x86: unify printk strings in fault_32|64.c
[wrt350n-kernel.git] / drivers / kvm / paging_tmpl.h
blob6b094b44f8fbb6c4babb91da8662d87c952a40f0
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #ifdef CONFIG_X86_64
35 #define PT_MAX_FULL_LEVELS 4
36 #else
37 #define PT_MAX_FULL_LEVELS 2
38 #endif
39 #elif PTTYPE == 32
40 #define pt_element_t u32
41 #define guest_walker guest_walker32
42 #define FNAME(name) paging##32_##name
43 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
44 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
45 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
46 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
47 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
48 #define PT_MAX_FULL_LEVELS 2
49 #else
50 #error Invalid PTTYPE value
51 #endif
54 * The guest_walker structure emulates the behavior of the hardware page
55 * table walker.
57 struct guest_walker {
58 int level;
59 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
60 pt_element_t *table;
61 pt_element_t pte;
62 pt_element_t *ptep;
63 struct page *page;
64 int index;
65 pt_element_t inherited_ar;
66 gfn_t gfn;
67 u32 error_code;
71 * Fetch a guest pte for a guest virtual address
73 static int FNAME(walk_addr)(struct guest_walker *walker,
74 struct kvm_vcpu *vcpu, gva_t addr,
75 int write_fault, int user_fault, int fetch_fault)
77 hpa_t hpa;
78 struct kvm_memory_slot *slot;
79 pt_element_t *ptep;
80 pt_element_t root;
81 gfn_t table_gfn;
83 pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
84 walker->level = vcpu->mmu.root_level;
85 walker->table = NULL;
86 walker->page = NULL;
87 walker->ptep = NULL;
88 root = vcpu->cr3;
89 #if PTTYPE == 64
90 if (!is_long_mode(vcpu)) {
91 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
92 root = *walker->ptep;
93 walker->pte = root;
94 if (!(root & PT_PRESENT_MASK))
95 goto not_present;
96 --walker->level;
98 #endif
99 table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
100 walker->table_gfn[walker->level - 1] = table_gfn;
101 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
102 walker->level - 1, table_gfn);
103 slot = gfn_to_memslot(vcpu->kvm, table_gfn);
104 hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
105 walker->page = pfn_to_page(hpa >> PAGE_SHIFT);
106 walker->table = kmap_atomic(walker->page, KM_USER0);
108 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
109 (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
111 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
113 for (;;) {
114 int index = PT_INDEX(addr, walker->level);
115 hpa_t paddr;
117 ptep = &walker->table[index];
118 walker->index = index;
119 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
120 ((unsigned long)ptep & PAGE_MASK));
122 if (!is_present_pte(*ptep))
123 goto not_present;
125 if (write_fault && !is_writeble_pte(*ptep))
126 if (user_fault || is_write_protection(vcpu))
127 goto access_error;
129 if (user_fault && !(*ptep & PT_USER_MASK))
130 goto access_error;
132 #if PTTYPE == 64
133 if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
134 goto access_error;
135 #endif
137 if (!(*ptep & PT_ACCESSED_MASK)) {
138 mark_page_dirty(vcpu->kvm, table_gfn);
139 *ptep |= PT_ACCESSED_MASK;
142 if (walker->level == PT_PAGE_TABLE_LEVEL) {
143 walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
144 >> PAGE_SHIFT;
145 break;
148 if (walker->level == PT_DIRECTORY_LEVEL
149 && (*ptep & PT_PAGE_SIZE_MASK)
150 && (PTTYPE == 64 || is_pse(vcpu))) {
151 walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
152 >> PAGE_SHIFT;
153 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
154 break;
157 walker->inherited_ar &= walker->table[index];
158 table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
159 kunmap_atomic(walker->table, KM_USER0);
160 paddr = safe_gpa_to_hpa(vcpu, table_gfn << PAGE_SHIFT);
161 walker->page = pfn_to_page(paddr >> PAGE_SHIFT);
162 walker->table = kmap_atomic(walker->page, KM_USER0);
163 --walker->level;
164 walker->table_gfn[walker->level - 1 ] = table_gfn;
165 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
166 walker->level - 1, table_gfn);
168 walker->pte = *ptep;
169 if (walker->page)
170 walker->ptep = NULL;
171 if (walker->table)
172 kunmap_atomic(walker->table, KM_USER0);
173 pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
174 return 1;
176 not_present:
177 walker->error_code = 0;
178 goto err;
180 access_error:
181 walker->error_code = PFERR_PRESENT_MASK;
183 err:
184 if (write_fault)
185 walker->error_code |= PFERR_WRITE_MASK;
186 if (user_fault)
187 walker->error_code |= PFERR_USER_MASK;
188 if (fetch_fault)
189 walker->error_code |= PFERR_FETCH_MASK;
190 if (walker->table)
191 kunmap_atomic(walker->table, KM_USER0);
192 return 0;
195 static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
196 struct guest_walker *walker)
198 mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
201 static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
202 u64 *shadow_pte,
203 gpa_t gaddr,
204 pt_element_t gpte,
205 u64 access_bits,
206 int user_fault,
207 int write_fault,
208 int *ptwrite,
209 struct guest_walker *walker,
210 gfn_t gfn)
212 hpa_t paddr;
213 int dirty = gpte & PT_DIRTY_MASK;
214 u64 spte = *shadow_pte;
215 int was_rmapped = is_rmap_pte(spte);
217 pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
218 " user_fault %d gfn %lx\n",
219 __FUNCTION__, spte, (u64)gpte, access_bits,
220 write_fault, user_fault, gfn);
222 if (write_fault && !dirty) {
223 pt_element_t *guest_ent, *tmp = NULL;
225 if (walker->ptep)
226 guest_ent = walker->ptep;
227 else {
228 tmp = kmap_atomic(walker->page, KM_USER0);
229 guest_ent = &tmp[walker->index];
232 *guest_ent |= PT_DIRTY_MASK;
233 if (!walker->ptep)
234 kunmap_atomic(tmp, KM_USER0);
235 dirty = 1;
236 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
239 spte |= PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK;
240 spte |= gpte & PT64_NX_MASK;
241 if (!dirty)
242 access_bits &= ~PT_WRITABLE_MASK;
244 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
246 spte |= PT_PRESENT_MASK;
247 if (access_bits & PT_USER_MASK)
248 spte |= PT_USER_MASK;
250 if (is_error_hpa(paddr)) {
251 spte |= gaddr;
252 spte |= PT_SHADOW_IO_MARK;
253 spte &= ~PT_PRESENT_MASK;
254 set_shadow_pte(shadow_pte, spte);
255 return;
258 spte |= paddr;
260 if ((access_bits & PT_WRITABLE_MASK)
261 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
262 struct kvm_mmu_page *shadow;
264 spte |= PT_WRITABLE_MASK;
265 if (user_fault) {
266 mmu_unshadow(vcpu, gfn);
267 goto unshadowed;
270 shadow = kvm_mmu_lookup_page(vcpu, gfn);
271 if (shadow) {
272 pgprintk("%s: found shadow page for %lx, marking ro\n",
273 __FUNCTION__, gfn);
274 access_bits &= ~PT_WRITABLE_MASK;
275 if (is_writeble_pte(spte)) {
276 spte &= ~PT_WRITABLE_MASK;
277 kvm_x86_ops->tlb_flush(vcpu);
279 if (write_fault)
280 *ptwrite = 1;
284 unshadowed:
286 if (access_bits & PT_WRITABLE_MASK)
287 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
289 set_shadow_pte(shadow_pte, spte);
290 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
291 if (!was_rmapped)
292 rmap_add(vcpu, shadow_pte);
295 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
296 u64 *shadow_pte, u64 access_bits,
297 int user_fault, int write_fault, int *ptwrite,
298 struct guest_walker *walker, gfn_t gfn)
300 access_bits &= gpte;
301 FNAME(set_pte_common)(vcpu, shadow_pte, gpte & PT_BASE_ADDR_MASK,
302 gpte, access_bits, user_fault, write_fault,
303 ptwrite, walker, gfn);
306 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
307 u64 *spte, const void *pte, int bytes)
309 pt_element_t gpte;
311 if (bytes < sizeof(pt_element_t))
312 return;
313 gpte = *(const pt_element_t *)pte;
314 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK))
315 return;
316 pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
317 FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
318 0, NULL, NULL,
319 (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
322 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
323 u64 *shadow_pte, u64 access_bits,
324 int user_fault, int write_fault, int *ptwrite,
325 struct guest_walker *walker, gfn_t gfn)
327 gpa_t gaddr;
329 access_bits &= gpde;
330 gaddr = (gpa_t)gfn << PAGE_SHIFT;
331 if (PTTYPE == 32 && is_cpuid_PSE36())
332 gaddr |= (gpde & PT32_DIR_PSE36_MASK) <<
333 (32 - PT32_DIR_PSE36_SHIFT);
334 FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
335 gpde, access_bits, user_fault, write_fault,
336 ptwrite, walker, gfn);
340 * Fetch a shadow pte for a specific level in the paging hierarchy.
342 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
343 struct guest_walker *walker,
344 int user_fault, int write_fault, int *ptwrite)
346 hpa_t shadow_addr;
347 int level;
348 u64 *shadow_ent;
349 u64 *prev_shadow_ent = NULL;
351 if (!is_present_pte(walker->pte))
352 return NULL;
354 shadow_addr = vcpu->mmu.root_hpa;
355 level = vcpu->mmu.shadow_root_level;
356 if (level == PT32E_ROOT_LEVEL) {
357 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
358 shadow_addr &= PT64_BASE_ADDR_MASK;
359 --level;
362 for (; ; level--) {
363 u32 index = SHADOW_PT_INDEX(addr, level);
364 struct kvm_mmu_page *shadow_page;
365 u64 shadow_pte;
366 int metaphysical;
367 gfn_t table_gfn;
368 unsigned hugepage_access = 0;
370 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
371 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
372 if (level == PT_PAGE_TABLE_LEVEL)
373 break;
374 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
375 prev_shadow_ent = shadow_ent;
376 continue;
379 if (level == PT_PAGE_TABLE_LEVEL)
380 break;
382 if (level - 1 == PT_PAGE_TABLE_LEVEL
383 && walker->level == PT_DIRECTORY_LEVEL) {
384 metaphysical = 1;
385 hugepage_access = walker->pte;
386 hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
387 if (walker->pte & PT64_NX_MASK)
388 hugepage_access |= (1 << 2);
389 hugepage_access >>= PT_WRITABLE_SHIFT;
390 table_gfn = (walker->pte & PT_BASE_ADDR_MASK)
391 >> PAGE_SHIFT;
392 } else {
393 metaphysical = 0;
394 table_gfn = walker->table_gfn[level - 2];
396 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
397 metaphysical, hugepage_access,
398 shadow_ent);
399 shadow_addr = __pa(shadow_page->spt);
400 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
401 | PT_WRITABLE_MASK | PT_USER_MASK;
402 *shadow_ent = shadow_pte;
403 prev_shadow_ent = shadow_ent;
406 if (walker->level == PT_DIRECTORY_LEVEL) {
407 FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
408 walker->inherited_ar, user_fault, write_fault,
409 ptwrite, walker, walker->gfn);
410 } else {
411 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
412 FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
413 walker->inherited_ar, user_fault, write_fault,
414 ptwrite, walker, walker->gfn);
416 return shadow_ent;
420 * Page fault handler. There are several causes for a page fault:
421 * - there is no shadow pte for the guest pte
422 * - write access through a shadow pte marked read only so that we can set
423 * the dirty bit
424 * - write access to a shadow pte marked read only so we can update the page
425 * dirty bitmap, when userspace requests it
426 * - mmio access; in this case we will never install a present shadow pte
427 * - normal guest page fault due to the guest pte marked not present, not
428 * writable, or not executable
430 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
431 * a negative value on error.
433 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
434 u32 error_code)
436 int write_fault = error_code & PFERR_WRITE_MASK;
437 int user_fault = error_code & PFERR_USER_MASK;
438 int fetch_fault = error_code & PFERR_FETCH_MASK;
439 struct guest_walker walker;
440 u64 *shadow_pte;
441 int write_pt = 0;
442 int r;
444 pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
445 kvm_mmu_audit(vcpu, "pre page fault");
447 r = mmu_topup_memory_caches(vcpu);
448 if (r)
449 return r;
452 * Look up the shadow pte for the faulting address.
454 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
455 fetch_fault);
458 * The page is not mapped by the guest. Let the guest handle it.
460 if (!r) {
461 pgprintk("%s: guest page fault\n", __FUNCTION__);
462 inject_page_fault(vcpu, addr, walker.error_code);
463 vcpu->last_pt_write_count = 0; /* reset fork detector */
464 return 0;
467 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
468 &write_pt);
469 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
470 shadow_pte, *shadow_pte, write_pt);
472 if (!write_pt)
473 vcpu->last_pt_write_count = 0; /* reset fork detector */
476 * mmio: emulate if accessible, otherwise its a guest fault.
478 if (is_io_pte(*shadow_pte))
479 return 1;
481 ++vcpu->stat.pf_fixed;
482 kvm_mmu_audit(vcpu, "post page fault (fixed)");
484 return write_pt;
487 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
489 struct guest_walker walker;
490 gpa_t gpa = UNMAPPED_GVA;
491 int r;
493 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
495 if (r) {
496 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
497 gpa |= vaddr & ~PAGE_MASK;
500 return gpa;
503 #undef pt_element_t
504 #undef guest_walker
505 #undef FNAME
506 #undef PT_BASE_ADDR_MASK
507 #undef PT_INDEX
508 #undef SHADOW_PT_INDEX
509 #undef PT_LEVEL_MASK
510 #undef PT_DIR_BASE_ADDR_MASK
511 #undef PT_MAX_FULL_LEVELS