2 * SPU file system -- file contents
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/marker.h>
35 #include <asm/semaphore.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
42 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44 /* Simple attribute files */
46 int (*get
)(void *, u64
*);
47 int (*set
)(void *, u64
);
48 char get_buf
[24]; /* enough to store a u64 and "\n\0" */
51 const char *fmt
; /* format for read operation */
52 struct mutex mutex
; /* protects access to these buffers */
55 static int spufs_attr_open(struct inode
*inode
, struct file
*file
,
56 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
59 struct spufs_attr
*attr
;
61 attr
= kmalloc(sizeof(*attr
), GFP_KERNEL
);
67 attr
->data
= inode
->i_private
;
69 mutex_init(&attr
->mutex
);
70 file
->private_data
= attr
;
72 return nonseekable_open(inode
, file
);
75 static int spufs_attr_release(struct inode
*inode
, struct file
*file
)
77 kfree(file
->private_data
);
81 static ssize_t
spufs_attr_read(struct file
*file
, char __user
*buf
,
82 size_t len
, loff_t
*ppos
)
84 struct spufs_attr
*attr
;
88 attr
= file
->private_data
;
92 ret
= mutex_lock_interruptible(&attr
->mutex
);
96 if (*ppos
) { /* continued read */
97 size
= strlen(attr
->get_buf
);
98 } else { /* first read */
100 ret
= attr
->get(attr
->data
, &val
);
104 size
= scnprintf(attr
->get_buf
, sizeof(attr
->get_buf
),
105 attr
->fmt
, (unsigned long long)val
);
108 ret
= simple_read_from_buffer(buf
, len
, ppos
, attr
->get_buf
, size
);
110 mutex_unlock(&attr
->mutex
);
114 static ssize_t
spufs_attr_write(struct file
*file
, const char __user
*buf
,
115 size_t len
, loff_t
*ppos
)
117 struct spufs_attr
*attr
;
122 attr
= file
->private_data
;
126 ret
= mutex_lock_interruptible(&attr
->mutex
);
131 size
= min(sizeof(attr
->set_buf
) - 1, len
);
132 if (copy_from_user(attr
->set_buf
, buf
, size
))
135 ret
= len
; /* claim we got the whole input */
136 attr
->set_buf
[size
] = '\0';
137 val
= simple_strtol(attr
->set_buf
, NULL
, 0);
138 attr
->set(attr
->data
, val
);
140 mutex_unlock(&attr
->mutex
);
144 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
145 static int __fops ## _open(struct inode *inode, struct file *file) \
147 __simple_attr_check_format(__fmt, 0ull); \
148 return spufs_attr_open(inode, file, __get, __set, __fmt); \
150 static struct file_operations __fops = { \
151 .owner = THIS_MODULE, \
152 .open = __fops ## _open, \
153 .release = spufs_attr_release, \
154 .read = spufs_attr_read, \
155 .write = spufs_attr_write, \
160 spufs_mem_open(struct inode
*inode
, struct file
*file
)
162 struct spufs_inode_info
*i
= SPUFS_I(inode
);
163 struct spu_context
*ctx
= i
->i_ctx
;
165 mutex_lock(&ctx
->mapping_lock
);
166 file
->private_data
= ctx
;
168 ctx
->local_store
= inode
->i_mapping
;
169 mutex_unlock(&ctx
->mapping_lock
);
174 spufs_mem_release(struct inode
*inode
, struct file
*file
)
176 struct spufs_inode_info
*i
= SPUFS_I(inode
);
177 struct spu_context
*ctx
= i
->i_ctx
;
179 mutex_lock(&ctx
->mapping_lock
);
181 ctx
->local_store
= NULL
;
182 mutex_unlock(&ctx
->mapping_lock
);
187 __spufs_mem_read(struct spu_context
*ctx
, char __user
*buffer
,
188 size_t size
, loff_t
*pos
)
190 char *local_store
= ctx
->ops
->get_ls(ctx
);
191 return simple_read_from_buffer(buffer
, size
, pos
, local_store
,
196 spufs_mem_read(struct file
*file
, char __user
*buffer
,
197 size_t size
, loff_t
*pos
)
199 struct spu_context
*ctx
= file
->private_data
;
202 ret
= spu_acquire(ctx
);
205 ret
= __spufs_mem_read(ctx
, buffer
, size
, pos
);
212 spufs_mem_write(struct file
*file
, const char __user
*buffer
,
213 size_t size
, loff_t
*ppos
)
215 struct spu_context
*ctx
= file
->private_data
;
224 if (size
> LS_SIZE
- pos
)
225 size
= LS_SIZE
- pos
;
227 ret
= spu_acquire(ctx
);
231 local_store
= ctx
->ops
->get_ls(ctx
);
232 ret
= copy_from_user(local_store
+ pos
, buffer
, size
);
241 static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct
*vma
,
242 unsigned long address
)
244 struct spu_context
*ctx
= vma
->vm_file
->private_data
;
245 unsigned long pfn
, offset
, addr0
= address
;
246 #ifdef CONFIG_SPU_FS_64K_LS
247 struct spu_state
*csa
= &ctx
->csa
;
250 /* Check what page size we are using */
251 psize
= get_slice_psize(vma
->vm_mm
, address
);
253 /* Some sanity checking */
254 BUG_ON(csa
->use_big_pages
!= (psize
== MMU_PAGE_64K
));
256 /* Wow, 64K, cool, we need to align the address though */
257 if (csa
->use_big_pages
) {
258 BUG_ON(vma
->vm_start
& 0xffff);
259 address
&= ~0xfffful
;
261 #endif /* CONFIG_SPU_FS_64K_LS */
263 offset
= (address
- vma
->vm_start
) + (vma
->vm_pgoff
<< PAGE_SHIFT
);
264 if (offset
>= LS_SIZE
)
267 pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
268 addr0
, address
, offset
);
270 if (spu_acquire(ctx
))
271 return NOPFN_REFAULT
;
273 if (ctx
->state
== SPU_STATE_SAVED
) {
274 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
276 pfn
= vmalloc_to_pfn(ctx
->csa
.lscsa
->ls
+ offset
);
278 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
280 pfn
= (ctx
->spu
->local_store_phys
+ offset
) >> PAGE_SHIFT
;
282 vm_insert_pfn(vma
, address
, pfn
);
286 return NOPFN_REFAULT
;
290 static struct vm_operations_struct spufs_mem_mmap_vmops
= {
291 .nopfn
= spufs_mem_mmap_nopfn
,
294 static int spufs_mem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
296 #ifdef CONFIG_SPU_FS_64K_LS
297 struct spu_context
*ctx
= file
->private_data
;
298 struct spu_state
*csa
= &ctx
->csa
;
300 /* Sanity check VMA alignment */
301 if (csa
->use_big_pages
) {
302 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
303 " pgoff=0x%lx\n", vma
->vm_start
, vma
->vm_end
,
305 if (vma
->vm_start
& 0xffff)
307 if (vma
->vm_pgoff
& 0xf)
310 #endif /* CONFIG_SPU_FS_64K_LS */
312 if (!(vma
->vm_flags
& VM_SHARED
))
315 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
316 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
319 vma
->vm_ops
= &spufs_mem_mmap_vmops
;
323 #ifdef CONFIG_SPU_FS_64K_LS
324 static unsigned long spufs_get_unmapped_area(struct file
*file
,
325 unsigned long addr
, unsigned long len
, unsigned long pgoff
,
328 struct spu_context
*ctx
= file
->private_data
;
329 struct spu_state
*csa
= &ctx
->csa
;
331 /* If not using big pages, fallback to normal MM g_u_a */
332 if (!csa
->use_big_pages
)
333 return current
->mm
->get_unmapped_area(file
, addr
, len
,
336 /* Else, try to obtain a 64K pages slice */
337 return slice_get_unmapped_area(addr
, len
, flags
,
340 #endif /* CONFIG_SPU_FS_64K_LS */
342 static const struct file_operations spufs_mem_fops
= {
343 .open
= spufs_mem_open
,
344 .release
= spufs_mem_release
,
345 .read
= spufs_mem_read
,
346 .write
= spufs_mem_write
,
347 .llseek
= generic_file_llseek
,
348 .mmap
= spufs_mem_mmap
,
349 #ifdef CONFIG_SPU_FS_64K_LS
350 .get_unmapped_area
= spufs_get_unmapped_area
,
354 static unsigned long spufs_ps_nopfn(struct vm_area_struct
*vma
,
355 unsigned long address
,
356 unsigned long ps_offs
,
357 unsigned long ps_size
)
359 struct spu_context
*ctx
= vma
->vm_file
->private_data
;
360 unsigned long area
, offset
= address
- vma
->vm_start
;
363 spu_context_nospu_trace(spufs_ps_nopfn__enter
, ctx
);
365 offset
+= vma
->vm_pgoff
<< PAGE_SHIFT
;
366 if (offset
>= ps_size
)
370 * We have to wait for context to be loaded before we have
371 * pages to hand out to the user, but we don't want to wait
372 * with the mmap_sem held.
373 * It is possible to drop the mmap_sem here, but then we need
374 * to return NOPFN_REFAULT because the mappings may have
377 if (spu_acquire(ctx
))
378 return NOPFN_REFAULT
;
380 if (ctx
->state
== SPU_STATE_SAVED
) {
381 up_read(¤t
->mm
->mmap_sem
);
382 spu_context_nospu_trace(spufs_ps_nopfn__sleep
, ctx
);
383 ret
= spufs_wait(ctx
->run_wq
, ctx
->state
== SPU_STATE_RUNNABLE
);
384 spu_context_trace(spufs_ps_nopfn__wake
, ctx
, ctx
->spu
);
385 down_read(¤t
->mm
->mmap_sem
);
387 area
= ctx
->spu
->problem_phys
+ ps_offs
;
388 vm_insert_pfn(vma
, address
, (area
+ offset
) >> PAGE_SHIFT
);
389 spu_context_trace(spufs_ps_nopfn__insert
, ctx
, ctx
->spu
);
394 return NOPFN_REFAULT
;
398 static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct
*vma
,
399 unsigned long address
)
401 return spufs_ps_nopfn(vma
, address
, 0x4000, 0x1000);
404 static struct vm_operations_struct spufs_cntl_mmap_vmops
= {
405 .nopfn
= spufs_cntl_mmap_nopfn
,
409 * mmap support for problem state control area [0x4000 - 0x4fff].
411 static int spufs_cntl_mmap(struct file
*file
, struct vm_area_struct
*vma
)
413 if (!(vma
->vm_flags
& VM_SHARED
))
416 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
417 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
418 | _PAGE_NO_CACHE
| _PAGE_GUARDED
);
420 vma
->vm_ops
= &spufs_cntl_mmap_vmops
;
423 #else /* SPUFS_MMAP_4K */
424 #define spufs_cntl_mmap NULL
425 #endif /* !SPUFS_MMAP_4K */
427 static int spufs_cntl_get(void *data
, u64
*val
)
429 struct spu_context
*ctx
= data
;
432 ret
= spu_acquire(ctx
);
435 *val
= ctx
->ops
->status_read(ctx
);
441 static int spufs_cntl_set(void *data
, u64 val
)
443 struct spu_context
*ctx
= data
;
446 ret
= spu_acquire(ctx
);
449 ctx
->ops
->runcntl_write(ctx
, val
);
455 static int spufs_cntl_open(struct inode
*inode
, struct file
*file
)
457 struct spufs_inode_info
*i
= SPUFS_I(inode
);
458 struct spu_context
*ctx
= i
->i_ctx
;
460 mutex_lock(&ctx
->mapping_lock
);
461 file
->private_data
= ctx
;
463 ctx
->cntl
= inode
->i_mapping
;
464 mutex_unlock(&ctx
->mapping_lock
);
465 return simple_attr_open(inode
, file
, spufs_cntl_get
,
466 spufs_cntl_set
, "0x%08lx");
470 spufs_cntl_release(struct inode
*inode
, struct file
*file
)
472 struct spufs_inode_info
*i
= SPUFS_I(inode
);
473 struct spu_context
*ctx
= i
->i_ctx
;
475 simple_attr_release(inode
, file
);
477 mutex_lock(&ctx
->mapping_lock
);
480 mutex_unlock(&ctx
->mapping_lock
);
484 static const struct file_operations spufs_cntl_fops
= {
485 .open
= spufs_cntl_open
,
486 .release
= spufs_cntl_release
,
487 .read
= simple_attr_read
,
488 .write
= simple_attr_write
,
489 .mmap
= spufs_cntl_mmap
,
493 spufs_regs_open(struct inode
*inode
, struct file
*file
)
495 struct spufs_inode_info
*i
= SPUFS_I(inode
);
496 file
->private_data
= i
->i_ctx
;
501 __spufs_regs_read(struct spu_context
*ctx
, char __user
*buffer
,
502 size_t size
, loff_t
*pos
)
504 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
505 return simple_read_from_buffer(buffer
, size
, pos
,
506 lscsa
->gprs
, sizeof lscsa
->gprs
);
510 spufs_regs_read(struct file
*file
, char __user
*buffer
,
511 size_t size
, loff_t
*pos
)
514 struct spu_context
*ctx
= file
->private_data
;
516 ret
= spu_acquire_saved(ctx
);
519 ret
= __spufs_regs_read(ctx
, buffer
, size
, pos
);
520 spu_release_saved(ctx
);
525 spufs_regs_write(struct file
*file
, const char __user
*buffer
,
526 size_t size
, loff_t
*pos
)
528 struct spu_context
*ctx
= file
->private_data
;
529 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
532 size
= min_t(ssize_t
, sizeof lscsa
->gprs
- *pos
, size
);
537 ret
= spu_acquire_saved(ctx
);
541 ret
= copy_from_user(lscsa
->gprs
+ *pos
- size
,
542 buffer
, size
) ? -EFAULT
: size
;
544 spu_release_saved(ctx
);
548 static const struct file_operations spufs_regs_fops
= {
549 .open
= spufs_regs_open
,
550 .read
= spufs_regs_read
,
551 .write
= spufs_regs_write
,
552 .llseek
= generic_file_llseek
,
556 __spufs_fpcr_read(struct spu_context
*ctx
, char __user
* buffer
,
557 size_t size
, loff_t
* pos
)
559 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
560 return simple_read_from_buffer(buffer
, size
, pos
,
561 &lscsa
->fpcr
, sizeof(lscsa
->fpcr
));
565 spufs_fpcr_read(struct file
*file
, char __user
* buffer
,
566 size_t size
, loff_t
* pos
)
569 struct spu_context
*ctx
= file
->private_data
;
571 ret
= spu_acquire_saved(ctx
);
574 ret
= __spufs_fpcr_read(ctx
, buffer
, size
, pos
);
575 spu_release_saved(ctx
);
580 spufs_fpcr_write(struct file
*file
, const char __user
* buffer
,
581 size_t size
, loff_t
* pos
)
583 struct spu_context
*ctx
= file
->private_data
;
584 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
587 size
= min_t(ssize_t
, sizeof(lscsa
->fpcr
) - *pos
, size
);
591 ret
= spu_acquire_saved(ctx
);
596 ret
= copy_from_user((char *)&lscsa
->fpcr
+ *pos
- size
,
597 buffer
, size
) ? -EFAULT
: size
;
599 spu_release_saved(ctx
);
603 static const struct file_operations spufs_fpcr_fops
= {
604 .open
= spufs_regs_open
,
605 .read
= spufs_fpcr_read
,
606 .write
= spufs_fpcr_write
,
607 .llseek
= generic_file_llseek
,
610 /* generic open function for all pipe-like files */
611 static int spufs_pipe_open(struct inode
*inode
, struct file
*file
)
613 struct spufs_inode_info
*i
= SPUFS_I(inode
);
614 file
->private_data
= i
->i_ctx
;
616 return nonseekable_open(inode
, file
);
620 * Read as many bytes from the mailbox as possible, until
621 * one of the conditions becomes true:
623 * - no more data available in the mailbox
624 * - end of the user provided buffer
625 * - end of the mapped area
627 static ssize_t
spufs_mbox_read(struct file
*file
, char __user
*buf
,
628 size_t len
, loff_t
*pos
)
630 struct spu_context
*ctx
= file
->private_data
;
631 u32 mbox_data
, __user
*udata
;
637 if (!access_ok(VERIFY_WRITE
, buf
, len
))
640 udata
= (void __user
*)buf
;
642 count
= spu_acquire(ctx
);
646 for (count
= 0; (count
+ 4) <= len
; count
+= 4, udata
++) {
648 ret
= ctx
->ops
->mbox_read(ctx
, &mbox_data
);
653 * at the end of the mapped area, we can fault
654 * but still need to return the data we have
655 * read successfully so far.
657 ret
= __put_user(mbox_data
, udata
);
672 static const struct file_operations spufs_mbox_fops
= {
673 .open
= spufs_pipe_open
,
674 .read
= spufs_mbox_read
,
677 static ssize_t
spufs_mbox_stat_read(struct file
*file
, char __user
*buf
,
678 size_t len
, loff_t
*pos
)
680 struct spu_context
*ctx
= file
->private_data
;
687 ret
= spu_acquire(ctx
);
691 mbox_stat
= ctx
->ops
->mbox_stat_read(ctx
) & 0xff;
695 if (copy_to_user(buf
, &mbox_stat
, sizeof mbox_stat
))
701 static const struct file_operations spufs_mbox_stat_fops
= {
702 .open
= spufs_pipe_open
,
703 .read
= spufs_mbox_stat_read
,
706 /* low-level ibox access function */
707 size_t spu_ibox_read(struct spu_context
*ctx
, u32
*data
)
709 return ctx
->ops
->ibox_read(ctx
, data
);
712 static int spufs_ibox_fasync(int fd
, struct file
*file
, int on
)
714 struct spu_context
*ctx
= file
->private_data
;
716 return fasync_helper(fd
, file
, on
, &ctx
->ibox_fasync
);
719 /* interrupt-level ibox callback function. */
720 void spufs_ibox_callback(struct spu
*spu
)
722 struct spu_context
*ctx
= spu
->ctx
;
727 wake_up_all(&ctx
->ibox_wq
);
728 kill_fasync(&ctx
->ibox_fasync
, SIGIO
, POLLIN
);
732 * Read as many bytes from the interrupt mailbox as possible, until
733 * one of the conditions becomes true:
735 * - no more data available in the mailbox
736 * - end of the user provided buffer
737 * - end of the mapped area
739 * If the file is opened without O_NONBLOCK, we wait here until
740 * any data is available, but return when we have been able to
743 static ssize_t
spufs_ibox_read(struct file
*file
, char __user
*buf
,
744 size_t len
, loff_t
*pos
)
746 struct spu_context
*ctx
= file
->private_data
;
747 u32 ibox_data
, __user
*udata
;
753 if (!access_ok(VERIFY_WRITE
, buf
, len
))
756 udata
= (void __user
*)buf
;
758 count
= spu_acquire(ctx
);
762 /* wait only for the first element */
764 if (file
->f_flags
& O_NONBLOCK
) {
765 if (!spu_ibox_read(ctx
, &ibox_data
)) {
770 count
= spufs_wait(ctx
->ibox_wq
, spu_ibox_read(ctx
, &ibox_data
));
775 /* if we can't write at all, return -EFAULT */
776 count
= __put_user(ibox_data
, udata
);
780 for (count
= 4, udata
++; (count
+ 4) <= len
; count
+= 4, udata
++) {
782 ret
= ctx
->ops
->ibox_read(ctx
, &ibox_data
);
786 * at the end of the mapped area, we can fault
787 * but still need to return the data we have
788 * read successfully so far.
790 ret
= __put_user(ibox_data
, udata
);
801 static unsigned int spufs_ibox_poll(struct file
*file
, poll_table
*wait
)
803 struct spu_context
*ctx
= file
->private_data
;
806 poll_wait(file
, &ctx
->ibox_wq
, wait
);
809 * For now keep this uninterruptible and also ignore the rule
810 * that poll should not sleep. Will be fixed later.
812 mutex_lock(&ctx
->state_mutex
);
813 mask
= ctx
->ops
->mbox_stat_poll(ctx
, POLLIN
| POLLRDNORM
);
819 static const struct file_operations spufs_ibox_fops
= {
820 .open
= spufs_pipe_open
,
821 .read
= spufs_ibox_read
,
822 .poll
= spufs_ibox_poll
,
823 .fasync
= spufs_ibox_fasync
,
826 static ssize_t
spufs_ibox_stat_read(struct file
*file
, char __user
*buf
,
827 size_t len
, loff_t
*pos
)
829 struct spu_context
*ctx
= file
->private_data
;
836 ret
= spu_acquire(ctx
);
839 ibox_stat
= (ctx
->ops
->mbox_stat_read(ctx
) >> 16) & 0xff;
842 if (copy_to_user(buf
, &ibox_stat
, sizeof ibox_stat
))
848 static const struct file_operations spufs_ibox_stat_fops
= {
849 .open
= spufs_pipe_open
,
850 .read
= spufs_ibox_stat_read
,
853 /* low-level mailbox write */
854 size_t spu_wbox_write(struct spu_context
*ctx
, u32 data
)
856 return ctx
->ops
->wbox_write(ctx
, data
);
859 static int spufs_wbox_fasync(int fd
, struct file
*file
, int on
)
861 struct spu_context
*ctx
= file
->private_data
;
864 ret
= fasync_helper(fd
, file
, on
, &ctx
->wbox_fasync
);
869 /* interrupt-level wbox callback function. */
870 void spufs_wbox_callback(struct spu
*spu
)
872 struct spu_context
*ctx
= spu
->ctx
;
877 wake_up_all(&ctx
->wbox_wq
);
878 kill_fasync(&ctx
->wbox_fasync
, SIGIO
, POLLOUT
);
882 * Write as many bytes to the interrupt mailbox as possible, until
883 * one of the conditions becomes true:
885 * - the mailbox is full
886 * - end of the user provided buffer
887 * - end of the mapped area
889 * If the file is opened without O_NONBLOCK, we wait here until
890 * space is availabyl, but return when we have been able to
893 static ssize_t
spufs_wbox_write(struct file
*file
, const char __user
*buf
,
894 size_t len
, loff_t
*pos
)
896 struct spu_context
*ctx
= file
->private_data
;
897 u32 wbox_data
, __user
*udata
;
903 udata
= (void __user
*)buf
;
904 if (!access_ok(VERIFY_READ
, buf
, len
))
907 if (__get_user(wbox_data
, udata
))
910 count
= spu_acquire(ctx
);
915 * make sure we can at least write one element, by waiting
916 * in case of !O_NONBLOCK
919 if (file
->f_flags
& O_NONBLOCK
) {
920 if (!spu_wbox_write(ctx
, wbox_data
)) {
925 count
= spufs_wait(ctx
->wbox_wq
, spu_wbox_write(ctx
, wbox_data
));
931 /* write as much as possible */
932 for (count
= 4, udata
++; (count
+ 4) <= len
; count
+= 4, udata
++) {
934 ret
= __get_user(wbox_data
, udata
);
938 ret
= spu_wbox_write(ctx
, wbox_data
);
949 static unsigned int spufs_wbox_poll(struct file
*file
, poll_table
*wait
)
951 struct spu_context
*ctx
= file
->private_data
;
954 poll_wait(file
, &ctx
->wbox_wq
, wait
);
957 * For now keep this uninterruptible and also ignore the rule
958 * that poll should not sleep. Will be fixed later.
960 mutex_lock(&ctx
->state_mutex
);
961 mask
= ctx
->ops
->mbox_stat_poll(ctx
, POLLOUT
| POLLWRNORM
);
967 static const struct file_operations spufs_wbox_fops
= {
968 .open
= spufs_pipe_open
,
969 .write
= spufs_wbox_write
,
970 .poll
= spufs_wbox_poll
,
971 .fasync
= spufs_wbox_fasync
,
974 static ssize_t
spufs_wbox_stat_read(struct file
*file
, char __user
*buf
,
975 size_t len
, loff_t
*pos
)
977 struct spu_context
*ctx
= file
->private_data
;
984 ret
= spu_acquire(ctx
);
987 wbox_stat
= (ctx
->ops
->mbox_stat_read(ctx
) >> 8) & 0xff;
990 if (copy_to_user(buf
, &wbox_stat
, sizeof wbox_stat
))
996 static const struct file_operations spufs_wbox_stat_fops
= {
997 .open
= spufs_pipe_open
,
998 .read
= spufs_wbox_stat_read
,
1001 static int spufs_signal1_open(struct inode
*inode
, struct file
*file
)
1003 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1004 struct spu_context
*ctx
= i
->i_ctx
;
1006 mutex_lock(&ctx
->mapping_lock
);
1007 file
->private_data
= ctx
;
1008 if (!i
->i_openers
++)
1009 ctx
->signal1
= inode
->i_mapping
;
1010 mutex_unlock(&ctx
->mapping_lock
);
1011 return nonseekable_open(inode
, file
);
1015 spufs_signal1_release(struct inode
*inode
, struct file
*file
)
1017 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1018 struct spu_context
*ctx
= i
->i_ctx
;
1020 mutex_lock(&ctx
->mapping_lock
);
1021 if (!--i
->i_openers
)
1022 ctx
->signal1
= NULL
;
1023 mutex_unlock(&ctx
->mapping_lock
);
1027 static ssize_t
__spufs_signal1_read(struct spu_context
*ctx
, char __user
*buf
,
1028 size_t len
, loff_t
*pos
)
1036 if (ctx
->csa
.spu_chnlcnt_RW
[3]) {
1037 data
= ctx
->csa
.spu_chnldata_RW
[3];
1044 if (copy_to_user(buf
, &data
, 4))
1051 static ssize_t
spufs_signal1_read(struct file
*file
, char __user
*buf
,
1052 size_t len
, loff_t
*pos
)
1055 struct spu_context
*ctx
= file
->private_data
;
1057 ret
= spu_acquire_saved(ctx
);
1060 ret
= __spufs_signal1_read(ctx
, buf
, len
, pos
);
1061 spu_release_saved(ctx
);
1066 static ssize_t
spufs_signal1_write(struct file
*file
, const char __user
*buf
,
1067 size_t len
, loff_t
*pos
)
1069 struct spu_context
*ctx
;
1073 ctx
= file
->private_data
;
1078 if (copy_from_user(&data
, buf
, 4))
1081 ret
= spu_acquire(ctx
);
1084 ctx
->ops
->signal1_write(ctx
, data
);
1090 static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct
*vma
,
1091 unsigned long address
)
1093 #if PAGE_SIZE == 0x1000
1094 return spufs_ps_nopfn(vma
, address
, 0x14000, 0x1000);
1095 #elif PAGE_SIZE == 0x10000
1096 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1097 * signal 1 and 2 area
1099 return spufs_ps_nopfn(vma
, address
, 0x10000, 0x10000);
1101 #error unsupported page size
1105 static struct vm_operations_struct spufs_signal1_mmap_vmops
= {
1106 .nopfn
= spufs_signal1_mmap_nopfn
,
1109 static int spufs_signal1_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1111 if (!(vma
->vm_flags
& VM_SHARED
))
1114 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1115 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
1116 | _PAGE_NO_CACHE
| _PAGE_GUARDED
);
1118 vma
->vm_ops
= &spufs_signal1_mmap_vmops
;
1122 static const struct file_operations spufs_signal1_fops
= {
1123 .open
= spufs_signal1_open
,
1124 .release
= spufs_signal1_release
,
1125 .read
= spufs_signal1_read
,
1126 .write
= spufs_signal1_write
,
1127 .mmap
= spufs_signal1_mmap
,
1130 static const struct file_operations spufs_signal1_nosched_fops
= {
1131 .open
= spufs_signal1_open
,
1132 .release
= spufs_signal1_release
,
1133 .write
= spufs_signal1_write
,
1134 .mmap
= spufs_signal1_mmap
,
1137 static int spufs_signal2_open(struct inode
*inode
, struct file
*file
)
1139 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1140 struct spu_context
*ctx
= i
->i_ctx
;
1142 mutex_lock(&ctx
->mapping_lock
);
1143 file
->private_data
= ctx
;
1144 if (!i
->i_openers
++)
1145 ctx
->signal2
= inode
->i_mapping
;
1146 mutex_unlock(&ctx
->mapping_lock
);
1147 return nonseekable_open(inode
, file
);
1151 spufs_signal2_release(struct inode
*inode
, struct file
*file
)
1153 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1154 struct spu_context
*ctx
= i
->i_ctx
;
1156 mutex_lock(&ctx
->mapping_lock
);
1157 if (!--i
->i_openers
)
1158 ctx
->signal2
= NULL
;
1159 mutex_unlock(&ctx
->mapping_lock
);
1163 static ssize_t
__spufs_signal2_read(struct spu_context
*ctx
, char __user
*buf
,
1164 size_t len
, loff_t
*pos
)
1172 if (ctx
->csa
.spu_chnlcnt_RW
[4]) {
1173 data
= ctx
->csa
.spu_chnldata_RW
[4];
1180 if (copy_to_user(buf
, &data
, 4))
1187 static ssize_t
spufs_signal2_read(struct file
*file
, char __user
*buf
,
1188 size_t len
, loff_t
*pos
)
1190 struct spu_context
*ctx
= file
->private_data
;
1193 ret
= spu_acquire_saved(ctx
);
1196 ret
= __spufs_signal2_read(ctx
, buf
, len
, pos
);
1197 spu_release_saved(ctx
);
1202 static ssize_t
spufs_signal2_write(struct file
*file
, const char __user
*buf
,
1203 size_t len
, loff_t
*pos
)
1205 struct spu_context
*ctx
;
1209 ctx
= file
->private_data
;
1214 if (copy_from_user(&data
, buf
, 4))
1217 ret
= spu_acquire(ctx
);
1220 ctx
->ops
->signal2_write(ctx
, data
);
1227 static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct
*vma
,
1228 unsigned long address
)
1230 #if PAGE_SIZE == 0x1000
1231 return spufs_ps_nopfn(vma
, address
, 0x1c000, 0x1000);
1232 #elif PAGE_SIZE == 0x10000
1233 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1234 * signal 1 and 2 area
1236 return spufs_ps_nopfn(vma
, address
, 0x10000, 0x10000);
1238 #error unsupported page size
1242 static struct vm_operations_struct spufs_signal2_mmap_vmops
= {
1243 .nopfn
= spufs_signal2_mmap_nopfn
,
1246 static int spufs_signal2_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1248 if (!(vma
->vm_flags
& VM_SHARED
))
1251 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1252 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
1253 | _PAGE_NO_CACHE
| _PAGE_GUARDED
);
1255 vma
->vm_ops
= &spufs_signal2_mmap_vmops
;
1258 #else /* SPUFS_MMAP_4K */
1259 #define spufs_signal2_mmap NULL
1260 #endif /* !SPUFS_MMAP_4K */
1262 static const struct file_operations spufs_signal2_fops
= {
1263 .open
= spufs_signal2_open
,
1264 .release
= spufs_signal2_release
,
1265 .read
= spufs_signal2_read
,
1266 .write
= spufs_signal2_write
,
1267 .mmap
= spufs_signal2_mmap
,
1270 static const struct file_operations spufs_signal2_nosched_fops
= {
1271 .open
= spufs_signal2_open
,
1272 .release
= spufs_signal2_release
,
1273 .write
= spufs_signal2_write
,
1274 .mmap
= spufs_signal2_mmap
,
1278 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1279 * work of acquiring (or not) the SPU context before calling through
1280 * to the actual get routine. The set routine is called directly.
1282 #define SPU_ATTR_NOACQUIRE 0
1283 #define SPU_ATTR_ACQUIRE 1
1284 #define SPU_ATTR_ACQUIRE_SAVED 2
1286 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1287 static int __##__get(void *data, u64 *val) \
1289 struct spu_context *ctx = data; \
1292 if (__acquire == SPU_ATTR_ACQUIRE) { \
1293 ret = spu_acquire(ctx); \
1296 *val = __get(ctx); \
1298 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1299 ret = spu_acquire_saved(ctx); \
1302 *val = __get(ctx); \
1303 spu_release_saved(ctx); \
1305 *val = __get(ctx); \
1309 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1311 static int spufs_signal1_type_set(void *data
, u64 val
)
1313 struct spu_context
*ctx
= data
;
1316 ret
= spu_acquire(ctx
);
1319 ctx
->ops
->signal1_type_set(ctx
, val
);
1325 static u64
spufs_signal1_type_get(struct spu_context
*ctx
)
1327 return ctx
->ops
->signal1_type_get(ctx
);
1329 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type
, spufs_signal1_type_get
,
1330 spufs_signal1_type_set
, "%llu", SPU_ATTR_ACQUIRE
);
1333 static int spufs_signal2_type_set(void *data
, u64 val
)
1335 struct spu_context
*ctx
= data
;
1338 ret
= spu_acquire(ctx
);
1341 ctx
->ops
->signal2_type_set(ctx
, val
);
1347 static u64
spufs_signal2_type_get(struct spu_context
*ctx
)
1349 return ctx
->ops
->signal2_type_get(ctx
);
1351 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type
, spufs_signal2_type_get
,
1352 spufs_signal2_type_set
, "%llu", SPU_ATTR_ACQUIRE
);
1355 static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct
*vma
,
1356 unsigned long address
)
1358 return spufs_ps_nopfn(vma
, address
, 0x0000, 0x1000);
1361 static struct vm_operations_struct spufs_mss_mmap_vmops
= {
1362 .nopfn
= spufs_mss_mmap_nopfn
,
1366 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1368 static int spufs_mss_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1370 if (!(vma
->vm_flags
& VM_SHARED
))
1373 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1374 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
1375 | _PAGE_NO_CACHE
| _PAGE_GUARDED
);
1377 vma
->vm_ops
= &spufs_mss_mmap_vmops
;
1380 #else /* SPUFS_MMAP_4K */
1381 #define spufs_mss_mmap NULL
1382 #endif /* !SPUFS_MMAP_4K */
1384 static int spufs_mss_open(struct inode
*inode
, struct file
*file
)
1386 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1387 struct spu_context
*ctx
= i
->i_ctx
;
1389 file
->private_data
= i
->i_ctx
;
1391 mutex_lock(&ctx
->mapping_lock
);
1392 if (!i
->i_openers
++)
1393 ctx
->mss
= inode
->i_mapping
;
1394 mutex_unlock(&ctx
->mapping_lock
);
1395 return nonseekable_open(inode
, file
);
1399 spufs_mss_release(struct inode
*inode
, struct file
*file
)
1401 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1402 struct spu_context
*ctx
= i
->i_ctx
;
1404 mutex_lock(&ctx
->mapping_lock
);
1405 if (!--i
->i_openers
)
1407 mutex_unlock(&ctx
->mapping_lock
);
1411 static const struct file_operations spufs_mss_fops
= {
1412 .open
= spufs_mss_open
,
1413 .release
= spufs_mss_release
,
1414 .mmap
= spufs_mss_mmap
,
1417 static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct
*vma
,
1418 unsigned long address
)
1420 return spufs_ps_nopfn(vma
, address
, 0x0000, 0x20000);
1423 static struct vm_operations_struct spufs_psmap_mmap_vmops
= {
1424 .nopfn
= spufs_psmap_mmap_nopfn
,
1428 * mmap support for full problem state area [0x00000 - 0x1ffff].
1430 static int spufs_psmap_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1432 if (!(vma
->vm_flags
& VM_SHARED
))
1435 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1436 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
1437 | _PAGE_NO_CACHE
| _PAGE_GUARDED
);
1439 vma
->vm_ops
= &spufs_psmap_mmap_vmops
;
1443 static int spufs_psmap_open(struct inode
*inode
, struct file
*file
)
1445 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1446 struct spu_context
*ctx
= i
->i_ctx
;
1448 mutex_lock(&ctx
->mapping_lock
);
1449 file
->private_data
= i
->i_ctx
;
1450 if (!i
->i_openers
++)
1451 ctx
->psmap
= inode
->i_mapping
;
1452 mutex_unlock(&ctx
->mapping_lock
);
1453 return nonseekable_open(inode
, file
);
1457 spufs_psmap_release(struct inode
*inode
, struct file
*file
)
1459 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1460 struct spu_context
*ctx
= i
->i_ctx
;
1462 mutex_lock(&ctx
->mapping_lock
);
1463 if (!--i
->i_openers
)
1465 mutex_unlock(&ctx
->mapping_lock
);
1469 static const struct file_operations spufs_psmap_fops
= {
1470 .open
= spufs_psmap_open
,
1471 .release
= spufs_psmap_release
,
1472 .mmap
= spufs_psmap_mmap
,
1477 static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct
*vma
,
1478 unsigned long address
)
1480 return spufs_ps_nopfn(vma
, address
, 0x3000, 0x1000);
1483 static struct vm_operations_struct spufs_mfc_mmap_vmops
= {
1484 .nopfn
= spufs_mfc_mmap_nopfn
,
1488 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1490 static int spufs_mfc_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1492 if (!(vma
->vm_flags
& VM_SHARED
))
1495 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1496 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
1497 | _PAGE_NO_CACHE
| _PAGE_GUARDED
);
1499 vma
->vm_ops
= &spufs_mfc_mmap_vmops
;
1502 #else /* SPUFS_MMAP_4K */
1503 #define spufs_mfc_mmap NULL
1504 #endif /* !SPUFS_MMAP_4K */
1506 static int spufs_mfc_open(struct inode
*inode
, struct file
*file
)
1508 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1509 struct spu_context
*ctx
= i
->i_ctx
;
1511 /* we don't want to deal with DMA into other processes */
1512 if (ctx
->owner
!= current
->mm
)
1515 if (atomic_read(&inode
->i_count
) != 1)
1518 mutex_lock(&ctx
->mapping_lock
);
1519 file
->private_data
= ctx
;
1520 if (!i
->i_openers
++)
1521 ctx
->mfc
= inode
->i_mapping
;
1522 mutex_unlock(&ctx
->mapping_lock
);
1523 return nonseekable_open(inode
, file
);
1527 spufs_mfc_release(struct inode
*inode
, struct file
*file
)
1529 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1530 struct spu_context
*ctx
= i
->i_ctx
;
1532 mutex_lock(&ctx
->mapping_lock
);
1533 if (!--i
->i_openers
)
1535 mutex_unlock(&ctx
->mapping_lock
);
1539 /* interrupt-level mfc callback function. */
1540 void spufs_mfc_callback(struct spu
*spu
)
1542 struct spu_context
*ctx
= spu
->ctx
;
1547 wake_up_all(&ctx
->mfc_wq
);
1549 pr_debug("%s %s\n", __FUNCTION__
, spu
->name
);
1550 if (ctx
->mfc_fasync
) {
1551 u32 free_elements
, tagstatus
;
1554 /* no need for spu_acquire in interrupt context */
1555 free_elements
= ctx
->ops
->get_mfc_free_elements(ctx
);
1556 tagstatus
= ctx
->ops
->read_mfc_tagstatus(ctx
);
1559 if (free_elements
& 0xffff)
1561 if (tagstatus
& ctx
->tagwait
)
1564 kill_fasync(&ctx
->mfc_fasync
, SIGIO
, mask
);
1568 static int spufs_read_mfc_tagstatus(struct spu_context
*ctx
, u32
*status
)
1570 /* See if there is one tag group is complete */
1571 /* FIXME we need locking around tagwait */
1572 *status
= ctx
->ops
->read_mfc_tagstatus(ctx
) & ctx
->tagwait
;
1573 ctx
->tagwait
&= ~*status
;
1577 /* enable interrupt waiting for any tag group,
1578 may silently fail if interrupts are already enabled */
1579 ctx
->ops
->set_mfc_query(ctx
, ctx
->tagwait
, 1);
1583 static ssize_t
spufs_mfc_read(struct file
*file
, char __user
*buffer
,
1584 size_t size
, loff_t
*pos
)
1586 struct spu_context
*ctx
= file
->private_data
;
1593 ret
= spu_acquire(ctx
);
1598 if (file
->f_flags
& O_NONBLOCK
) {
1599 status
= ctx
->ops
->read_mfc_tagstatus(ctx
);
1600 if (!(status
& ctx
->tagwait
))
1603 /* XXX(hch): shouldn't we clear ret here? */
1604 ctx
->tagwait
&= ~status
;
1606 ret
= spufs_wait(ctx
->mfc_wq
,
1607 spufs_read_mfc_tagstatus(ctx
, &status
));
1614 if (copy_to_user(buffer
, &status
, 4))
1621 static int spufs_check_valid_dma(struct mfc_dma_command
*cmd
)
1623 pr_debug("queueing DMA %x %lx %x %x %x\n", cmd
->lsa
,
1624 cmd
->ea
, cmd
->size
, cmd
->tag
, cmd
->cmd
);
1635 pr_debug("invalid DMA opcode %x\n", cmd
->cmd
);
1639 if ((cmd
->lsa
& 0xf) != (cmd
->ea
&0xf)) {
1640 pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1645 switch (cmd
->size
& 0xf) {
1666 pr_debug("invalid DMA alignment %x for size %x\n",
1667 cmd
->lsa
& 0xf, cmd
->size
);
1671 if (cmd
->size
> 16 * 1024) {
1672 pr_debug("invalid DMA size %x\n", cmd
->size
);
1676 if (cmd
->tag
& 0xfff0) {
1677 /* we reserve the higher tag numbers for kernel use */
1678 pr_debug("invalid DMA tag\n");
1683 /* not supported in this version */
1684 pr_debug("invalid DMA class\n");
1691 static int spu_send_mfc_command(struct spu_context
*ctx
,
1692 struct mfc_dma_command cmd
,
1695 *error
= ctx
->ops
->send_mfc_command(ctx
, &cmd
);
1696 if (*error
== -EAGAIN
) {
1697 /* wait for any tag group to complete
1698 so we have space for the new command */
1699 ctx
->ops
->set_mfc_query(ctx
, ctx
->tagwait
, 1);
1700 /* try again, because the queue might be
1702 *error
= ctx
->ops
->send_mfc_command(ctx
, &cmd
);
1703 if (*error
== -EAGAIN
)
1709 static ssize_t
spufs_mfc_write(struct file
*file
, const char __user
*buffer
,
1710 size_t size
, loff_t
*pos
)
1712 struct spu_context
*ctx
= file
->private_data
;
1713 struct mfc_dma_command cmd
;
1716 if (size
!= sizeof cmd
)
1720 if (copy_from_user(&cmd
, buffer
, sizeof cmd
))
1723 ret
= spufs_check_valid_dma(&cmd
);
1727 ret
= spu_acquire(ctx
);
1731 ret
= spufs_wait(ctx
->run_wq
, ctx
->state
== SPU_STATE_RUNNABLE
);
1735 if (file
->f_flags
& O_NONBLOCK
) {
1736 ret
= ctx
->ops
->send_mfc_command(ctx
, &cmd
);
1739 ret
= spufs_wait(ctx
->mfc_wq
,
1740 spu_send_mfc_command(ctx
, cmd
, &status
));
1750 ctx
->tagwait
|= 1 << cmd
.tag
;
1759 static unsigned int spufs_mfc_poll(struct file
*file
,poll_table
*wait
)
1761 struct spu_context
*ctx
= file
->private_data
;
1762 u32 free_elements
, tagstatus
;
1765 poll_wait(file
, &ctx
->mfc_wq
, wait
);
1768 * For now keep this uninterruptible and also ignore the rule
1769 * that poll should not sleep. Will be fixed later.
1771 mutex_lock(&ctx
->state_mutex
);
1772 ctx
->ops
->set_mfc_query(ctx
, ctx
->tagwait
, 2);
1773 free_elements
= ctx
->ops
->get_mfc_free_elements(ctx
);
1774 tagstatus
= ctx
->ops
->read_mfc_tagstatus(ctx
);
1778 if (free_elements
& 0xffff)
1779 mask
|= POLLOUT
| POLLWRNORM
;
1780 if (tagstatus
& ctx
->tagwait
)
1781 mask
|= POLLIN
| POLLRDNORM
;
1783 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__
,
1784 free_elements
, tagstatus
, ctx
->tagwait
);
1789 static int spufs_mfc_flush(struct file
*file
, fl_owner_t id
)
1791 struct spu_context
*ctx
= file
->private_data
;
1794 ret
= spu_acquire(ctx
);
1798 /* this currently hangs */
1799 ret
= spufs_wait(ctx
->mfc_wq
,
1800 ctx
->ops
->set_mfc_query(ctx
, ctx
->tagwait
, 2));
1803 ret
= spufs_wait(ctx
->mfc_wq
,
1804 ctx
->ops
->read_mfc_tagstatus(ctx
) == ctx
->tagwait
);
1815 static int spufs_mfc_fsync(struct file
*file
, struct dentry
*dentry
,
1818 return spufs_mfc_flush(file
, NULL
);
1821 static int spufs_mfc_fasync(int fd
, struct file
*file
, int on
)
1823 struct spu_context
*ctx
= file
->private_data
;
1825 return fasync_helper(fd
, file
, on
, &ctx
->mfc_fasync
);
1828 static const struct file_operations spufs_mfc_fops
= {
1829 .open
= spufs_mfc_open
,
1830 .release
= spufs_mfc_release
,
1831 .read
= spufs_mfc_read
,
1832 .write
= spufs_mfc_write
,
1833 .poll
= spufs_mfc_poll
,
1834 .flush
= spufs_mfc_flush
,
1835 .fsync
= spufs_mfc_fsync
,
1836 .fasync
= spufs_mfc_fasync
,
1837 .mmap
= spufs_mfc_mmap
,
1840 static int spufs_npc_set(void *data
, u64 val
)
1842 struct spu_context
*ctx
= data
;
1845 ret
= spu_acquire(ctx
);
1848 ctx
->ops
->npc_write(ctx
, val
);
1854 static u64
spufs_npc_get(struct spu_context
*ctx
)
1856 return ctx
->ops
->npc_read(ctx
);
1858 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops
, spufs_npc_get
, spufs_npc_set
,
1859 "0x%llx\n", SPU_ATTR_ACQUIRE
);
1861 static int spufs_decr_set(void *data
, u64 val
)
1863 struct spu_context
*ctx
= data
;
1864 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1867 ret
= spu_acquire_saved(ctx
);
1870 lscsa
->decr
.slot
[0] = (u32
) val
;
1871 spu_release_saved(ctx
);
1876 static u64
spufs_decr_get(struct spu_context
*ctx
)
1878 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1879 return lscsa
->decr
.slot
[0];
1881 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops
, spufs_decr_get
, spufs_decr_set
,
1882 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED
);
1884 static int spufs_decr_status_set(void *data
, u64 val
)
1886 struct spu_context
*ctx
= data
;
1889 ret
= spu_acquire_saved(ctx
);
1893 ctx
->csa
.priv2
.mfc_control_RW
|= MFC_CNTL_DECREMENTER_RUNNING
;
1895 ctx
->csa
.priv2
.mfc_control_RW
&= ~MFC_CNTL_DECREMENTER_RUNNING
;
1896 spu_release_saved(ctx
);
1901 static u64
spufs_decr_status_get(struct spu_context
*ctx
)
1903 if (ctx
->csa
.priv2
.mfc_control_RW
& MFC_CNTL_DECREMENTER_RUNNING
)
1904 return SPU_DECR_STATUS_RUNNING
;
1908 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops
, spufs_decr_status_get
,
1909 spufs_decr_status_set
, "0x%llx\n",
1910 SPU_ATTR_ACQUIRE_SAVED
);
1912 static int spufs_event_mask_set(void *data
, u64 val
)
1914 struct spu_context
*ctx
= data
;
1915 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1918 ret
= spu_acquire_saved(ctx
);
1921 lscsa
->event_mask
.slot
[0] = (u32
) val
;
1922 spu_release_saved(ctx
);
1927 static u64
spufs_event_mask_get(struct spu_context
*ctx
)
1929 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1930 return lscsa
->event_mask
.slot
[0];
1933 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops
, spufs_event_mask_get
,
1934 spufs_event_mask_set
, "0x%llx\n",
1935 SPU_ATTR_ACQUIRE_SAVED
);
1937 static u64
spufs_event_status_get(struct spu_context
*ctx
)
1939 struct spu_state
*state
= &ctx
->csa
;
1941 stat
= state
->spu_chnlcnt_RW
[0];
1943 return state
->spu_chnldata_RW
[0];
1946 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops
, spufs_event_status_get
,
1947 NULL
, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED
)
1949 static int spufs_srr0_set(void *data
, u64 val
)
1951 struct spu_context
*ctx
= data
;
1952 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1955 ret
= spu_acquire_saved(ctx
);
1958 lscsa
->srr0
.slot
[0] = (u32
) val
;
1959 spu_release_saved(ctx
);
1964 static u64
spufs_srr0_get(struct spu_context
*ctx
)
1966 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1967 return lscsa
->srr0
.slot
[0];
1969 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops
, spufs_srr0_get
, spufs_srr0_set
,
1970 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED
)
1972 static u64
spufs_id_get(struct spu_context
*ctx
)
1976 if (ctx
->state
== SPU_STATE_RUNNABLE
)
1977 num
= ctx
->spu
->number
;
1979 num
= (unsigned int)-1;
1983 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops
, spufs_id_get
, NULL
, "0x%llx\n",
1986 static u64
spufs_object_id_get(struct spu_context
*ctx
)
1988 /* FIXME: Should there really be no locking here? */
1989 return ctx
->object_id
;
1992 static int spufs_object_id_set(void *data
, u64 id
)
1994 struct spu_context
*ctx
= data
;
1995 ctx
->object_id
= id
;
2000 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops
, spufs_object_id_get
,
2001 spufs_object_id_set
, "0x%llx\n", SPU_ATTR_NOACQUIRE
);
2003 static u64
spufs_lslr_get(struct spu_context
*ctx
)
2005 return ctx
->csa
.priv2
.spu_lslr_RW
;
2007 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops
, spufs_lslr_get
, NULL
, "0x%llx\n",
2008 SPU_ATTR_ACQUIRE_SAVED
);
2010 static int spufs_info_open(struct inode
*inode
, struct file
*file
)
2012 struct spufs_inode_info
*i
= SPUFS_I(inode
);
2013 struct spu_context
*ctx
= i
->i_ctx
;
2014 file
->private_data
= ctx
;
2018 static int spufs_caps_show(struct seq_file
*s
, void *private)
2020 struct spu_context
*ctx
= s
->private;
2022 if (!(ctx
->flags
& SPU_CREATE_NOSCHED
))
2023 seq_puts(s
, "sched\n");
2024 if (!(ctx
->flags
& SPU_CREATE_ISOLATE
))
2025 seq_puts(s
, "step\n");
2029 static int spufs_caps_open(struct inode
*inode
, struct file
*file
)
2031 return single_open(file
, spufs_caps_show
, SPUFS_I(inode
)->i_ctx
);
2034 static const struct file_operations spufs_caps_fops
= {
2035 .open
= spufs_caps_open
,
2037 .llseek
= seq_lseek
,
2038 .release
= single_release
,
2041 static ssize_t
__spufs_mbox_info_read(struct spu_context
*ctx
,
2042 char __user
*buf
, size_t len
, loff_t
*pos
)
2046 /* EOF if there's no entry in the mbox */
2047 if (!(ctx
->csa
.prob
.mb_stat_R
& 0x0000ff))
2050 data
= ctx
->csa
.prob
.pu_mb_R
;
2052 return simple_read_from_buffer(buf
, len
, pos
, &data
, sizeof data
);
2055 static ssize_t
spufs_mbox_info_read(struct file
*file
, char __user
*buf
,
2056 size_t len
, loff_t
*pos
)
2059 struct spu_context
*ctx
= file
->private_data
;
2061 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2064 ret
= spu_acquire_saved(ctx
);
2067 spin_lock(&ctx
->csa
.register_lock
);
2068 ret
= __spufs_mbox_info_read(ctx
, buf
, len
, pos
);
2069 spin_unlock(&ctx
->csa
.register_lock
);
2070 spu_release_saved(ctx
);
2075 static const struct file_operations spufs_mbox_info_fops
= {
2076 .open
= spufs_info_open
,
2077 .read
= spufs_mbox_info_read
,
2078 .llseek
= generic_file_llseek
,
2081 static ssize_t
__spufs_ibox_info_read(struct spu_context
*ctx
,
2082 char __user
*buf
, size_t len
, loff_t
*pos
)
2086 /* EOF if there's no entry in the ibox */
2087 if (!(ctx
->csa
.prob
.mb_stat_R
& 0xff0000))
2090 data
= ctx
->csa
.priv2
.puint_mb_R
;
2092 return simple_read_from_buffer(buf
, len
, pos
, &data
, sizeof data
);
2095 static ssize_t
spufs_ibox_info_read(struct file
*file
, char __user
*buf
,
2096 size_t len
, loff_t
*pos
)
2098 struct spu_context
*ctx
= file
->private_data
;
2101 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2104 ret
= spu_acquire_saved(ctx
);
2107 spin_lock(&ctx
->csa
.register_lock
);
2108 ret
= __spufs_ibox_info_read(ctx
, buf
, len
, pos
);
2109 spin_unlock(&ctx
->csa
.register_lock
);
2110 spu_release_saved(ctx
);
2115 static const struct file_operations spufs_ibox_info_fops
= {
2116 .open
= spufs_info_open
,
2117 .read
= spufs_ibox_info_read
,
2118 .llseek
= generic_file_llseek
,
2121 static ssize_t
__spufs_wbox_info_read(struct spu_context
*ctx
,
2122 char __user
*buf
, size_t len
, loff_t
*pos
)
2128 wbox_stat
= ctx
->csa
.prob
.mb_stat_R
;
2129 cnt
= 4 - ((wbox_stat
& 0x00ff00) >> 8);
2130 for (i
= 0; i
< cnt
; i
++) {
2131 data
[i
] = ctx
->csa
.spu_mailbox_data
[i
];
2134 return simple_read_from_buffer(buf
, len
, pos
, &data
,
2138 static ssize_t
spufs_wbox_info_read(struct file
*file
, char __user
*buf
,
2139 size_t len
, loff_t
*pos
)
2141 struct spu_context
*ctx
= file
->private_data
;
2144 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2147 ret
= spu_acquire_saved(ctx
);
2150 spin_lock(&ctx
->csa
.register_lock
);
2151 ret
= __spufs_wbox_info_read(ctx
, buf
, len
, pos
);
2152 spin_unlock(&ctx
->csa
.register_lock
);
2153 spu_release_saved(ctx
);
2158 static const struct file_operations spufs_wbox_info_fops
= {
2159 .open
= spufs_info_open
,
2160 .read
= spufs_wbox_info_read
,
2161 .llseek
= generic_file_llseek
,
2164 static ssize_t
__spufs_dma_info_read(struct spu_context
*ctx
,
2165 char __user
*buf
, size_t len
, loff_t
*pos
)
2167 struct spu_dma_info info
;
2168 struct mfc_cq_sr
*qp
, *spuqp
;
2171 info
.dma_info_type
= ctx
->csa
.priv2
.spu_tag_status_query_RW
;
2172 info
.dma_info_mask
= ctx
->csa
.lscsa
->tag_mask
.slot
[0];
2173 info
.dma_info_status
= ctx
->csa
.spu_chnldata_RW
[24];
2174 info
.dma_info_stall_and_notify
= ctx
->csa
.spu_chnldata_RW
[25];
2175 info
.dma_info_atomic_command_status
= ctx
->csa
.spu_chnldata_RW
[27];
2176 for (i
= 0; i
< 16; i
++) {
2177 qp
= &info
.dma_info_command_data
[i
];
2178 spuqp
= &ctx
->csa
.priv2
.spuq
[i
];
2180 qp
->mfc_cq_data0_RW
= spuqp
->mfc_cq_data0_RW
;
2181 qp
->mfc_cq_data1_RW
= spuqp
->mfc_cq_data1_RW
;
2182 qp
->mfc_cq_data2_RW
= spuqp
->mfc_cq_data2_RW
;
2183 qp
->mfc_cq_data3_RW
= spuqp
->mfc_cq_data3_RW
;
2186 return simple_read_from_buffer(buf
, len
, pos
, &info
,
2190 static ssize_t
spufs_dma_info_read(struct file
*file
, char __user
*buf
,
2191 size_t len
, loff_t
*pos
)
2193 struct spu_context
*ctx
= file
->private_data
;
2196 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2199 ret
= spu_acquire_saved(ctx
);
2202 spin_lock(&ctx
->csa
.register_lock
);
2203 ret
= __spufs_dma_info_read(ctx
, buf
, len
, pos
);
2204 spin_unlock(&ctx
->csa
.register_lock
);
2205 spu_release_saved(ctx
);
2210 static const struct file_operations spufs_dma_info_fops
= {
2211 .open
= spufs_info_open
,
2212 .read
= spufs_dma_info_read
,
2215 static ssize_t
__spufs_proxydma_info_read(struct spu_context
*ctx
,
2216 char __user
*buf
, size_t len
, loff_t
*pos
)
2218 struct spu_proxydma_info info
;
2219 struct mfc_cq_sr
*qp
, *puqp
;
2220 int ret
= sizeof info
;
2226 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2229 info
.proxydma_info_type
= ctx
->csa
.prob
.dma_querytype_RW
;
2230 info
.proxydma_info_mask
= ctx
->csa
.prob
.dma_querymask_RW
;
2231 info
.proxydma_info_status
= ctx
->csa
.prob
.dma_tagstatus_R
;
2232 for (i
= 0; i
< 8; i
++) {
2233 qp
= &info
.proxydma_info_command_data
[i
];
2234 puqp
= &ctx
->csa
.priv2
.puq
[i
];
2236 qp
->mfc_cq_data0_RW
= puqp
->mfc_cq_data0_RW
;
2237 qp
->mfc_cq_data1_RW
= puqp
->mfc_cq_data1_RW
;
2238 qp
->mfc_cq_data2_RW
= puqp
->mfc_cq_data2_RW
;
2239 qp
->mfc_cq_data3_RW
= puqp
->mfc_cq_data3_RW
;
2242 return simple_read_from_buffer(buf
, len
, pos
, &info
,
2246 static ssize_t
spufs_proxydma_info_read(struct file
*file
, char __user
*buf
,
2247 size_t len
, loff_t
*pos
)
2249 struct spu_context
*ctx
= file
->private_data
;
2252 ret
= spu_acquire_saved(ctx
);
2255 spin_lock(&ctx
->csa
.register_lock
);
2256 ret
= __spufs_proxydma_info_read(ctx
, buf
, len
, pos
);
2257 spin_unlock(&ctx
->csa
.register_lock
);
2258 spu_release_saved(ctx
);
2263 static const struct file_operations spufs_proxydma_info_fops
= {
2264 .open
= spufs_info_open
,
2265 .read
= spufs_proxydma_info_read
,
2268 static int spufs_show_tid(struct seq_file
*s
, void *private)
2270 struct spu_context
*ctx
= s
->private;
2272 seq_printf(s
, "%d\n", ctx
->tid
);
2276 static int spufs_tid_open(struct inode
*inode
, struct file
*file
)
2278 return single_open(file
, spufs_show_tid
, SPUFS_I(inode
)->i_ctx
);
2281 static const struct file_operations spufs_tid_fops
= {
2282 .open
= spufs_tid_open
,
2284 .llseek
= seq_lseek
,
2285 .release
= single_release
,
2288 static const char *ctx_state_names
[] = {
2289 "user", "system", "iowait", "loaded"
2292 static unsigned long long spufs_acct_time(struct spu_context
*ctx
,
2293 enum spu_utilization_state state
)
2296 unsigned long long time
= ctx
->stats
.times
[state
];
2299 * In general, utilization statistics are updated by the controlling
2300 * thread as the spu context moves through various well defined
2301 * state transitions, but if the context is lazily loaded its
2302 * utilization statistics are not updated as the controlling thread
2303 * is not tightly coupled with the execution of the spu context. We
2304 * calculate and apply the time delta from the last recorded state
2305 * of the spu context.
2307 if (ctx
->spu
&& ctx
->stats
.util_state
== state
) {
2309 time
+= timespec_to_ns(&ts
) - ctx
->stats
.tstamp
;
2312 return time
/ NSEC_PER_MSEC
;
2315 static unsigned long long spufs_slb_flts(struct spu_context
*ctx
)
2317 unsigned long long slb_flts
= ctx
->stats
.slb_flt
;
2319 if (ctx
->state
== SPU_STATE_RUNNABLE
) {
2320 slb_flts
+= (ctx
->spu
->stats
.slb_flt
-
2321 ctx
->stats
.slb_flt_base
);
2327 static unsigned long long spufs_class2_intrs(struct spu_context
*ctx
)
2329 unsigned long long class2_intrs
= ctx
->stats
.class2_intr
;
2331 if (ctx
->state
== SPU_STATE_RUNNABLE
) {
2332 class2_intrs
+= (ctx
->spu
->stats
.class2_intr
-
2333 ctx
->stats
.class2_intr_base
);
2336 return class2_intrs
;
2340 static int spufs_show_stat(struct seq_file
*s
, void *private)
2342 struct spu_context
*ctx
= s
->private;
2345 ret
= spu_acquire(ctx
);
2349 seq_printf(s
, "%s %llu %llu %llu %llu "
2350 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2351 ctx_state_names
[ctx
->stats
.util_state
],
2352 spufs_acct_time(ctx
, SPU_UTIL_USER
),
2353 spufs_acct_time(ctx
, SPU_UTIL_SYSTEM
),
2354 spufs_acct_time(ctx
, SPU_UTIL_IOWAIT
),
2355 spufs_acct_time(ctx
, SPU_UTIL_IDLE_LOADED
),
2356 ctx
->stats
.vol_ctx_switch
,
2357 ctx
->stats
.invol_ctx_switch
,
2358 spufs_slb_flts(ctx
),
2359 ctx
->stats
.hash_flt
,
2362 spufs_class2_intrs(ctx
),
2363 ctx
->stats
.libassist
);
2368 static int spufs_stat_open(struct inode
*inode
, struct file
*file
)
2370 return single_open(file
, spufs_show_stat
, SPUFS_I(inode
)->i_ctx
);
2373 static const struct file_operations spufs_stat_fops
= {
2374 .open
= spufs_stat_open
,
2376 .llseek
= seq_lseek
,
2377 .release
= single_release
,
2381 struct tree_descr spufs_dir_contents
[] = {
2382 { "capabilities", &spufs_caps_fops
, 0444, },
2383 { "mem", &spufs_mem_fops
, 0666, },
2384 { "regs", &spufs_regs_fops
, 0666, },
2385 { "mbox", &spufs_mbox_fops
, 0444, },
2386 { "ibox", &spufs_ibox_fops
, 0444, },
2387 { "wbox", &spufs_wbox_fops
, 0222, },
2388 { "mbox_stat", &spufs_mbox_stat_fops
, 0444, },
2389 { "ibox_stat", &spufs_ibox_stat_fops
, 0444, },
2390 { "wbox_stat", &spufs_wbox_stat_fops
, 0444, },
2391 { "signal1", &spufs_signal1_fops
, 0666, },
2392 { "signal2", &spufs_signal2_fops
, 0666, },
2393 { "signal1_type", &spufs_signal1_type
, 0666, },
2394 { "signal2_type", &spufs_signal2_type
, 0666, },
2395 { "cntl", &spufs_cntl_fops
, 0666, },
2396 { "fpcr", &spufs_fpcr_fops
, 0666, },
2397 { "lslr", &spufs_lslr_ops
, 0444, },
2398 { "mfc", &spufs_mfc_fops
, 0666, },
2399 { "mss", &spufs_mss_fops
, 0666, },
2400 { "npc", &spufs_npc_ops
, 0666, },
2401 { "srr0", &spufs_srr0_ops
, 0666, },
2402 { "decr", &spufs_decr_ops
, 0666, },
2403 { "decr_status", &spufs_decr_status_ops
, 0666, },
2404 { "event_mask", &spufs_event_mask_ops
, 0666, },
2405 { "event_status", &spufs_event_status_ops
, 0444, },
2406 { "psmap", &spufs_psmap_fops
, 0666, },
2407 { "phys-id", &spufs_id_ops
, 0666, },
2408 { "object-id", &spufs_object_id_ops
, 0666, },
2409 { "mbox_info", &spufs_mbox_info_fops
, 0444, },
2410 { "ibox_info", &spufs_ibox_info_fops
, 0444, },
2411 { "wbox_info", &spufs_wbox_info_fops
, 0444, },
2412 { "dma_info", &spufs_dma_info_fops
, 0444, },
2413 { "proxydma_info", &spufs_proxydma_info_fops
, 0444, },
2414 { "tid", &spufs_tid_fops
, 0444, },
2415 { "stat", &spufs_stat_fops
, 0444, },
2419 struct tree_descr spufs_dir_nosched_contents
[] = {
2420 { "capabilities", &spufs_caps_fops
, 0444, },
2421 { "mem", &spufs_mem_fops
, 0666, },
2422 { "mbox", &spufs_mbox_fops
, 0444, },
2423 { "ibox", &spufs_ibox_fops
, 0444, },
2424 { "wbox", &spufs_wbox_fops
, 0222, },
2425 { "mbox_stat", &spufs_mbox_stat_fops
, 0444, },
2426 { "ibox_stat", &spufs_ibox_stat_fops
, 0444, },
2427 { "wbox_stat", &spufs_wbox_stat_fops
, 0444, },
2428 { "signal1", &spufs_signal1_nosched_fops
, 0222, },
2429 { "signal2", &spufs_signal2_nosched_fops
, 0222, },
2430 { "signal1_type", &spufs_signal1_type
, 0666, },
2431 { "signal2_type", &spufs_signal2_type
, 0666, },
2432 { "mss", &spufs_mss_fops
, 0666, },
2433 { "mfc", &spufs_mfc_fops
, 0666, },
2434 { "cntl", &spufs_cntl_fops
, 0666, },
2435 { "npc", &spufs_npc_ops
, 0666, },
2436 { "psmap", &spufs_psmap_fops
, 0666, },
2437 { "phys-id", &spufs_id_ops
, 0666, },
2438 { "object-id", &spufs_object_id_ops
, 0666, },
2439 { "tid", &spufs_tid_fops
, 0444, },
2440 { "stat", &spufs_stat_fops
, 0444, },
2444 struct spufs_coredump_reader spufs_coredump_read
[] = {
2445 { "regs", __spufs_regs_read
, NULL
, sizeof(struct spu_reg128
[128])},
2446 { "fpcr", __spufs_fpcr_read
, NULL
, sizeof(struct spu_reg128
) },
2447 { "lslr", NULL
, spufs_lslr_get
, 19 },
2448 { "decr", NULL
, spufs_decr_get
, 19 },
2449 { "decr_status", NULL
, spufs_decr_status_get
, 19 },
2450 { "mem", __spufs_mem_read
, NULL
, LS_SIZE
, },
2451 { "signal1", __spufs_signal1_read
, NULL
, sizeof(u32
) },
2452 { "signal1_type", NULL
, spufs_signal1_type_get
, 19 },
2453 { "signal2", __spufs_signal2_read
, NULL
, sizeof(u32
) },
2454 { "signal2_type", NULL
, spufs_signal2_type_get
, 19 },
2455 { "event_mask", NULL
, spufs_event_mask_get
, 19 },
2456 { "event_status", NULL
, spufs_event_status_get
, 19 },
2457 { "mbox_info", __spufs_mbox_info_read
, NULL
, sizeof(u32
) },
2458 { "ibox_info", __spufs_ibox_info_read
, NULL
, sizeof(u32
) },
2459 { "wbox_info", __spufs_wbox_info_read
, NULL
, 4 * sizeof(u32
)},
2460 { "dma_info", __spufs_dma_info_read
, NULL
, sizeof(struct spu_dma_info
)},
2461 { "proxydma_info", __spufs_proxydma_info_read
,
2462 NULL
, sizeof(struct spu_proxydma_info
)},
2463 { "object-id", NULL
, spufs_object_id_get
, 19 },
2464 { "npc", NULL
, spufs_npc_get
, 19 },