2 * Cell Broadband Engine OProfile Support
4 * (C) Copyright IBM Corporation 2006
6 * Authors: Maynard Johnson <maynardj@us.ibm.com>
7 * Carl Love <carll@us.ibm.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
15 #include <linux/hrtimer.h>
16 #include <linux/smp.h>
17 #include <linux/slab.h>
18 #include <asm/cell-pmu.h>
21 #define TRACE_ARRAY_SIZE 1024
22 #define SCALE_SHIFT 14
26 static int spu_prof_running
;
27 static unsigned int profiling_interval
;
29 #define NUM_SPU_BITS_TRBUF 16
30 #define SPUS_PER_TB_ENTRY 4
31 #define SPUS_PER_NODE 8
33 #define SPU_PC_MASK 0xFFFF
35 static DEFINE_SPINLOCK(sample_array_lock
);
36 unsigned long sample_array_lock_flags
;
38 void set_spu_profiling_frequency(unsigned int freq_khz
, unsigned int cycles_reset
)
40 unsigned long ns_per_cyc
;
43 freq_khz
= ppc_proc_freq
/1000;
45 /* To calculate a timeout in nanoseconds, the basic
46 * formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency).
47 * To avoid floating point math, we use the scale math
48 * technique as described in linux/jiffies.h. We use
49 * a scale factor of SCALE_SHIFT, which provides 4 decimal places
50 * of precision. This is close enough for the purpose at hand.
52 * The value of the timeout should be small enough that the hw
53 * trace buffer will not get more then about 1/3 full for the
54 * maximum user specified (the LFSR value) hw sampling frequency.
55 * This is to ensure the trace buffer will never fill even if the
56 * kernel thread scheduling varies under a heavy system load.
59 ns_per_cyc
= (USEC_PER_SEC
<< SCALE_SHIFT
)/freq_khz
;
60 profiling_interval
= (ns_per_cyc
* cycles_reset
) >> SCALE_SHIFT
;
65 * Extract SPU PC from trace buffer entry
67 static void spu_pc_extract(int cpu
, int entry
)
69 /* the trace buffer is 128 bits */
74 spu_mask
= SPU_PC_MASK
;
76 /* Each SPU PC is 16 bits; hence, four spus in each of
77 * the two 64-bit buffer entries that make up the
78 * 128-bit trace_buffer entry. Process two 64-bit values
80 * trace[0] SPU PC contents are: 0 1 2 3
81 * trace[1] SPU PC contents are: 4 5 6 7
84 cbe_read_trace_buffer(cpu
, trace_buffer
);
86 for (spu
= SPUS_PER_TB_ENTRY
-1; spu
>= 0; spu
--) {
87 /* spu PC trace entry is upper 16 bits of the
88 * 18 bit SPU program counter
90 samples
[spu
* TRACE_ARRAY_SIZE
+ entry
]
91 = (spu_mask
& trace_buffer
[0]) << 2;
92 samples
[(spu
+ SPUS_PER_TB_ENTRY
) * TRACE_ARRAY_SIZE
+ entry
]
93 = (spu_mask
& trace_buffer
[1]) << 2;
95 trace_buffer
[0] = trace_buffer
[0] >> NUM_SPU_BITS_TRBUF
;
96 trace_buffer
[1] = trace_buffer
[1] >> NUM_SPU_BITS_TRBUF
;
100 static int cell_spu_pc_collection(int cpu
)
105 /* process the collected SPU PC for the node */
109 trace_addr
= cbe_read_pm(cpu
, trace_address
);
110 while (!(trace_addr
& CBE_PM_TRACE_BUF_EMPTY
)) {
111 /* there is data in the trace buffer to process */
112 spu_pc_extract(cpu
, entry
);
116 if (entry
>= TRACE_ARRAY_SIZE
)
117 /* spu_samples is full */
120 trace_addr
= cbe_read_pm(cpu
, trace_address
);
127 static enum hrtimer_restart
profile_spus(struct hrtimer
*timer
)
130 int cpu
, node
, k
, num_samples
, spu_num
;
132 if (!spu_prof_running
)
135 for_each_online_cpu(cpu
) {
136 if (cbe_get_hw_thread_id(cpu
))
139 node
= cbe_cpu_to_node(cpu
);
141 /* There should only be one kernel thread at a time processing
142 * the samples. In the very unlikely case that the processing
143 * is taking a very long time and multiple kernel threads are
144 * started to process the samples. Make sure only one kernel
145 * thread is working on the samples array at a time. The
146 * sample array must be loaded and then processed for a given
147 * cpu. The sample array is not per cpu.
149 spin_lock_irqsave(&sample_array_lock
,
150 sample_array_lock_flags
);
151 num_samples
= cell_spu_pc_collection(cpu
);
153 if (num_samples
== 0) {
154 spin_unlock_irqrestore(&sample_array_lock
,
155 sample_array_lock_flags
);
159 for (k
= 0; k
< SPUS_PER_NODE
; k
++) {
160 spu_num
= k
+ (node
* SPUS_PER_NODE
);
161 spu_sync_buffer(spu_num
,
162 samples
+ (k
* TRACE_ARRAY_SIZE
),
166 spin_unlock_irqrestore(&sample_array_lock
,
167 sample_array_lock_flags
);
170 smp_wmb(); /* insure spu event buffer updates are written */
171 /* don't want events intermingled... */
173 kt
= ktime_set(0, profiling_interval
);
174 if (!spu_prof_running
)
176 hrtimer_forward(timer
, timer
->base
->get_time(), kt
);
177 return HRTIMER_RESTART
;
180 printk(KERN_INFO
"SPU_PROF: spu-prof timer ending\n");
181 return HRTIMER_NORESTART
;
184 static struct hrtimer timer
;
186 * Entry point for SPU profiling.
187 * NOTE: SPU profiling is done system-wide, not per-CPU.
189 * cycles_reset is the count value specified by the user when
190 * setting up OProfile to count SPU_CYCLES.
192 int start_spu_profiling(unsigned int cycles_reset
)
196 pr_debug("timer resolution: %lu\n", TICK_NSEC
);
197 kt
= ktime_set(0, profiling_interval
);
198 hrtimer_init(&timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
200 timer
.function
= profile_spus
;
202 /* Allocate arrays for collecting SPU PC samples */
203 samples
= kzalloc(SPUS_PER_NODE
*
204 TRACE_ARRAY_SIZE
* sizeof(u32
), GFP_KERNEL
);
209 spu_prof_running
= 1;
210 hrtimer_start(&timer
, kt
, HRTIMER_MODE_REL
);
215 void stop_spu_profiling(void)
217 spu_prof_running
= 0;
218 hrtimer_cancel(&timer
);
220 pr_debug("SPU_PROF: stop_spu_profiling issued\n");