x86: fix bogus KERN_ALERT on oops
[wrt350n-kernel.git] / arch / x86 / mm / fault_32.c
blob33563ee8eb0fe9d0bc77e46d3cf5b10e8fb513e2
1 /*
2 * linux/arch/i386/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 */
7 #include <linux/signal.h>
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/tty.h>
20 #include <linux/vt_kern.h> /* For unblank_screen() */
21 #include <linux/highmem.h>
22 #include <linux/bootmem.h> /* for max_low_pfn */
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
28 #include <linux/kprobes.h>
30 #include <asm/system.h>
31 #include <asm/desc.h>
32 #include <asm/segment.h>
34 extern void die(const char *,struct pt_regs *,long);
36 #ifdef CONFIG_KPROBES
37 static inline int notify_page_fault(struct pt_regs *regs)
39 int ret = 0;
41 /* kprobe_running() needs smp_processor_id() */
42 if (!user_mode_vm(regs)) {
43 preempt_disable();
44 if (kprobe_running() && kprobe_fault_handler(regs, 14))
45 ret = 1;
46 preempt_enable();
49 return ret;
51 #else
52 static inline int notify_page_fault(struct pt_regs *regs)
54 return 0;
56 #endif
59 * Return EIP plus the CS segment base. The segment limit is also
60 * adjusted, clamped to the kernel/user address space (whichever is
61 * appropriate), and returned in *eip_limit.
63 * The segment is checked, because it might have been changed by another
64 * task between the original faulting instruction and here.
66 * If CS is no longer a valid code segment, or if EIP is beyond the
67 * limit, or if it is a kernel address when CS is not a kernel segment,
68 * then the returned value will be greater than *eip_limit.
70 * This is slow, but is very rarely executed.
72 static inline unsigned long get_segment_eip(struct pt_regs *regs,
73 unsigned long *eip_limit)
75 unsigned long eip = regs->eip;
76 unsigned seg = regs->xcs & 0xffff;
77 u32 seg_ar, seg_limit, base, *desc;
79 /* Unlikely, but must come before segment checks. */
80 if (unlikely(regs->eflags & VM_MASK)) {
81 base = seg << 4;
82 *eip_limit = base + 0xffff;
83 return base + (eip & 0xffff);
86 /* The standard kernel/user address space limit. */
87 *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
89 /* By far the most common cases. */
90 if (likely(SEGMENT_IS_FLAT_CODE(seg)))
91 return eip;
93 /* Check the segment exists, is within the current LDT/GDT size,
94 that kernel/user (ring 0..3) has the appropriate privilege,
95 that it's a code segment, and get the limit. */
96 __asm__ ("larl %3,%0; lsll %3,%1"
97 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
98 if ((~seg_ar & 0x9800) || eip > seg_limit) {
99 *eip_limit = 0;
100 return 1; /* So that returned eip > *eip_limit. */
103 /* Get the GDT/LDT descriptor base.
104 When you look for races in this code remember that
105 LDT and other horrors are only used in user space. */
106 if (seg & (1<<2)) {
107 /* Must lock the LDT while reading it. */
108 mutex_lock(&current->mm->context.lock);
109 desc = current->mm->context.ldt;
110 desc = (void *)desc + (seg & ~7);
111 } else {
112 /* Must disable preemption while reading the GDT. */
113 desc = (u32 *)get_cpu_gdt_table(get_cpu());
114 desc = (void *)desc + (seg & ~7);
117 /* Decode the code segment base from the descriptor */
118 base = get_desc_base((unsigned long *)desc);
120 if (seg & (1<<2)) {
121 mutex_unlock(&current->mm->context.lock);
122 } else
123 put_cpu();
125 /* Adjust EIP and segment limit, and clamp at the kernel limit.
126 It's legitimate for segments to wrap at 0xffffffff. */
127 seg_limit += base;
128 if (seg_limit < *eip_limit && seg_limit >= base)
129 *eip_limit = seg_limit;
130 return eip + base;
134 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
135 * Check that here and ignore it.
137 static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
139 unsigned long limit;
140 unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit);
141 int scan_more = 1;
142 int prefetch = 0;
143 int i;
145 for (i = 0; scan_more && i < 15; i++) {
146 unsigned char opcode;
147 unsigned char instr_hi;
148 unsigned char instr_lo;
150 if (instr > (unsigned char *)limit)
151 break;
152 if (probe_kernel_address(instr, opcode))
153 break;
155 instr_hi = opcode & 0xf0;
156 instr_lo = opcode & 0x0f;
157 instr++;
159 switch (instr_hi) {
160 case 0x20:
161 case 0x30:
162 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
163 scan_more = ((instr_lo & 7) == 0x6);
164 break;
166 case 0x60:
167 /* 0x64 thru 0x67 are valid prefixes in all modes. */
168 scan_more = (instr_lo & 0xC) == 0x4;
169 break;
170 case 0xF0:
171 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
172 scan_more = !instr_lo || (instr_lo>>1) == 1;
173 break;
174 case 0x00:
175 /* Prefetch instruction is 0x0F0D or 0x0F18 */
176 scan_more = 0;
177 if (instr > (unsigned char *)limit)
178 break;
179 if (probe_kernel_address(instr, opcode))
180 break;
181 prefetch = (instr_lo == 0xF) &&
182 (opcode == 0x0D || opcode == 0x18);
183 break;
184 default:
185 scan_more = 0;
186 break;
189 return prefetch;
192 static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
193 unsigned long error_code)
195 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
196 boot_cpu_data.x86 >= 6)) {
197 /* Catch an obscure case of prefetch inside an NX page. */
198 if (nx_enabled && (error_code & 16))
199 return 0;
200 return __is_prefetch(regs, addr);
202 return 0;
205 static noinline void force_sig_info_fault(int si_signo, int si_code,
206 unsigned long address, struct task_struct *tsk)
208 siginfo_t info;
210 info.si_signo = si_signo;
211 info.si_errno = 0;
212 info.si_code = si_code;
213 info.si_addr = (void __user *)address;
214 force_sig_info(si_signo, &info, tsk);
217 fastcall void do_invalid_op(struct pt_regs *, unsigned long);
219 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
221 unsigned index = pgd_index(address);
222 pgd_t *pgd_k;
223 pud_t *pud, *pud_k;
224 pmd_t *pmd, *pmd_k;
226 pgd += index;
227 pgd_k = init_mm.pgd + index;
229 if (!pgd_present(*pgd_k))
230 return NULL;
233 * set_pgd(pgd, *pgd_k); here would be useless on PAE
234 * and redundant with the set_pmd() on non-PAE. As would
235 * set_pud.
238 pud = pud_offset(pgd, address);
239 pud_k = pud_offset(pgd_k, address);
240 if (!pud_present(*pud_k))
241 return NULL;
243 pmd = pmd_offset(pud, address);
244 pmd_k = pmd_offset(pud_k, address);
245 if (!pmd_present(*pmd_k))
246 return NULL;
247 if (!pmd_present(*pmd)) {
248 set_pmd(pmd, *pmd_k);
249 arch_flush_lazy_mmu_mode();
250 } else
251 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
252 return pmd_k;
256 * Handle a fault on the vmalloc or module mapping area
258 * This assumes no large pages in there.
260 static inline int vmalloc_fault(unsigned long address)
262 unsigned long pgd_paddr;
263 pmd_t *pmd_k;
264 pte_t *pte_k;
266 * Synchronize this task's top level page-table
267 * with the 'reference' page table.
269 * Do _not_ use "current" here. We might be inside
270 * an interrupt in the middle of a task switch..
272 pgd_paddr = read_cr3();
273 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
274 if (!pmd_k)
275 return -1;
276 pte_k = pte_offset_kernel(pmd_k, address);
277 if (!pte_present(*pte_k))
278 return -1;
279 return 0;
282 int show_unhandled_signals = 1;
285 * This routine handles page faults. It determines the address,
286 * and the problem, and then passes it off to one of the appropriate
287 * routines.
289 * error_code:
290 * bit 0 == 0 means no page found, 1 means protection fault
291 * bit 1 == 0 means read, 1 means write
292 * bit 2 == 0 means kernel, 1 means user-mode
293 * bit 3 == 1 means use of reserved bit detected
294 * bit 4 == 1 means fault was an instruction fetch
296 fastcall void __kprobes do_page_fault(struct pt_regs *regs,
297 unsigned long error_code)
299 struct task_struct *tsk;
300 struct mm_struct *mm;
301 struct vm_area_struct * vma;
302 unsigned long address;
303 int write, si_code;
304 int fault;
306 /* get the address */
307 address = read_cr2();
309 tsk = current;
311 si_code = SEGV_MAPERR;
314 * We fault-in kernel-space virtual memory on-demand. The
315 * 'reference' page table is init_mm.pgd.
317 * NOTE! We MUST NOT take any locks for this case. We may
318 * be in an interrupt or a critical region, and should
319 * only copy the information from the master page table,
320 * nothing more.
322 * This verifies that the fault happens in kernel space
323 * (error_code & 4) == 0, and that the fault was not a
324 * protection error (error_code & 9) == 0.
326 if (unlikely(address >= TASK_SIZE)) {
327 if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
328 return;
329 if (notify_page_fault(regs))
330 return;
332 * Don't take the mm semaphore here. If we fixup a prefetch
333 * fault we could otherwise deadlock.
335 goto bad_area_nosemaphore;
338 if (notify_page_fault(regs))
339 return;
341 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
342 fault has been handled. */
343 if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
344 local_irq_enable();
346 mm = tsk->mm;
349 * If we're in an interrupt, have no user context or are running in an
350 * atomic region then we must not take the fault..
352 if (in_atomic() || !mm)
353 goto bad_area_nosemaphore;
355 /* When running in the kernel we expect faults to occur only to
356 * addresses in user space. All other faults represent errors in the
357 * kernel and should generate an OOPS. Unfortunately, in the case of an
358 * erroneous fault occurring in a code path which already holds mmap_sem
359 * we will deadlock attempting to validate the fault against the
360 * address space. Luckily the kernel only validly references user
361 * space from well defined areas of code, which are listed in the
362 * exceptions table.
364 * As the vast majority of faults will be valid we will only perform
365 * the source reference check when there is a possibility of a deadlock.
366 * Attempt to lock the address space, if we cannot we then validate the
367 * source. If this is invalid we can skip the address space check,
368 * thus avoiding the deadlock.
370 if (!down_read_trylock(&mm->mmap_sem)) {
371 if ((error_code & 4) == 0 &&
372 !search_exception_tables(regs->eip))
373 goto bad_area_nosemaphore;
374 down_read(&mm->mmap_sem);
377 vma = find_vma(mm, address);
378 if (!vma)
379 goto bad_area;
380 if (vma->vm_start <= address)
381 goto good_area;
382 if (!(vma->vm_flags & VM_GROWSDOWN))
383 goto bad_area;
384 if (error_code & 4) {
386 * Accessing the stack below %esp is always a bug.
387 * The large cushion allows instructions like enter
388 * and pusha to work. ("enter $65535,$31" pushes
389 * 32 pointers and then decrements %esp by 65535.)
391 if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
392 goto bad_area;
394 if (expand_stack(vma, address))
395 goto bad_area;
397 * Ok, we have a good vm_area for this memory access, so
398 * we can handle it..
400 good_area:
401 si_code = SEGV_ACCERR;
402 write = 0;
403 switch (error_code & 3) {
404 default: /* 3: write, present */
405 /* fall through */
406 case 2: /* write, not present */
407 if (!(vma->vm_flags & VM_WRITE))
408 goto bad_area;
409 write++;
410 break;
411 case 1: /* read, present */
412 goto bad_area;
413 case 0: /* read, not present */
414 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
415 goto bad_area;
418 survive:
420 * If for any reason at all we couldn't handle the fault,
421 * make sure we exit gracefully rather than endlessly redo
422 * the fault.
424 fault = handle_mm_fault(mm, vma, address, write);
425 if (unlikely(fault & VM_FAULT_ERROR)) {
426 if (fault & VM_FAULT_OOM)
427 goto out_of_memory;
428 else if (fault & VM_FAULT_SIGBUS)
429 goto do_sigbus;
430 BUG();
432 if (fault & VM_FAULT_MAJOR)
433 tsk->maj_flt++;
434 else
435 tsk->min_flt++;
438 * Did it hit the DOS screen memory VA from vm86 mode?
440 if (regs->eflags & VM_MASK) {
441 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
442 if (bit < 32)
443 tsk->thread.screen_bitmap |= 1 << bit;
445 up_read(&mm->mmap_sem);
446 return;
449 * Something tried to access memory that isn't in our memory map..
450 * Fix it, but check if it's kernel or user first..
452 bad_area:
453 up_read(&mm->mmap_sem);
455 bad_area_nosemaphore:
456 /* User mode accesses just cause a SIGSEGV */
457 if (error_code & 4) {
459 * It's possible to have interrupts off here.
461 local_irq_enable();
464 * Valid to do another page fault here because this one came
465 * from user space.
467 if (is_prefetch(regs, address, error_code))
468 return;
470 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
471 printk_ratelimit()) {
472 printk("%s%s[%d]: segfault at %08lx eip %08lx "
473 "esp %08lx error %lx\n",
474 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
475 tsk->comm, task_pid_nr(tsk), address, regs->eip,
476 regs->esp, error_code);
478 tsk->thread.cr2 = address;
479 /* Kernel addresses are always protection faults */
480 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
481 tsk->thread.trap_no = 14;
482 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
483 return;
486 #ifdef CONFIG_X86_F00F_BUG
488 * Pentium F0 0F C7 C8 bug workaround.
490 if (boot_cpu_data.f00f_bug) {
491 unsigned long nr;
493 nr = (address - idt_descr.address) >> 3;
495 if (nr == 6) {
496 do_invalid_op(regs, 0);
497 return;
500 #endif
502 no_context:
503 /* Are we prepared to handle this kernel fault? */
504 if (fixup_exception(regs))
505 return;
508 * Valid to do another page fault here, because if this fault
509 * had been triggered by is_prefetch fixup_exception would have
510 * handled it.
512 if (is_prefetch(regs, address, error_code))
513 return;
516 * Oops. The kernel tried to access some bad page. We'll have to
517 * terminate things with extreme prejudice.
520 bust_spinlocks(1);
522 if (oops_may_print()) {
523 __typeof__(pte_val(__pte(0))) page;
525 #ifdef CONFIG_X86_PAE
526 if (error_code & 16) {
527 pte_t *pte = lookup_address(address);
529 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
530 printk(KERN_CRIT "kernel tried to execute "
531 "NX-protected page - exploit attempt? "
532 "(uid: %d)\n", current->uid);
534 #endif
535 if (address < PAGE_SIZE)
536 printk(KERN_ALERT "BUG: unable to handle kernel NULL "
537 "pointer dereference");
538 else
539 printk(KERN_ALERT "BUG: unable to handle kernel paging"
540 " request");
541 printk(" at virtual address %08lx\n",address);
542 printk(KERN_ALERT "printing eip: %08lx ", regs->eip);
544 page = read_cr3();
545 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
546 #ifdef CONFIG_X86_PAE
547 printk("*pdpt = %016Lx ", page);
548 if ((page >> PAGE_SHIFT) < max_low_pfn
549 && page & _PAGE_PRESENT) {
550 page &= PAGE_MASK;
551 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
552 & (PTRS_PER_PMD - 1)];
553 printk(KERN_CONT "*pde = %016Lx ", page);
554 page &= ~_PAGE_NX;
556 #else
557 printk("*pde = %08lx ", page);
558 #endif
561 * We must not directly access the pte in the highpte
562 * case if the page table is located in highmem.
563 * And let's rather not kmap-atomic the pte, just in case
564 * it's allocated already.
566 if ((page >> PAGE_SHIFT) < max_low_pfn
567 && (page & _PAGE_PRESENT)
568 && !(page & _PAGE_PSE)) {
569 page &= PAGE_MASK;
570 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
571 & (PTRS_PER_PTE - 1)];
572 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
575 printk("\n");
578 tsk->thread.cr2 = address;
579 tsk->thread.trap_no = 14;
580 tsk->thread.error_code = error_code;
581 die("Oops", regs, error_code);
582 bust_spinlocks(0);
583 do_exit(SIGKILL);
586 * We ran out of memory, or some other thing happened to us that made
587 * us unable to handle the page fault gracefully.
589 out_of_memory:
590 up_read(&mm->mmap_sem);
591 if (is_global_init(tsk)) {
592 yield();
593 down_read(&mm->mmap_sem);
594 goto survive;
596 printk("VM: killing process %s\n", tsk->comm);
597 if (error_code & 4)
598 do_group_exit(SIGKILL);
599 goto no_context;
601 do_sigbus:
602 up_read(&mm->mmap_sem);
604 /* Kernel mode? Handle exceptions or die */
605 if (!(error_code & 4))
606 goto no_context;
608 /* User space => ok to do another page fault */
609 if (is_prefetch(regs, address, error_code))
610 return;
612 tsk->thread.cr2 = address;
613 tsk->thread.error_code = error_code;
614 tsk->thread.trap_no = 14;
615 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
618 void vmalloc_sync_all(void)
621 * Note that races in the updates of insync and start aren't
622 * problematic: insync can only get set bits added, and updates to
623 * start are only improving performance (without affecting correctness
624 * if undone).
626 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
627 static unsigned long start = TASK_SIZE;
628 unsigned long address;
630 if (SHARED_KERNEL_PMD)
631 return;
633 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
634 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
635 if (!test_bit(pgd_index(address), insync)) {
636 unsigned long flags;
637 struct page *page;
639 spin_lock_irqsave(&pgd_lock, flags);
640 for (page = pgd_list; page; page =
641 (struct page *)page->index)
642 if (!vmalloc_sync_one(page_address(page),
643 address)) {
644 BUG_ON(page != pgd_list);
645 break;
647 spin_unlock_irqrestore(&pgd_lock, flags);
648 if (!page)
649 set_bit(pgd_index(address), insync);
651 if (address == start && test_bit(pgd_index(address), insync))
652 start = address + PGDIR_SIZE;