Some modifications to files needed to succesfully compile ;)
[wrt350n-kernel.git] / arch / ia64 / pci / pci.c
blob8fd7e825192b60160bf82215ed3004d22da075eb
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
4 * Derived from bios32.c of i386 tree.
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
11 * Note: Above list of copyright holders is incomplete...
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
23 #include <asm/machvec.h>
24 #include <asm/page.h>
25 #include <asm/system.h>
26 #include <asm/io.h>
27 #include <asm/sal.h>
28 #include <asm/smp.h>
29 #include <asm/irq.h>
30 #include <asm/hw_irq.h>
33 * Low-level SAL-based PCI configuration access functions. Note that SAL
34 * calls are already serialized (via sal_lock), so we don't need another
35 * synchronization mechanism here.
38 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
39 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
41 /* SAL 3.2 adds support for extended config space. */
43 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
44 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
46 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
47 int reg, int len, u32 *value)
49 u64 addr, data = 0;
50 int mode, result;
52 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
53 return -EINVAL;
55 if ((seg | reg) <= 255) {
56 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
57 mode = 0;
58 } else {
59 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
60 mode = 1;
62 result = ia64_sal_pci_config_read(addr, mode, len, &data);
63 if (result != 0)
64 return -EINVAL;
66 *value = (u32) data;
67 return 0;
70 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
71 int reg, int len, u32 value)
73 u64 addr;
74 int mode, result;
76 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
77 return -EINVAL;
79 if ((seg | reg) <= 255) {
80 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
81 mode = 0;
82 } else {
83 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
84 mode = 1;
86 result = ia64_sal_pci_config_write(addr, mode, len, value);
87 if (result != 0)
88 return -EINVAL;
89 return 0;
92 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
93 int size, u32 *value)
95 return raw_pci_read(pci_domain_nr(bus), bus->number,
96 devfn, where, size, value);
99 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
100 int size, u32 value)
102 return raw_pci_write(pci_domain_nr(bus), bus->number,
103 devfn, where, size, value);
106 struct pci_ops pci_root_ops = {
107 .read = pci_read,
108 .write = pci_write,
111 /* Called by ACPI when it finds a new root bus. */
113 static struct pci_controller * __devinit
114 alloc_pci_controller (int seg)
116 struct pci_controller *controller;
118 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
119 if (!controller)
120 return NULL;
122 controller->segment = seg;
123 controller->node = -1;
124 return controller;
127 struct pci_root_info {
128 struct pci_controller *controller;
129 char *name;
132 static unsigned int
133 new_space (u64 phys_base, int sparse)
135 u64 mmio_base;
136 int i;
138 if (phys_base == 0)
139 return 0; /* legacy I/O port space */
141 mmio_base = (u64) ioremap(phys_base, 0);
142 for (i = 0; i < num_io_spaces; i++)
143 if (io_space[i].mmio_base == mmio_base &&
144 io_space[i].sparse == sparse)
145 return i;
147 if (num_io_spaces == MAX_IO_SPACES) {
148 printk(KERN_ERR "PCI: Too many IO port spaces "
149 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
150 return ~0;
153 i = num_io_spaces++;
154 io_space[i].mmio_base = mmio_base;
155 io_space[i].sparse = sparse;
157 return i;
160 static u64 __devinit
161 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
163 struct resource *resource;
164 char *name;
165 u64 base, min, max, base_port;
166 unsigned int sparse = 0, space_nr, len;
168 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
169 if (!resource) {
170 printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
171 info->name);
172 goto out;
175 len = strlen(info->name) + 32;
176 name = kzalloc(len, GFP_KERNEL);
177 if (!name) {
178 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
179 info->name);
180 goto free_resource;
183 min = addr->minimum;
184 max = min + addr->address_length - 1;
185 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
186 sparse = 1;
188 space_nr = new_space(addr->translation_offset, sparse);
189 if (space_nr == ~0)
190 goto free_name;
192 base = __pa(io_space[space_nr].mmio_base);
193 base_port = IO_SPACE_BASE(space_nr);
194 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
195 base_port + min, base_port + max);
198 * The SDM guarantees the legacy 0-64K space is sparse, but if the
199 * mapping is done by the processor (not the bridge), ACPI may not
200 * mark it as sparse.
202 if (space_nr == 0)
203 sparse = 1;
205 resource->name = name;
206 resource->flags = IORESOURCE_MEM;
207 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
208 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
209 insert_resource(&iomem_resource, resource);
211 return base_port;
213 free_name:
214 kfree(name);
215 free_resource:
216 kfree(resource);
217 out:
218 return ~0;
221 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
222 struct acpi_resource_address64 *addr)
224 acpi_status status;
227 * We're only interested in _CRS descriptors that are
228 * - address space descriptors for memory or I/O space
229 * - non-zero size
230 * - producers, i.e., the address space is routed downstream,
231 * not consumed by the bridge itself
233 status = acpi_resource_to_address64(resource, addr);
234 if (ACPI_SUCCESS(status) &&
235 (addr->resource_type == ACPI_MEMORY_RANGE ||
236 addr->resource_type == ACPI_IO_RANGE) &&
237 addr->address_length &&
238 addr->producer_consumer == ACPI_PRODUCER)
239 return AE_OK;
241 return AE_ERROR;
244 static acpi_status __devinit
245 count_window (struct acpi_resource *resource, void *data)
247 unsigned int *windows = (unsigned int *) data;
248 struct acpi_resource_address64 addr;
249 acpi_status status;
251 status = resource_to_window(resource, &addr);
252 if (ACPI_SUCCESS(status))
253 (*windows)++;
255 return AE_OK;
258 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
260 struct pci_root_info *info = data;
261 struct pci_window *window;
262 struct acpi_resource_address64 addr;
263 acpi_status status;
264 unsigned long flags, offset = 0;
265 struct resource *root;
267 /* Return AE_OK for non-window resources to keep scanning for more */
268 status = resource_to_window(res, &addr);
269 if (!ACPI_SUCCESS(status))
270 return AE_OK;
272 if (addr.resource_type == ACPI_MEMORY_RANGE) {
273 flags = IORESOURCE_MEM;
274 root = &iomem_resource;
275 offset = addr.translation_offset;
276 } else if (addr.resource_type == ACPI_IO_RANGE) {
277 flags = IORESOURCE_IO;
278 root = &ioport_resource;
279 offset = add_io_space(info, &addr);
280 if (offset == ~0)
281 return AE_OK;
282 } else
283 return AE_OK;
285 window = &info->controller->window[info->controller->windows++];
286 window->resource.name = info->name;
287 window->resource.flags = flags;
288 window->resource.start = addr.minimum + offset;
289 window->resource.end = window->resource.start + addr.address_length - 1;
290 window->resource.child = NULL;
291 window->offset = offset;
293 if (insert_resource(root, &window->resource)) {
294 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
295 window->resource.start, window->resource.end,
296 root->name, info->name);
299 return AE_OK;
302 static void __devinit
303 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
305 int i, j;
307 j = 0;
308 for (i = 0; i < ctrl->windows; i++) {
309 struct resource *res = &ctrl->window[i].resource;
310 /* HP's firmware has a hack to work around a Windows bug.
311 * Ignore these tiny memory ranges */
312 if ((res->flags & IORESOURCE_MEM) &&
313 (res->end - res->start < 16))
314 continue;
315 if (j >= PCI_BUS_NUM_RESOURCES) {
316 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
317 res->end, res->flags);
318 continue;
320 bus->resource[j++] = res;
324 struct pci_bus * __devinit
325 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
327 struct pci_root_info info;
328 struct pci_controller *controller;
329 unsigned int windows = 0;
330 struct pci_bus *pbus;
331 char *name;
332 int pxm;
334 controller = alloc_pci_controller(domain);
335 if (!controller)
336 goto out1;
338 controller->acpi_handle = device->handle;
340 pxm = acpi_get_pxm(controller->acpi_handle);
341 #ifdef CONFIG_NUMA
342 if (pxm >= 0)
343 controller->node = pxm_to_node(pxm);
344 #endif
346 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
347 &windows);
348 if (windows) {
349 controller->window =
350 kmalloc_node(sizeof(*controller->window) * windows,
351 GFP_KERNEL, controller->node);
352 if (!controller->window)
353 goto out2;
356 name = kmalloc(16, GFP_KERNEL);
357 if (!name)
358 goto out3;
360 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
361 info.controller = controller;
362 info.name = name;
363 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
364 &info);
366 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
367 if (pbus)
368 pcibios_setup_root_windows(pbus, controller);
370 return pbus;
372 out3:
373 kfree(controller->window);
374 out2:
375 kfree(controller);
376 out1:
377 return NULL;
380 void pcibios_resource_to_bus(struct pci_dev *dev,
381 struct pci_bus_region *region, struct resource *res)
383 struct pci_controller *controller = PCI_CONTROLLER(dev);
384 unsigned long offset = 0;
385 int i;
387 for (i = 0; i < controller->windows; i++) {
388 struct pci_window *window = &controller->window[i];
389 if (!(window->resource.flags & res->flags))
390 continue;
391 if (window->resource.start > res->start)
392 continue;
393 if (window->resource.end < res->end)
394 continue;
395 offset = window->offset;
396 break;
399 region->start = res->start - offset;
400 region->end = res->end - offset;
402 EXPORT_SYMBOL(pcibios_resource_to_bus);
404 void pcibios_bus_to_resource(struct pci_dev *dev,
405 struct resource *res, struct pci_bus_region *region)
407 struct pci_controller *controller = PCI_CONTROLLER(dev);
408 unsigned long offset = 0;
409 int i;
411 for (i = 0; i < controller->windows; i++) {
412 struct pci_window *window = &controller->window[i];
413 if (!(window->resource.flags & res->flags))
414 continue;
415 if (window->resource.start - window->offset > region->start)
416 continue;
417 if (window->resource.end - window->offset < region->end)
418 continue;
419 offset = window->offset;
420 break;
423 res->start = region->start + offset;
424 res->end = region->end + offset;
426 EXPORT_SYMBOL(pcibios_bus_to_resource);
428 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
430 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
431 struct resource *devr = &dev->resource[idx];
433 if (!dev->bus)
434 return 0;
435 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
436 struct resource *busr = dev->bus->resource[i];
438 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
439 continue;
440 if ((devr->start) && (devr->start >= busr->start) &&
441 (devr->end <= busr->end))
442 return 1;
444 return 0;
447 static void __devinit
448 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
450 struct pci_bus_region region;
451 int i;
453 for (i = start; i < limit; i++) {
454 if (!dev->resource[i].flags)
455 continue;
456 region.start = dev->resource[i].start;
457 region.end = dev->resource[i].end;
458 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
459 if ((is_valid_resource(dev, i)))
460 pci_claim_resource(dev, i);
464 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
466 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
468 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
470 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
472 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
476 * Called after each bus is probed, but before its children are examined.
478 void __devinit
479 pcibios_fixup_bus (struct pci_bus *b)
481 struct pci_dev *dev;
483 if (b->self) {
484 pci_read_bridge_bases(b);
485 pcibios_fixup_bridge_resources(b->self);
487 list_for_each_entry(dev, &b->devices, bus_list)
488 pcibios_fixup_device_resources(dev);
489 platform_pci_fixup_bus(b);
491 return;
494 void __devinit
495 pcibios_update_irq (struct pci_dev *dev, int irq)
497 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
499 /* ??? FIXME -- record old value for shutdown. */
502 static inline int
503 pcibios_enable_resources (struct pci_dev *dev, int mask)
505 u16 cmd, old_cmd;
506 int idx;
507 struct resource *r;
508 unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
510 if (!dev)
511 return -EINVAL;
513 pci_read_config_word(dev, PCI_COMMAND, &cmd);
514 old_cmd = cmd;
515 for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
516 /* Only set up the desired resources. */
517 if (!(mask & (1 << idx)))
518 continue;
520 r = &dev->resource[idx];
521 if (!(r->flags & type_mask))
522 continue;
523 if ((idx == PCI_ROM_RESOURCE) &&
524 (!(r->flags & IORESOURCE_ROM_ENABLE)))
525 continue;
526 if (!r->start && r->end) {
527 printk(KERN_ERR
528 "PCI: Device %s not available because of resource collisions\n",
529 pci_name(dev));
530 return -EINVAL;
532 if (r->flags & IORESOURCE_IO)
533 cmd |= PCI_COMMAND_IO;
534 if (r->flags & IORESOURCE_MEM)
535 cmd |= PCI_COMMAND_MEMORY;
537 if (cmd != old_cmd) {
538 printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
539 pci_write_config_word(dev, PCI_COMMAND, cmd);
541 return 0;
545 pcibios_enable_device (struct pci_dev *dev, int mask)
547 int ret;
549 ret = pcibios_enable_resources(dev, mask);
550 if (ret < 0)
551 return ret;
553 if (!dev->msi_enabled)
554 return acpi_pci_irq_enable(dev);
555 return 0;
558 void
559 pcibios_disable_device (struct pci_dev *dev)
561 BUG_ON(atomic_read(&dev->enable_cnt));
562 if (!dev->msi_enabled)
563 acpi_pci_irq_disable(dev);
566 void
567 pcibios_align_resource (void *data, struct resource *res,
568 resource_size_t size, resource_size_t align)
573 * PCI BIOS setup, always defaults to SAL interface
575 char * __devinit
576 pcibios_setup (char *str)
578 return str;
582 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
583 enum pci_mmap_state mmap_state, int write_combine)
585 unsigned long size = vma->vm_end - vma->vm_start;
586 pgprot_t prot;
589 * I/O space cannot be accessed via normal processor loads and
590 * stores on this platform.
592 if (mmap_state == pci_mmap_io)
594 * XXX we could relax this for I/O spaces for which ACPI
595 * indicates that the space is 1-to-1 mapped. But at the
596 * moment, we don't support multiple PCI address spaces and
597 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
599 return -EINVAL;
601 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
602 return -EINVAL;
604 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
605 vma->vm_page_prot);
608 * If the user requested WC, the kernel uses UC or WC for this region,
609 * and the chipset supports WC, we can use WC. Otherwise, we have to
610 * use the same attribute the kernel uses.
612 if (write_combine &&
613 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
614 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
615 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
616 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
617 else
618 vma->vm_page_prot = prot;
620 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
621 vma->vm_end - vma->vm_start, vma->vm_page_prot))
622 return -EAGAIN;
624 return 0;
628 * ia64_pci_get_legacy_mem - generic legacy mem routine
629 * @bus: bus to get legacy memory base address for
631 * Find the base of legacy memory for @bus. This is typically the first
632 * megabyte of bus address space for @bus or is simply 0 on platforms whose
633 * chipsets support legacy I/O and memory routing. Returns the base address
634 * or an error pointer if an error occurred.
636 * This is the ia64 generic version of this routine. Other platforms
637 * are free to override it with a machine vector.
639 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
641 return (char *)__IA64_UNCACHED_OFFSET;
645 * pci_mmap_legacy_page_range - map legacy memory space to userland
646 * @bus: bus whose legacy space we're mapping
647 * @vma: vma passed in by mmap
649 * Map legacy memory space for this device back to userspace using a machine
650 * vector to get the base address.
653 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
655 unsigned long size = vma->vm_end - vma->vm_start;
656 pgprot_t prot;
657 char *addr;
660 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
661 * for more details.
663 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
664 return -EINVAL;
665 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
666 vma->vm_page_prot);
668 addr = pci_get_legacy_mem(bus);
669 if (IS_ERR(addr))
670 return PTR_ERR(addr);
672 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
673 vma->vm_page_prot = prot;
675 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
676 size, vma->vm_page_prot))
677 return -EAGAIN;
679 return 0;
683 * ia64_pci_legacy_read - read from legacy I/O space
684 * @bus: bus to read
685 * @port: legacy port value
686 * @val: caller allocated storage for returned value
687 * @size: number of bytes to read
689 * Simply reads @size bytes from @port and puts the result in @val.
691 * Again, this (and the write routine) are generic versions that can be
692 * overridden by the platform. This is necessary on platforms that don't
693 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
695 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
697 int ret = size;
699 switch (size) {
700 case 1:
701 *val = inb(port);
702 break;
703 case 2:
704 *val = inw(port);
705 break;
706 case 4:
707 *val = inl(port);
708 break;
709 default:
710 ret = -EINVAL;
711 break;
714 return ret;
718 * ia64_pci_legacy_write - perform a legacy I/O write
719 * @bus: bus pointer
720 * @port: port to write
721 * @val: value to write
722 * @size: number of bytes to write from @val
724 * Simply writes @size bytes of @val to @port.
726 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
728 int ret = size;
730 switch (size) {
731 case 1:
732 outb(val, port);
733 break;
734 case 2:
735 outw(val, port);
736 break;
737 case 4:
738 outl(val, port);
739 break;
740 default:
741 ret = -EINVAL;
742 break;
745 return ret;
748 /* It's defined in drivers/pci/pci.c */
749 extern u8 pci_cache_line_size;
752 * set_pci_cacheline_size - determine cacheline size for PCI devices
754 * We want to use the line-size of the outer-most cache. We assume
755 * that this line-size is the same for all CPUs.
757 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
759 static void __init set_pci_cacheline_size(void)
761 u64 levels, unique_caches;
762 s64 status;
763 pal_cache_config_info_t cci;
765 status = ia64_pal_cache_summary(&levels, &unique_caches);
766 if (status != 0) {
767 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
768 "(status=%ld)\n", __FUNCTION__, status);
769 return;
772 status = ia64_pal_cache_config_info(levels - 1,
773 /* cache_type (data_or_unified)= */ 2, &cci);
774 if (status != 0) {
775 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
776 "(status=%ld)\n", __FUNCTION__, status);
777 return;
779 pci_cache_line_size = (1 << cci.pcci_line_size) / 4;
782 static int __init pcibios_init(void)
784 set_pci_cacheline_size();
785 return 0;
788 subsys_initcall(pcibios_init);