low_latency
;
2362 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2364 current_itr
= adapter
->rx_itr
;
2367 switch (current_itr
) {
2368 /* counts and packets in update_itr are dependent on these numbers */
2369 case lowest_latency
:
2373 new_itr
= 20000; /* aka hwitr = ~200 */
2383 if (new_itr
!= adapter
->itr
) {
2384 /* this attempts to bias the interrupt rate towards Bulk
2385 * by adding intermediate steps when interrupt rate is
2387 new_itr
= new_itr
> adapter
->itr
?
2388 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2390 /* Don't write the value here; it resets the adapter's
2391 * internal timer, and causes us to delay far longer than
2392 * we should between interrupts. Instead, we write the ITR
2393 * value at the beginning of the next interrupt so the timing
2394 * ends up being correct.
2396 adapter
->itr
= new_itr
;
2397 adapter
->set_itr
= 1;
2404 #define IGB_TX_FLAGS_CSUM 0x00000001
2405 #define IGB_TX_FLAGS_VLAN 0x00000002
2406 #define IGB_TX_FLAGS_TSO 0x00000004
2407 #define IGB_TX_FLAGS_IPV4 0x00000008
2408 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2409 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2411 static inline int igb_tso_adv(struct igb_adapter
*adapter
,
2412 struct igb_ring
*tx_ring
,
2413 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
2415 struct e1000_adv_tx_context_desc
*context_desc
;
2418 struct igb_buffer
*buffer_info
;
2419 u32 info
= 0, tu_cmd
= 0;
2420 u32 mss_l4len_idx
, l4len
;
2423 if (skb_header_cloned(skb
)) {
2424 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2429 l4len
= tcp_hdrlen(skb
);
2432 if (skb
->protocol
== htons(ETH_P_IP
)) {
2433 struct iphdr
*iph
= ip_hdr(skb
);
2436 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2440 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
2441 ipv6_hdr(skb
)->payload_len
= 0;
2442 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2443 &ipv6_hdr(skb
)->daddr
,
2447 i
= tx_ring
->next_to_use
;
2449 buffer_info
= &tx_ring
->buffer_info
[i
];
2450 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2451 /* VLAN MACLEN IPLEN */
2452 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2453 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2454 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2455 *hdr_len
+= skb_network_offset(skb
);
2456 info
|= skb_network_header_len(skb
);
2457 *hdr_len
+= skb_network_header_len(skb
);
2458 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2460 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2461 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2463 if (skb
->protocol
== htons(ETH_P_IP
))
2464 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2465 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2467 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2470 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
2471 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
2473 /* Context index must be unique per ring. Luckily, so is the interrupt
2475 mss_l4len_idx
|= tx_ring
->eims_value
>> 4;
2477 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
2478 context_desc
->seqnum_seed
= 0;
2480 buffer_info
->time_stamp
= jiffies
;
2481 buffer_info
->dma
= 0;
2483 if (i
== tx_ring
->count
)
2486 tx_ring
->next_to_use
= i
;
2491 static inline bool igb_tx_csum_adv(struct igb_adapter
*adapter
,
2492 struct igb_ring
*tx_ring
,
2493 struct sk_buff
*skb
, u32 tx_flags
)
2495 struct e1000_adv_tx_context_desc
*context_desc
;
2497 struct igb_buffer
*buffer_info
;
2498 u32 info
= 0, tu_cmd
= 0;
2500 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2501 (tx_flags
& IGB_TX_FLAGS_VLAN
)) {
2502 i
= tx_ring
->next_to_use
;
2503 buffer_info
= &tx_ring
->buffer_info
[i
];
2504 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2506 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2507 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2508 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2509 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2510 info
|= skb_network_header_len(skb
);
2512 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2514 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2516 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2517 if (skb
->protocol
== htons(ETH_P_IP
))
2518 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2519 if (skb
->sk
&& (skb
->sk
->sk_protocol
== IPPROTO_TCP
))
2520 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2523 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2524 context_desc
->seqnum_seed
= 0;
2525 context_desc
->mss_l4len_idx
=
2526 cpu_to_le32(tx_ring
->eims_value
>> 4);
2528 buffer_info
->time_stamp
= jiffies
;
2529 buffer_info
->dma
= 0;
2532 if (i
== tx_ring
->count
)
2534 tx_ring
->next_to_use
= i
;
2543 #define IGB_MAX_TXD_PWR 16
2544 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2546 static inline int igb_tx_map_adv(struct igb_adapter
*adapter
,
2547 struct igb_ring
*tx_ring
,
2548 struct sk_buff
*skb
)
2550 struct igb_buffer
*buffer_info
;
2551 unsigned int len
= skb_headlen(skb
);
2552 unsigned int count
= 0, i
;
2555 i
= tx_ring
->next_to_use
;
2557 buffer_info
= &tx_ring
->buffer_info
[i
];
2558 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2559 buffer_info
->length
= len
;
2560 /* set time_stamp *before* dma to help avoid a possible race */
2561 buffer_info
->time_stamp
= jiffies
;
2562 buffer_info
->dma
= pci_map_single(adapter
->pdev
, skb
->data
, len
,
2566 if (i
== tx_ring
->count
)
2569 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2570 struct skb_frag_struct
*frag
;
2572 frag
= &skb_shinfo(skb
)->frags
[f
];
2575 buffer_info
= &tx_ring
->buffer_info
[i
];
2576 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2577 buffer_info
->length
= len
;
2578 buffer_info
->time_stamp
= jiffies
;
2579 buffer_info
->dma
= pci_map_page(adapter
->pdev
,
2587 if (i
== tx_ring
->count
)
2591 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
2592 tx_ring
->buffer_info
[i
].skb
= skb
;
2597 static inline void igb_tx_queue_adv(struct igb_adapter
*adapter
,
2598 struct igb_ring
*tx_ring
,
2599 int tx_flags
, int count
, u32 paylen
,
2602 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2603 struct igb_buffer
*buffer_info
;
2604 u32 olinfo_status
= 0, cmd_type_len
;
2607 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2608 E1000_ADVTXD_DCMD_DEXT
);
2610 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2611 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2613 if (tx_flags
& IGB_TX_FLAGS_TSO
) {
2614 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2616 /* insert tcp checksum */
2617 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2619 /* insert ip checksum */
2620 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
2621 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2623 } else if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
2624 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2627 if (tx_flags
& (IGB_TX_FLAGS_CSUM
| IGB_TX_FLAGS_TSO
|
2629 olinfo_status
|= tx_ring
->eims_value
>> 4;
2631 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2633 i
= tx_ring
->next_to_use
;
2635 buffer_info
= &tx_ring
->buffer_info
[i
];
2636 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
2637 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2638 tx_desc
->read
.cmd_type_len
=
2639 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2640 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2642 if (i
== tx_ring
->count
)
2646 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2647 /* Force memory writes to complete before letting h/w
2648 * know there are new descriptors to fetch. (Only
2649 * applicable for weak-ordered memory model archs,
2650 * such as IA-64). */
2653 tx_ring
->next_to_use
= i
;
2654 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2655 /* we need this if more than one processor can write to our tail
2656 * at a time, it syncronizes IO on IA64/Altix systems */
2660 static int __igb_maybe_stop_tx(struct net_device
*netdev
,
2661 struct igb_ring
*tx_ring
, int size
)
2663 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2665 netif_stop_queue(netdev
);
2666 /* Herbert's original patch had:
2667 * smp_mb__after_netif_stop_queue();
2668 * but since that doesn't exist yet, just open code it. */
2671 /* We need to check again in a case another CPU has just
2672 * made room available. */
2673 if (IGB_DESC_UNUSED(tx_ring
) < size
)
2677 netif_start_queue(netdev
);
2678 ++adapter
->restart_queue
;
2682 static int igb_maybe_stop_tx(struct net_device
*netdev
,
2683 struct igb_ring
*tx_ring
, int size
)
2685 if (IGB_DESC_UNUSED(tx_ring
) >= size
)
2687 return __igb_maybe_stop_tx(netdev
, tx_ring
, size
);
2690 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2692 static int igb_xmit_frame_ring_adv(struct sk_buff
*skb
,
2693 struct net_device
*netdev
,
2694 struct igb_ring
*tx_ring
)
2696 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2697 unsigned int tx_flags
= 0;
2699 unsigned long irq_flags
;
2703 len
= skb_headlen(skb
);
2705 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
2706 dev_kfree_skb_any(skb
);
2707 return NETDEV_TX_OK
;
2710 if (skb
->len
<= 0) {
2711 dev_kfree_skb_any(skb
);
2712 return NETDEV_TX_OK
;
2715 if (!spin_trylock_irqsave(&tx_ring
->tx_lock
, irq_flags
))
2716 /* Collision - tell upper layer to requeue */
2717 return NETDEV_TX_LOCKED
;
2719 /* need: 1 descriptor per page,
2720 * + 2 desc gap to keep tail from touching head,
2721 * + 1 desc for skb->data,
2722 * + 1 desc for context descriptor,
2723 * otherwise try next time */
2724 if (igb_maybe_stop_tx(netdev
, tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2725 /* this is a hard error */
2726 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2727 return NETDEV_TX_BUSY
;
2730 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2731 tx_flags
|= IGB_TX_FLAGS_VLAN
;
2732 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
2735 tso
= skb_is_gso(skb
) ? igb_tso_adv(adapter
, tx_ring
, skb
, tx_flags
,
2739 dev_kfree_skb_any(skb
);
2740 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2741 return NETDEV_TX_OK
;
2745 tx_flags
|= IGB_TX_FLAGS_TSO
;
2746 else if (igb_tx_csum_adv(adapter
, tx_ring
, skb
, tx_flags
))
2747 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2748 tx_flags
|= IGB_TX_FLAGS_CSUM
;
2750 if (skb
->protocol
== htons(ETH_P_IP
))
2751 tx_flags
|= IGB_TX_FLAGS_IPV4
;
2753 igb_tx_queue_adv(adapter
, tx_ring
, tx_flags
,
2754 igb_tx_map_adv(adapter
, tx_ring
, skb
),
2757 netdev
->trans_start
= jiffies
;
2759 /* Make sure there is space in the ring for the next send. */
2760 igb_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 4);
2762 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2763 return NETDEV_TX_OK
;
2766 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*netdev
)
2768 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2769 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[0];
2771 /* This goes back to the question of how to logically map a tx queue
2772 * to a flow. Right now, performance is impacted slightly negatively
2773 * if using multiple tx queues. If the stack breaks away from a
2774 * single qdisc implementation, we can look at this again. */
2775 return (igb_xmit_frame_ring_adv(skb
, netdev
, tx_ring
));
2779 * igb_tx_timeout - Respond to a Tx Hang
2780 * @netdev: network interface device structure
2782 static void igb_tx_timeout(struct net_device
*netdev
)
2784 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2785 struct e1000_hw
*hw
= &adapter
->hw
;
2787 /* Do the reset outside of interrupt context */
2788 adapter
->tx_timeout_count
++;
2789 schedule_work(&adapter
->reset_task
);
2790 wr32(E1000_EICS
, adapter
->eims_enable_mask
&
2791 ~(E1000_EIMS_TCP_TIMER
| E1000_EIMS_OTHER
));
2794 static void igb_reset_task(struct work_struct
*work
)
2796 struct igb_adapter
*adapter
;
2797 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
2799 igb_reinit_locked(adapter
);
2803 * igb_get_stats - Get System Network Statistics
2804 * @netdev: network interface device structure
2806 * Returns the address of the device statistics structure.
2807 * The statistics are actually updated from the timer callback.
2809 static struct net_device_stats
*
2810 igb_get_stats(struct net_device
*netdev
)
2812 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2814 /* only return the current stats */
2815 return &adapter
->net_stats
;
2819 * igb_change_mtu - Change the Maximum Transfer Unit
2820 * @netdev: network interface device structure
2821 * @new_mtu: new value for maximum frame size
2823 * Returns 0 on success, negative on failure
2825 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
2827 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2828 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2830 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
2831 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2832 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
2836 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2837 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2838 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
2842 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
2844 /* igb_down has a dependency on max_frame_size */
2845 adapter
->max_frame_size
= max_frame
;
2846 if (netif_running(netdev
))
2849 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2850 * means we reserve 2 more, this pushes us to allocate from the next
2852 * i.e. RXBUFFER_2048 --> size-4096 slab
2855 if (max_frame
<= IGB_RXBUFFER_256
)
2856 adapter
->rx_buffer_len
= IGB_RXBUFFER_256
;
2857 else if (max_frame
<= IGB_RXBUFFER_512
)
2858 adapter
->rx_buffer_len
= IGB_RXBUFFER_512
;
2859 else if (max_frame
<= IGB_RXBUFFER_1024
)
2860 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
2861 else if (max_frame
<= IGB_RXBUFFER_2048
)
2862 adapter
->rx_buffer_len
= IGB_RXBUFFER_2048
;
2864 adapter
->rx_buffer_len
= IGB_RXBUFFER_4096
;
2865 /* adjust allocation if LPE protects us, and we aren't using SBP */
2866 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2867 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
))
2868 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
2870 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2871 netdev
->mtu
, new_mtu
);
2872 netdev
->mtu
= new_mtu
;
2874 if (netif_running(netdev
))
2879 clear_bit(__IGB_RESETTING
, &adapter
->state
);
2885 * igb_update_stats - Update the board statistics counters
2886 * @adapter: board private structure
2889 void igb_update_stats(struct igb_adapter
*adapter
)
2891 struct e1000_hw
*hw
= &adapter
->hw
;
2892 struct pci_dev
*pdev
= adapter
->pdev
;
2895 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2898 * Prevent stats update while adapter is being reset, or if the pci
2899 * connection is down.
2901 if (adapter
->link_speed
== 0)
2903 if (pci_channel_offline(pdev
))
2906 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
2907 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
2908 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
2909 rd32(E1000_GORCH
); /* clear GORCL */
2910 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
2911 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
2912 adapter
->stats
.roc
+= rd32(E1000_ROC
);
2914 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
2915 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
2916 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
2917 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
2918 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
2919 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
2920 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
2921 adapter
->stats
.sec
+= rd32(E1000_SEC
);
2923 adapter
->stats
.mpc
+= rd32(E1000_MPC
);
2924 adapter
->stats
.scc
+= rd32(E1000_SCC
);
2925 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
2926 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
2927 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
2928 adapter
->stats
.dc
+= rd32(E1000_DC
);
2929 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
2930 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
2931 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
2932 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
2933 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
2934 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
2935 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
2936 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
2937 rd32(E1000_GOTCH
); /* clear GOTCL */
2938 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
2939 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
2940 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
2941 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
2942 adapter
->stats
.tor
+= rd32(E1000_TORH
);
2943 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
2944 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
2946 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
2947 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
2948 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
2949 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
2950 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
2951 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
2953 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
2954 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
2956 /* used for adaptive IFS */
2958 hw
->mac
.tx_packet_delta
= rd32(E1000_TPT
);
2959 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
2960 hw
->mac
.collision_delta
= rd32(E1000_COLC
);
2961 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
2963 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
2964 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
2965 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
2966 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
2967 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
2969 adapter
->stats
.iac
+= rd32(E1000_IAC
);
2970 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
2971 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
2972 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
2973 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
2974 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
2975 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
2976 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
2977 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
2979 /* Fill out the OS statistics structure */
2980 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
2981 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
2985 /* RLEC on some newer hardware can be incorrect so build
2986 * our own version based on RUC and ROC */
2987 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
2988 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
2989 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
2990 adapter
->stats
.cexterr
;
2991 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
2993 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
2994 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
2995 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
2998 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
2999 adapter
->stats
.latecol
;
3000 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3001 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3002 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3004 /* Tx Dropped needs to be maintained elsewhere */
3007 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
3008 if ((adapter
->link_speed
== SPEED_1000
) &&
3009 (!hw
->phy
.ops
.read_phy_reg(hw
, PHY_1000T_STATUS
,
3011 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3012 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3016 /* Management Stats */
3017 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
3018 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
3019 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
3023 static irqreturn_t
igb_msix_other(int irq
, void *data
)
3025 struct net_device
*netdev
= data
;
3026 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3027 struct e1000_hw
*hw
= &adapter
->hw
;
3029 /* disable interrupts from the "other" bit, avoid re-entry */
3030 wr32(E1000_EIMC
, E1000_EIMS_OTHER
);
3032 eicr
= rd32(E1000_EICR
);
3034 if (eicr
& E1000_EIMS_OTHER
) {
3035 u32 icr
= rd32(E1000_ICR
);
3036 /* reading ICR causes bit 31 of EICR to be cleared */
3037 if (!(icr
& E1000_ICR_LSC
))
3038 goto no_link_interrupt
;
3039 hw
->mac
.get_link_status
= 1;
3040 /* guard against interrupt when we're going down */
3041 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3042 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3046 wr32(E1000_IMS
, E1000_IMS_LSC
);
3047 wr32(E1000_EIMS
, E1000_EIMS_OTHER
);
3052 static irqreturn_t
igb_msix_tx(int irq
, void *data
)
3054 struct igb_ring
*tx_ring
= data
;
3055 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3056 struct e1000_hw
*hw
= &adapter
->hw
;
3058 if (!tx_ring
->itr_val
)
3059 wr32(E1000_EIMC
, tx_ring
->eims_value
);
3061 tx_ring
->total_bytes
= 0;
3062 tx_ring
->total_packets
= 0;
3063 if (!igb_clean_tx_irq(adapter
, tx_ring
))
3064 /* Ring was not completely cleaned, so fire another interrupt */
3065 wr32(E1000_EICS
, tx_ring
->eims_value
);
3067 if (!tx_ring
->itr_val
)
3068 wr32(E1000_EIMS
, tx_ring
->eims_value
);
3072 static irqreturn_t
igb_msix_rx(int irq
, void *data
)
3074 struct igb_ring
*rx_ring
= data
;
3075 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3076 struct e1000_hw
*hw
= &adapter
->hw
;
3078 if (!rx_ring
->itr_val
)
3079 wr32(E1000_EIMC
, rx_ring
->eims_value
);
3081 if (netif_rx_schedule_prep(adapter
->netdev
, &rx_ring
->napi
)) {
3082 rx_ring
->total_bytes
= 0;
3083 rx_ring
->total_packets
= 0;
3084 rx_ring
->no_itr_adjust
= 0;
3085 __netif_rx_schedule(adapter
->netdev
, &rx_ring
->napi
);
3087 if (!rx_ring
->no_itr_adjust
) {
3088 igb_lower_rx_eitr(adapter
, rx_ring
);
3089 rx_ring
->no_itr_adjust
= 1;
3098 * igb_intr_msi - Interrupt Handler
3099 * @irq: interrupt number
3100 * @data: pointer to a network interface device structure
3102 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
3104 struct net_device
*netdev
= data
;
3105 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3106 struct napi_struct
*napi
= &adapter
->napi
;
3107 struct e1000_hw
*hw
= &adapter
->hw
;
3108 /* read ICR disables interrupts using IAM */
3109 u32 icr
= rd32(E1000_ICR
);
3111 /* Write the ITR value calculated at the end of the
3112 * previous interrupt.
3114 if (adapter
->set_itr
) {
3116 1000000000 / (adapter
->itr
* 256));
3117 adapter
->set_itr
= 0;
3120 /* read ICR disables interrupts using IAM */
3121 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3122 hw
->mac
.get_link_status
= 1;
3123 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3124 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3127 if (netif_rx_schedule_prep(netdev
, napi
)) {
3128 adapter
->tx_ring
->total_bytes
= 0;
3129 adapter
->tx_ring
->total_packets
= 0;
3130 adapter
->rx_ring
->total_bytes
= 0;
3131 adapter
->rx_ring
->total_packets
= 0;
3132 __netif_rx_schedule(netdev
, napi
);
3139 * igb_intr - Interrupt Handler
3140 * @irq: interrupt number
3141 * @data: pointer to a network interface device structure
3143 static irqreturn_t
igb_intr(int irq
, void *data
)
3145 struct net_device
*netdev
= data
;
3146 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3147 struct napi_struct
*napi
= &adapter
->napi
;
3148 struct e1000_hw
*hw
= &adapter
->hw
;
3149 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3150 * need for the IMC write */
3151 u32 icr
= rd32(E1000_ICR
);
3154 return IRQ_NONE
; /* Not our interrupt */
3156 /* Write the ITR value calculated at the end of the
3157 * previous interrupt.
3159 if (adapter
->set_itr
) {
3161 1000000000 / (adapter
->itr
* 256));
3162 adapter
->set_itr
= 0;
3165 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3166 * not set, then the adapter didn't send an interrupt */
3167 if (!(icr
& E1000_ICR_INT_ASSERTED
))
3170 eicr
= rd32(E1000_EICR
);
3172 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3173 hw
->mac
.get_link_status
= 1;
3174 /* guard against interrupt when we're going down */
3175 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3176 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3179 if (netif_rx_schedule_prep(netdev
, napi
)) {
3180 adapter
->tx_ring
->total_bytes
= 0;
3181 adapter
->rx_ring
->total_bytes
= 0;
3182 adapter
->tx_ring
->total_packets
= 0;
3183 adapter
->rx_ring
->total_packets
= 0;
3184 __netif_rx_schedule(netdev
, napi
);
3191 * igb_clean - NAPI Rx polling callback
3192 * @adapter: board private structure
3194 static int igb_clean(struct napi_struct
*napi
, int budget
)
3196 struct igb_adapter
*adapter
= container_of(napi
, struct igb_adapter
,
3198 struct net_device
*netdev
= adapter
->netdev
;
3199 int tx_clean_complete
= 1, work_done
= 0;
3202 /* Must NOT use netdev_priv macro here. */
3203 adapter
= netdev
->priv
;
3205 /* Keep link state information with original netdev */
3206 if (!netif_carrier_ok(netdev
))
3209 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3210 * being cleaned by multiple cpus simultaneously. A failure obtaining
3211 * the lock means tx_ring[i] is currently being cleaned anyway. */
3212 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3213 if (spin_trylock(&adapter
->tx_ring
[i
].tx_clean_lock
)) {
3214 tx_clean_complete
&= igb_clean_tx_irq(adapter
,
3215 &adapter
->tx_ring
[i
]);
3216 spin_unlock(&adapter
->tx_ring
[i
].tx_clean_lock
);
3220 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
3221 igb_clean_rx_irq_adv(adapter
, &adapter
->rx_ring
[i
], &work_done
,
3222 adapter
->rx_ring
[i
].napi
.weight
);
3224 /* If no Tx and not enough Rx work done, exit the polling mode */
3225 if ((tx_clean_complete
&& (work_done
< budget
)) ||
3226 !netif_running(netdev
)) {
3228 if (adapter
->itr_setting
& 3)
3229 igb_set_itr(adapter
, E1000_ITR
, false);
3230 netif_rx_complete(netdev
, napi
);
3231 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3232 igb_irq_enable(adapter
);
3239 static int igb_clean_rx_ring_msix(struct napi_struct
*napi
, int budget
)
3241 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
3242 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3243 struct e1000_hw
*hw
= &adapter
->hw
;
3244 struct net_device
*netdev
= adapter
->netdev
;
3247 /* Keep link state information with original netdev */
3248 if (!netif_carrier_ok(netdev
))
3251 igb_clean_rx_irq_adv(adapter
, rx_ring
, &work_done
, budget
);
3254 /* If not enough Rx work done, exit the polling mode */
3255 if ((work_done
== 0) || !netif_running(netdev
)) {
3257 netif_rx_complete(netdev
, napi
);
3259 wr32(E1000_EIMS
, rx_ring
->eims_value
);
3260 if ((adapter
->itr_setting
& 3) && !rx_ring
->no_itr_adjust
&&
3261 (rx_ring
->total_packets
> IGB_DYN_ITR_PACKET_THRESHOLD
)) {
3262 int mean_size
= rx_ring
->total_bytes
/
3263 rx_ring
->total_packets
;
3264 if (mean_size
< IGB_DYN_ITR_LENGTH_LOW
)
3265 igb_raise_rx_eitr(adapter
, rx_ring
);
3266 else if (mean_size
> IGB_DYN_ITR_LENGTH_HIGH
)
3267 igb_lower_rx_eitr(adapter
, rx_ring
);
3275 * igb_clean_tx_irq - Reclaim resources after transmit completes
3276 * @adapter: board private structure
3277 * returns true if ring is completely cleaned
3279 static bool igb_clean_tx_irq(struct igb_adapter
*adapter
,
3280 struct igb_ring
*tx_ring
)
3282 struct net_device
*netdev
= adapter
->netdev
;
3283 struct e1000_hw
*hw
= &adapter
->hw
;
3284 struct e1000_tx_desc
*tx_desc
;
3285 struct igb_buffer
*buffer_info
;
3286 struct sk_buff
*skb
;
3289 unsigned int count
= 0;
3290 bool cleaned
= false;
3292 unsigned int total_bytes
= 0, total_packets
= 0;
3295 head
= *(volatile u32
*)((struct e1000_tx_desc
*)tx_ring
->desc
3297 head
= le32_to_cpu(head
);
3298 i
= tx_ring
->next_to_clean
;
3302 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3303 buffer_info
= &tx_ring
->buffer_info
[i
];
3304 skb
= buffer_info
->skb
;
3307 unsigned int segs
, bytecount
;
3308 /* gso_segs is currently only valid for tcp */
3309 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3310 /* multiply data chunks by size of headers */
3311 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3313 total_packets
+= segs
;
3314 total_bytes
+= bytecount
;
3317 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
3318 tx_desc
->upper
.data
= 0;
3321 if (i
== tx_ring
->count
)
3325 if (count
== IGB_MAX_TX_CLEAN
) {
3332 head
= *(volatile u32
*)((struct e1000_tx_desc
*)tx_ring
->desc
3334 head
= le32_to_cpu(head
);
3335 if (head
== oldhead
)
3340 tx_ring
->next_to_clean
= i
;
3342 if (unlikely(cleaned
&&
3343 netif_carrier_ok(netdev
) &&
3344 IGB_DESC_UNUSED(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
3345 /* Make sure that anybody stopping the queue after this
3346 * sees the new next_to_clean.
3349 if (netif_queue_stopped(netdev
) &&
3350 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
3351 netif_wake_queue(netdev
);
3352 ++adapter
->restart_queue
;
3356 if (tx_ring
->detect_tx_hung
) {
3357 /* Detect a transmit hang in hardware, this serializes the
3358 * check with the clearing of time_stamp and movement of i */
3359 tx_ring
->detect_tx_hung
= false;
3360 if (tx_ring
->buffer_info
[i
].time_stamp
&&
3361 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
3362 (adapter
->tx_timeout_factor
* HZ
))
3363 && !(rd32(E1000_STATUS
) &
3364 E1000_STATUS_TXOFF
)) {
3366 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3367 /* detected Tx unit hang */
3368 dev_err(&adapter
->pdev
->dev
,
3369 "Detected Tx Unit Hang\n"
3373 " next_to_use <%x>\n"
3374 " next_to_clean <%x>\n"
3376 "buffer_info[next_to_clean]\n"
3377 " time_stamp <%lx>\n"
3379 " desc.status <%x>\n",
3380 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3381 sizeof(struct igb_ring
)),
3382 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
3383 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
3384 tx_ring
->next_to_use
,
3385 tx_ring
->next_to_clean
,
3387 tx_ring
->buffer_info
[i
].time_stamp
,
3389 tx_desc
->upper
.fields
.status
);
3390 netif_stop_queue(netdev
);
3393 tx_ring
->total_bytes
+= total_bytes
;
3394 tx_ring
->total_packets
+= total_packets
;
3395 adapter
->net_stats
.tx_bytes
+= total_bytes
;
3396 adapter
->net_stats
.tx_packets
+= total_packets
;
3402 * igb_receive_skb - helper function to handle rx indications
3403 * @adapter: board private structure
3404 * @status: descriptor status field as written by hardware
3405 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3406 * @skb: pointer to sk_buff to be indicated to stack
3408 static void igb_receive_skb(struct igb_adapter
*adapter
, u8 status
, u16 vlan
,
3409 struct sk_buff
*skb
)
3411 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
3412 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3414 E1000_RXD_SPC_VLAN_MASK
);
3416 netif_receive_skb(skb
);
3420 static inline void igb_rx_checksum_adv(struct igb_adapter
*adapter
,
3421 u32 status_err
, struct sk_buff
*skb
)
3423 skb
->ip_summed
= CHECKSUM_NONE
;
3425 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3426 if ((status_err
& E1000_RXD_STAT_IXSM
) || !adapter
->rx_csum
)
3428 /* TCP/UDP checksum error bit is set */
3430 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
3431 /* let the stack verify checksum errors */
3432 adapter
->hw_csum_err
++;
3435 /* It must be a TCP or UDP packet with a valid checksum */
3436 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
3437 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3439 adapter
->hw_csum_good
++;
3442 static bool igb_clean_rx_irq_adv(struct igb_adapter
*adapter
,
3443 struct igb_ring
*rx_ring
,
3444 int *work_done
, int budget
)
3446 struct net_device
*netdev
= adapter
->netdev
;
3447 struct pci_dev
*pdev
= adapter
->pdev
;
3448 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
3449 struct igb_buffer
*buffer_info
, *next_buffer
;
3450 struct sk_buff
*skb
;
3452 u32 length
, hlen
, staterr
;
3453 bool cleaned
= false;
3454 int cleaned_count
= 0;
3455 unsigned int total_bytes
= 0, total_packets
= 0;
3457 i
= rx_ring
->next_to_clean
;
3458 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3459 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3461 while (staterr
& E1000_RXD_STAT_DD
) {
3462 if (*work_done
>= budget
)
3465 buffer_info
= &rx_ring
->buffer_info
[i
];
3467 /* HW will not DMA in data larger than the given buffer, even
3468 * if it parses the (NFS, of course) header to be larger. In
3469 * that case, it fills the header buffer and spills the rest
3472 hlen
= le16_to_cpu((rx_desc
->wb
.lower
.lo_dword
.hdr_info
&
3473 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
);
3474 if (hlen
> adapter
->rx_ps_hdr_size
)
3475 hlen
= adapter
->rx_ps_hdr_size
;
3477 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3481 if (rx_ring
->pending_skb
!= NULL
) {
3482 skb
= rx_ring
->pending_skb
;
3483 rx_ring
->pending_skb
= NULL
;
3484 j
= rx_ring
->pending_skb_page
;
3486 skb
= buffer_info
->skb
;
3487 prefetch(skb
->data
- NET_IP_ALIGN
);
3488 buffer_info
->skb
= NULL
;
3490 pci_unmap_single(pdev
, buffer_info
->dma
,
3491 adapter
->rx_ps_hdr_size
+
3493 PCI_DMA_FROMDEVICE
);
3496 pci_unmap_single(pdev
, buffer_info
->dma
,
3497 adapter
->rx_buffer_len
+
3499 PCI_DMA_FROMDEVICE
);
3500 skb_put(skb
, length
);
3507 pci_unmap_page(pdev
, buffer_info
->page_dma
,
3508 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3509 buffer_info
->page_dma
= 0;
3510 skb_fill_page_desc(skb
, j
, buffer_info
->page
,
3512 buffer_info
->page
= NULL
;
3515 skb
->data_len
+= length
;
3516 skb
->truesize
+= length
;
3517 rx_desc
->wb
.upper
.status_error
= 0;
3518 if (staterr
& E1000_RXD_STAT_EOP
)
3524 if (i
== rx_ring
->count
)
3527 buffer_info
= &rx_ring
->buffer_info
[i
];
3528 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3529 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3530 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3531 if (!(staterr
& E1000_RXD_STAT_DD
)) {
3532 rx_ring
->pending_skb
= skb
;
3533 rx_ring
->pending_skb_page
= j
;
3538 pskb_trim(skb
, skb
->len
- 4);
3540 if (i
== rx_ring
->count
)
3542 next_rxd
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3544 next_buffer
= &rx_ring
->buffer_info
[i
];
3546 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
3547 dev_kfree_skb_irq(skb
);
3550 rx_ring
->no_itr_adjust
|= (staterr
& E1000_RXD_STAT_DYNINT
);
3552 total_bytes
+= skb
->len
;
3555 igb_rx_checksum_adv(adapter
, staterr
, skb
);
3557 skb
->protocol
= eth_type_trans(skb
, netdev
);
3559 igb_receive_skb(adapter
, staterr
, rx_desc
->wb
.upper
.vlan
, skb
);
3561 netdev
->last_rx
= jiffies
;
3564 rx_desc
->wb
.upper
.status_error
= 0;
3566 /* return some buffers to hardware, one at a time is too slow */
3567 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
3568 igb_alloc_rx_buffers_adv(adapter
, rx_ring
,
3573 /* use prefetched values */
3575 buffer_info
= next_buffer
;
3577 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3580 rx_ring
->next_to_clean
= i
;
3581 cleaned_count
= IGB_DESC_UNUSED(rx_ring
);
3584 igb_alloc_rx_buffers_adv(adapter
, rx_ring
, cleaned_count
);
3586 rx_ring
->total_packets
+= total_packets
;
3587 rx_ring
->total_bytes
+= total_bytes
;
3588 rx_ring
->rx_stats
.packets
+= total_packets
;
3589 rx_ring
->rx_stats
.bytes
+= total_bytes
;
3590 adapter
->net_stats
.rx_bytes
+= total_bytes
;
3591 adapter
->net_stats
.rx_packets
+= total_packets
;
3597 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3598 * @adapter: address of board private structure
3600 static void igb_alloc_rx_buffers_adv(struct igb_adapter
*adapter
,
3601 struct igb_ring
*rx_ring
,
3604 struct net_device
*netdev
= adapter
->netdev
;
3605 struct pci_dev
*pdev
= adapter
->pdev
;
3606 union e1000_adv_rx_desc
*rx_desc
;
3607 struct igb_buffer
*buffer_info
;
3608 struct sk_buff
*skb
;
3611 i
= rx_ring
->next_to_use
;
3612 buffer_info
= &rx_ring
->buffer_info
[i
];
3614 while (cleaned_count
--) {
3615 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3617 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page
) {
3618 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
3619 if (!buffer_info
->page
) {
3620 adapter
->alloc_rx_buff_failed
++;
3623 buffer_info
->page_dma
=
3627 PCI_DMA_FROMDEVICE
);
3630 if (!buffer_info
->skb
) {
3633 if (adapter
->rx_ps_hdr_size
)
3634 bufsz
= adapter
->rx_ps_hdr_size
;
3636 bufsz
= adapter
->rx_buffer_len
;
3637 bufsz
+= NET_IP_ALIGN
;
3638 skb
= netdev_alloc_skb(netdev
, bufsz
);
3641 adapter
->alloc_rx_buff_failed
++;
3645 /* Make buffer alignment 2 beyond a 16 byte boundary
3646 * this will result in a 16 byte aligned IP header after
3647 * the 14 byte MAC header is removed
3649 skb_reserve(skb
, NET_IP_ALIGN
);
3651 buffer_info
->skb
= skb
;
3652 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
3654 PCI_DMA_FROMDEVICE
);
3657 /* Refresh the desc even if buffer_addrs didn't change because
3658 * each write-back erases this info. */
3659 if (adapter
->rx_ps_hdr_size
) {
3660 rx_desc
->read
.pkt_addr
=
3661 cpu_to_le64(buffer_info
->page_dma
);
3662 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
3664 rx_desc
->read
.pkt_addr
=
3665 cpu_to_le64(buffer_info
->dma
);
3666 rx_desc
->read
.hdr_addr
= 0;
3670 if (i
== rx_ring
->count
)
3672 buffer_info
= &rx_ring
->buffer_info
[i
];
3676 if (rx_ring
->next_to_use
!= i
) {
3677 rx_ring
->next_to_use
= i
;
3679 i
= (rx_ring
->count
- 1);
3683 /* Force memory writes to complete before letting h/w
3684 * know there are new descriptors to fetch. (Only
3685 * applicable for weak-ordered memory model archs,
3686 * such as IA-64). */
3688 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
3698 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3700 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3701 struct mii_ioctl_data
*data
= if_mii(ifr
);
3703 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
3708 data
->phy_id
= adapter
->hw
.phy
.addr
;
3711 if (!capable(CAP_NET_ADMIN
))
3713 if (adapter
->hw
.phy
.ops
.read_phy_reg(&adapter
->hw
,
3715 & 0x1F, &data
->val_out
))
3731 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3737 return igb_mii_ioctl(netdev
, ifr
, cmd
);
3743 static void igb_vlan_rx_register(struct net_device
*netdev
,
3744 struct vlan_group
*grp
)
3746 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3747 struct e1000_hw
*hw
= &adapter
->hw
;
3750 igb_irq_disable(adapter
);
3751 adapter
->vlgrp
= grp
;
3754 /* enable VLAN tag insert/strip */
3755 ctrl
= rd32(E1000_CTRL
);
3756 ctrl
|= E1000_CTRL_VME
;
3757 wr32(E1000_CTRL
, ctrl
);
3759 /* enable VLAN receive filtering */
3760 rctl
= rd32(E1000_RCTL
);
3761 rctl
|= E1000_RCTL_VFE
;
3762 rctl
&= ~E1000_RCTL_CFIEN
;
3763 wr32(E1000_RCTL
, rctl
);
3764 igb_update_mng_vlan(adapter
);
3766 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
3768 /* disable VLAN tag insert/strip */
3769 ctrl
= rd32(E1000_CTRL
);
3770 ctrl
&= ~E1000_CTRL_VME
;
3771 wr32(E1000_CTRL
, ctrl
);
3773 /* disable VLAN filtering */
3774 rctl
= rd32(E1000_RCTL
);
3775 rctl
&= ~E1000_RCTL_VFE
;
3776 wr32(E1000_RCTL
, rctl
);
3777 if (adapter
->mng_vlan_id
!= (u16
)IGB_MNG_VLAN_NONE
) {
3778 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3779 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
3782 adapter
->max_frame_size
);
3785 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3786 igb_irq_enable(adapter
);
3789 static void igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
3791 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3792 struct e1000_hw
*hw
= &adapter
->hw
;
3795 if ((adapter
->hw
.mng_cookie
.status
&
3796 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3797 (vid
== adapter
->mng_vlan_id
))
3799 /* add VID to filter table */
3800 index
= (vid
>> 5) & 0x7F;
3801 vfta
= array_rd32(E1000_VFTA
, index
);
3802 vfta
|= (1 << (vid
& 0x1F));
3803 igb_write_vfta(&adapter
->hw
, index
, vfta
);
3806 static void igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
3808 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3809 struct e1000_hw
*hw
= &adapter
->hw
;
3812 igb_irq_disable(adapter
);
3813 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
3815 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3816 igb_irq_enable(adapter
);
3818 if ((adapter
->hw
.mng_cookie
.status
&
3819 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3820 (vid
== adapter
->mng_vlan_id
)) {
3821 /* release control to f/w */
3822 igb_release_hw_control(adapter
);
3826 /* remove VID from filter table */
3827 index
= (vid
>> 5) & 0x7F;
3828 vfta
= array_rd32(E1000_VFTA
, index
);
3829 vfta
&= ~(1 << (vid
& 0x1F));
3830 igb_write_vfta(&adapter
->hw
, index
, vfta
);
3833 static void igb_restore_vlan(struct igb_adapter
*adapter
)
3835 igb_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
3837 if (adapter
->vlgrp
) {
3839 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
3840 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
3842 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
3847 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u16 spddplx
)
3849 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3853 /* Fiber NICs only allow 1000 gbps Full duplex */
3854 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
3855 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
3856 dev_err(&adapter
->pdev
->dev
,
3857 "Unsupported Speed/Duplex configuration\n");
3862 case SPEED_10
+ DUPLEX_HALF
:
3863 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
3865 case SPEED_10
+ DUPLEX_FULL
:
3866 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
3868 case SPEED_100
+ DUPLEX_HALF
:
3869 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
3871 case SPEED_100
+ DUPLEX_FULL
:
3872 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
3874 case SPEED_1000
+ DUPLEX_FULL
:
3876 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
3878 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
3880 dev_err(&adapter
->pdev
->dev
,
3881 "Unsupported Speed/Duplex configuration\n");
3888 static int igb_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3890 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3891 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3892 struct e1000_hw
*hw
= &adapter
->hw
;
3893 u32 ctrl
, ctrl_ext
, rctl
, status
;
3894 u32 wufc
= adapter
->wol
;
3899 netif_device_detach(netdev
);
3901 if (netif_running(netdev
)) {
3902 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
3904 igb_free_irq(adapter
);
3908 retval
= pci_save_state(pdev
);
3913 status
= rd32(E1000_STATUS
);
3914 if (status
& E1000_STATUS_LU
)
3915 wufc
&= ~E1000_WUFC_LNKC
;
3918 igb_setup_rctl(adapter
);
3919 igb_set_multi(netdev
);
3921 /* turn on all-multi mode if wake on multicast is enabled */
3922 if (wufc
& E1000_WUFC_MC
) {
3923 rctl
= rd32(E1000_RCTL
);
3924 rctl
|= E1000_RCTL_MPE
;
3925 wr32(E1000_RCTL
, rctl
);
3928 ctrl
= rd32(E1000_CTRL
);
3929 /* advertise wake from D3Cold */
3930 #define E1000_CTRL_ADVD3WUC 0x00100000
3931 /* phy power management enable */
3932 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3933 ctrl
|= E1000_CTRL_ADVD3WUC
;
3934 wr32(E1000_CTRL
, ctrl
);
3936 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
3937 adapter
->hw
.phy
.media_type
==
3938 e1000_media_type_internal_serdes
) {
3939 /* keep the laser running in D3 */
3940 ctrl_ext
= rd32(E1000_CTRL_EXT
);
3941 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
3942 wr32(E1000_CTRL_EXT
, ctrl_ext
);
3945 /* Allow time for pending master requests to run */
3946 igb_disable_pcie_master(&adapter
->hw
);
3948 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
3949 wr32(E1000_WUFC
, wufc
);
3950 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3951 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3954 wr32(E1000_WUFC
, 0);
3955 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3956 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3959 igb_release_manageability(adapter
);
3961 /* make sure adapter isn't asleep if manageability is enabled */
3962 if (adapter
->en_mng_pt
) {
3963 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3964 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3967 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3968 * would have already happened in close and is redundant. */
3969 igb_release_hw_control(adapter
);
3971 pci_disable_device(pdev
);
3973 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3979 static int igb_resume(struct pci_dev
*pdev
)
3981 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3982 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3983 struct e1000_hw
*hw
= &adapter
->hw
;
3986 pci_set_power_state(pdev
, PCI_D0
);
3987 pci_restore_state(pdev
);
3988 err
= pci_enable_device(pdev
);
3991 "igb: Cannot enable PCI device from suspend\n");
3994 pci_set_master(pdev
);
3996 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3997 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3999 if (netif_running(netdev
)) {
4000 err
= igb_request_irq(adapter
);
4005 /* e1000_power_up_phy(adapter); */
4008 wr32(E1000_WUS
, ~0);
4010 igb_init_manageability(adapter
);
4012 if (netif_running(netdev
))
4015 netif_device_attach(netdev
);
4017 /* let the f/w know that the h/w is now under the control of the
4019 igb_get_hw_control(adapter
);
4025 static void igb_shutdown(struct pci_dev
*pdev
)
4027 igb_suspend(pdev
, PMSG_SUSPEND
);
4030 #ifdef CONFIG_NET_POLL_CONTROLLER
4032 * Polling 'interrupt' - used by things like netconsole to send skbs
4033 * without having to re-enable interrupts. It's not called while
4034 * the interrupt routine is executing.
4036 static void igb_netpoll(struct net_device
*netdev
)
4038 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4042 igb_irq_disable(adapter
);
4043 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
4044 igb_clean_tx_irq(adapter
, &adapter
->tx_ring
[i
]);
4046 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
4047 igb_clean_rx_irq_adv(adapter
, &adapter
->rx_ring
[i
],
4049 adapter
->rx_ring
[i
].napi
.weight
);
4051 igb_irq_enable(adapter
);
4053 #endif /* CONFIG_NET_POLL_CONTROLLER */
4056 * igb_io_error_detected - called when PCI error is detected
4057 * @pdev: Pointer to PCI device
4058 * @state: The current pci connection state
4060 * This function is called after a PCI bus error affecting
4061 * this device has been detected.
4063 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
4064 pci_channel_state_t state
)
4066 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4067 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4069 netif_device_detach(netdev
);
4071 if (netif_running(netdev
))
4073 pci_disable_device(pdev
);
4075 /* Request a slot slot reset. */
4076 return PCI_ERS_RESULT_NEED_RESET
;
4080 * igb_io_slot_reset - called after the pci bus has been reset.
4081 * @pdev: Pointer to PCI device
4083 * Restart the card from scratch, as if from a cold-boot. Implementation
4084 * resembles the first-half of the igb_resume routine.
4086 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
4088 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4089 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4090 struct e1000_hw
*hw
= &adapter
->hw
;
4092 if (pci_enable_device(pdev
)) {
4094 "Cannot re-enable PCI device after reset.\n");
4095 return PCI_ERS_RESULT_DISCONNECT
;
4097 pci_set_master(pdev
);
4099 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4100 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4103 wr32(E1000_WUS
, ~0);
4105 return PCI_ERS_RESULT_RECOVERED
;
4109 * igb_io_resume - called when traffic can start flowing again.
4110 * @pdev: Pointer to PCI device
4112 * This callback is called when the error recovery driver tells us that
4113 * its OK to resume normal operation. Implementation resembles the
4114 * second-half of the igb_resume routine.
4116 static void igb_io_resume(struct pci_dev
*pdev
)
4118 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4119 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4121 igb_init_manageability(adapter
);
4123 if (netif_running(netdev
)) {
4124 if (igb_up(adapter
)) {
4125 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
4130 netif_device_attach(netdev
);
4132 /* let the f/w know that the h/w is now under the control of the
4134 igb_get_hw_control(adapter
);