2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
20 #include "segment_descriptor.h"
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
34 MODULE_AUTHOR("Qumranet");
35 MODULE_LICENSE("GPL");
37 static int bypass_guest_pf
= 1;
38 module_param(bypass_guest_pf
, bool, 0);
50 u32 idt_vectoring_info
;
51 struct kvm_msr_entry
*guest_msrs
;
52 struct kvm_msr_entry
*host_msrs
;
57 int msr_offset_kernel_gs_base
;
62 u16 fs_sel
, gs_sel
, ldt_sel
;
63 int gs_ldt_reload_needed
;
65 int guest_efer_loaded
;
76 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
78 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
81 static int init_rmode_tss(struct kvm
*kvm
);
83 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
84 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
86 static struct page
*vmx_io_bitmap_a
;
87 static struct page
*vmx_io_bitmap_b
;
89 static struct vmcs_config
{
93 u32 pin_based_exec_ctrl
;
94 u32 cpu_based_exec_ctrl
;
95 u32 cpu_based_2nd_exec_ctrl
;
100 #define VMX_SEGMENT_FIELD(seg) \
101 [VCPU_SREG_##seg] = { \
102 .selector = GUEST_##seg##_SELECTOR, \
103 .base = GUEST_##seg##_BASE, \
104 .limit = GUEST_##seg##_LIMIT, \
105 .ar_bytes = GUEST_##seg##_AR_BYTES, \
108 static struct kvm_vmx_segment_field
{
113 } kvm_vmx_segment_fields
[] = {
114 VMX_SEGMENT_FIELD(CS
),
115 VMX_SEGMENT_FIELD(DS
),
116 VMX_SEGMENT_FIELD(ES
),
117 VMX_SEGMENT_FIELD(FS
),
118 VMX_SEGMENT_FIELD(GS
),
119 VMX_SEGMENT_FIELD(SS
),
120 VMX_SEGMENT_FIELD(TR
),
121 VMX_SEGMENT_FIELD(LDTR
),
125 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
126 * away by decrementing the array size.
128 static const u32 vmx_msr_index
[] = {
130 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
, MSR_KERNEL_GS_BASE
,
132 MSR_EFER
, MSR_K6_STAR
,
134 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
136 static void load_msrs(struct kvm_msr_entry
*e
, int n
)
140 for (i
= 0; i
< n
; ++i
)
141 wrmsrl(e
[i
].index
, e
[i
].data
);
144 static void save_msrs(struct kvm_msr_entry
*e
, int n
)
148 for (i
= 0; i
< n
; ++i
)
149 rdmsrl(e
[i
].index
, e
[i
].data
);
152 static inline int is_page_fault(u32 intr_info
)
154 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
155 INTR_INFO_VALID_MASK
)) ==
156 (INTR_TYPE_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
159 static inline int is_no_device(u32 intr_info
)
161 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
162 INTR_INFO_VALID_MASK
)) ==
163 (INTR_TYPE_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
166 static inline int is_invalid_opcode(u32 intr_info
)
168 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
169 INTR_INFO_VALID_MASK
)) ==
170 (INTR_TYPE_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
173 static inline int is_external_interrupt(u32 intr_info
)
175 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
176 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
179 static inline int cpu_has_vmx_tpr_shadow(void)
181 return (vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
);
184 static inline int vm_need_tpr_shadow(struct kvm
*kvm
)
186 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
)));
189 static inline int cpu_has_secondary_exec_ctrls(void)
191 return (vmcs_config
.cpu_based_exec_ctrl
&
192 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
);
195 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
197 return (vmcs_config
.cpu_based_2nd_exec_ctrl
&
198 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
201 static inline int vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
203 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
204 (irqchip_in_kernel(kvm
)));
207 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
211 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
212 if (vmx
->guest_msrs
[i
].index
== msr
)
217 static struct kvm_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
221 i
= __find_msr_index(vmx
, msr
);
223 return &vmx
->guest_msrs
[i
];
227 static void vmcs_clear(struct vmcs
*vmcs
)
229 u64 phys_addr
= __pa(vmcs
);
232 asm volatile (ASM_VMX_VMCLEAR_RAX
"; setna %0"
233 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
236 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
240 static void __vcpu_clear(void *arg
)
242 struct vcpu_vmx
*vmx
= arg
;
243 int cpu
= raw_smp_processor_id();
245 if (vmx
->vcpu
.cpu
== cpu
)
246 vmcs_clear(vmx
->vmcs
);
247 if (per_cpu(current_vmcs
, cpu
) == vmx
->vmcs
)
248 per_cpu(current_vmcs
, cpu
) = NULL
;
249 rdtscll(vmx
->vcpu
.arch
.host_tsc
);
252 static void vcpu_clear(struct vcpu_vmx
*vmx
)
254 if (vmx
->vcpu
.cpu
== -1)
256 smp_call_function_single(vmx
->vcpu
.cpu
, __vcpu_clear
, vmx
, 0, 1);
260 static unsigned long vmcs_readl(unsigned long field
)
264 asm volatile (ASM_VMX_VMREAD_RDX_RAX
265 : "=a"(value
) : "d"(field
) : "cc");
269 static u16
vmcs_read16(unsigned long field
)
271 return vmcs_readl(field
);
274 static u32
vmcs_read32(unsigned long field
)
276 return vmcs_readl(field
);
279 static u64
vmcs_read64(unsigned long field
)
282 return vmcs_readl(field
);
284 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
288 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
290 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
291 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
295 static void vmcs_writel(unsigned long field
, unsigned long value
)
299 asm volatile (ASM_VMX_VMWRITE_RAX_RDX
"; setna %0"
300 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
302 vmwrite_error(field
, value
);
305 static void vmcs_write16(unsigned long field
, u16 value
)
307 vmcs_writel(field
, value
);
310 static void vmcs_write32(unsigned long field
, u32 value
)
312 vmcs_writel(field
, value
);
315 static void vmcs_write64(unsigned long field
, u64 value
)
318 vmcs_writel(field
, value
);
320 vmcs_writel(field
, value
);
322 vmcs_writel(field
+1, value
>> 32);
326 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
328 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
331 static void vmcs_set_bits(unsigned long field
, u32 mask
)
333 vmcs_writel(field
, vmcs_readl(field
) | mask
);
336 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
340 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
);
341 if (!vcpu
->fpu_active
)
342 eb
|= 1u << NM_VECTOR
;
343 if (vcpu
->guest_debug
.enabled
)
345 if (vcpu
->arch
.rmode
.active
)
347 vmcs_write32(EXCEPTION_BITMAP
, eb
);
350 static void reload_tss(void)
352 #ifndef CONFIG_X86_64
355 * VT restores TR but not its size. Useless.
357 struct descriptor_table gdt
;
358 struct segment_descriptor
*descs
;
361 descs
= (void *)gdt
.base
;
362 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
367 static void load_transition_efer(struct vcpu_vmx
*vmx
)
369 int efer_offset
= vmx
->msr_offset_efer
;
370 u64 host_efer
= vmx
->host_msrs
[efer_offset
].data
;
371 u64 guest_efer
= vmx
->guest_msrs
[efer_offset
].data
;
377 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
380 ignore_bits
= EFER_NX
| EFER_SCE
;
382 ignore_bits
|= EFER_LMA
| EFER_LME
;
383 /* SCE is meaningful only in long mode on Intel */
384 if (guest_efer
& EFER_LMA
)
385 ignore_bits
&= ~(u64
)EFER_SCE
;
387 if ((guest_efer
& ~ignore_bits
) == (host_efer
& ~ignore_bits
))
390 vmx
->host_state
.guest_efer_loaded
= 1;
391 guest_efer
&= ~ignore_bits
;
392 guest_efer
|= host_efer
& ignore_bits
;
393 wrmsrl(MSR_EFER
, guest_efer
);
394 vmx
->vcpu
.stat
.efer_reload
++;
397 static void reload_host_efer(struct vcpu_vmx
*vmx
)
399 if (vmx
->host_state
.guest_efer_loaded
) {
400 vmx
->host_state
.guest_efer_loaded
= 0;
401 load_msrs(vmx
->host_msrs
+ vmx
->msr_offset_efer
, 1);
405 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
407 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
409 if (vmx
->host_state
.loaded
)
412 vmx
->host_state
.loaded
= 1;
414 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
415 * allow segment selectors with cpl > 0 or ti == 1.
417 vmx
->host_state
.ldt_sel
= read_ldt();
418 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
419 vmx
->host_state
.fs_sel
= read_fs();
420 if (!(vmx
->host_state
.fs_sel
& 7)) {
421 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
422 vmx
->host_state
.fs_reload_needed
= 0;
424 vmcs_write16(HOST_FS_SELECTOR
, 0);
425 vmx
->host_state
.fs_reload_needed
= 1;
427 vmx
->host_state
.gs_sel
= read_gs();
428 if (!(vmx
->host_state
.gs_sel
& 7))
429 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
431 vmcs_write16(HOST_GS_SELECTOR
, 0);
432 vmx
->host_state
.gs_ldt_reload_needed
= 1;
436 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
437 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
439 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
440 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
444 if (is_long_mode(&vmx
->vcpu
))
445 save_msrs(vmx
->host_msrs
+
446 vmx
->msr_offset_kernel_gs_base
, 1);
449 load_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
450 load_transition_efer(vmx
);
453 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
457 if (!vmx
->host_state
.loaded
)
460 ++vmx
->vcpu
.stat
.host_state_reload
;
461 vmx
->host_state
.loaded
= 0;
462 if (vmx
->host_state
.fs_reload_needed
)
463 load_fs(vmx
->host_state
.fs_sel
);
464 if (vmx
->host_state
.gs_ldt_reload_needed
) {
465 load_ldt(vmx
->host_state
.ldt_sel
);
467 * If we have to reload gs, we must take care to
468 * preserve our gs base.
470 local_irq_save(flags
);
471 load_gs(vmx
->host_state
.gs_sel
);
473 wrmsrl(MSR_GS_BASE
, vmcs_readl(HOST_GS_BASE
));
475 local_irq_restore(flags
);
478 save_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
479 load_msrs(vmx
->host_msrs
, vmx
->save_nmsrs
);
480 reload_host_efer(vmx
);
484 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
485 * vcpu mutex is already taken.
487 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
489 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
490 u64 phys_addr
= __pa(vmx
->vmcs
);
493 if (vcpu
->cpu
!= cpu
) {
495 kvm_migrate_apic_timer(vcpu
);
498 if (per_cpu(current_vmcs
, cpu
) != vmx
->vmcs
) {
501 per_cpu(current_vmcs
, cpu
) = vmx
->vmcs
;
502 asm volatile (ASM_VMX_VMPTRLD_RAX
"; setna %0"
503 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
506 printk(KERN_ERR
"kvm: vmptrld %p/%llx fail\n",
507 vmx
->vmcs
, phys_addr
);
510 if (vcpu
->cpu
!= cpu
) {
511 struct descriptor_table dt
;
512 unsigned long sysenter_esp
;
516 * Linux uses per-cpu TSS and GDT, so set these when switching
519 vmcs_writel(HOST_TR_BASE
, read_tr_base()); /* 22.2.4 */
521 vmcs_writel(HOST_GDTR_BASE
, dt
.base
); /* 22.2.4 */
523 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
524 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
527 * Make sure the time stamp counter is monotonous.
530 delta
= vcpu
->arch
.host_tsc
- tsc_this
;
531 vmcs_write64(TSC_OFFSET
, vmcs_read64(TSC_OFFSET
) + delta
);
535 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
537 vmx_load_host_state(to_vmx(vcpu
));
540 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
542 if (vcpu
->fpu_active
)
544 vcpu
->fpu_active
= 1;
545 vmcs_clear_bits(GUEST_CR0
, X86_CR0_TS
);
546 if (vcpu
->arch
.cr0
& X86_CR0_TS
)
547 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
548 update_exception_bitmap(vcpu
);
551 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
553 if (!vcpu
->fpu_active
)
555 vcpu
->fpu_active
= 0;
556 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
557 update_exception_bitmap(vcpu
);
560 static void vmx_vcpu_decache(struct kvm_vcpu
*vcpu
)
562 vcpu_clear(to_vmx(vcpu
));
565 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
567 return vmcs_readl(GUEST_RFLAGS
);
570 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
572 if (vcpu
->arch
.rmode
.active
)
573 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
574 vmcs_writel(GUEST_RFLAGS
, rflags
);
577 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
580 u32 interruptibility
;
582 rip
= vmcs_readl(GUEST_RIP
);
583 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
584 vmcs_writel(GUEST_RIP
, rip
);
587 * We emulated an instruction, so temporary interrupt blocking
588 * should be removed, if set.
590 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
591 if (interruptibility
& 3)
592 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
593 interruptibility
& ~3);
594 vcpu
->arch
.interrupt_window_open
= 1;
597 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
598 bool has_error_code
, u32 error_code
)
600 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
601 nr
| INTR_TYPE_EXCEPTION
602 | (has_error_code
? INTR_INFO_DELIEVER_CODE_MASK
: 0)
603 | INTR_INFO_VALID_MASK
);
605 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
608 static bool vmx_exception_injected(struct kvm_vcpu
*vcpu
)
610 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
612 return !(vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
616 * Swap MSR entry in host/guest MSR entry array.
619 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
621 struct kvm_msr_entry tmp
;
623 tmp
= vmx
->guest_msrs
[to
];
624 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
625 vmx
->guest_msrs
[from
] = tmp
;
626 tmp
= vmx
->host_msrs
[to
];
627 vmx
->host_msrs
[to
] = vmx
->host_msrs
[from
];
628 vmx
->host_msrs
[from
] = tmp
;
633 * Set up the vmcs to automatically save and restore system
634 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
635 * mode, as fiddling with msrs is very expensive.
637 static void setup_msrs(struct vcpu_vmx
*vmx
)
643 if (is_long_mode(&vmx
->vcpu
)) {
646 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
648 move_msr_up(vmx
, index
, save_nmsrs
++);
649 index
= __find_msr_index(vmx
, MSR_LSTAR
);
651 move_msr_up(vmx
, index
, save_nmsrs
++);
652 index
= __find_msr_index(vmx
, MSR_CSTAR
);
654 move_msr_up(vmx
, index
, save_nmsrs
++);
655 index
= __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
657 move_msr_up(vmx
, index
, save_nmsrs
++);
659 * MSR_K6_STAR is only needed on long mode guests, and only
660 * if efer.sce is enabled.
662 index
= __find_msr_index(vmx
, MSR_K6_STAR
);
663 if ((index
>= 0) && (vmx
->vcpu
.arch
.shadow_efer
& EFER_SCE
))
664 move_msr_up(vmx
, index
, save_nmsrs
++);
667 vmx
->save_nmsrs
= save_nmsrs
;
670 vmx
->msr_offset_kernel_gs_base
=
671 __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
673 vmx
->msr_offset_efer
= __find_msr_index(vmx
, MSR_EFER
);
677 * reads and returns guest's timestamp counter "register"
678 * guest_tsc = host_tsc + tsc_offset -- 21.3
680 static u64
guest_read_tsc(void)
682 u64 host_tsc
, tsc_offset
;
685 tsc_offset
= vmcs_read64(TSC_OFFSET
);
686 return host_tsc
+ tsc_offset
;
690 * writes 'guest_tsc' into guest's timestamp counter "register"
691 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
693 static void guest_write_tsc(u64 guest_tsc
)
698 vmcs_write64(TSC_OFFSET
, guest_tsc
- host_tsc
);
702 * Reads an msr value (of 'msr_index') into 'pdata'.
703 * Returns 0 on success, non-0 otherwise.
704 * Assumes vcpu_load() was already called.
706 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
709 struct kvm_msr_entry
*msr
;
712 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
719 data
= vmcs_readl(GUEST_FS_BASE
);
722 data
= vmcs_readl(GUEST_GS_BASE
);
725 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
727 case MSR_IA32_TIME_STAMP_COUNTER
:
728 data
= guest_read_tsc();
730 case MSR_IA32_SYSENTER_CS
:
731 data
= vmcs_read32(GUEST_SYSENTER_CS
);
733 case MSR_IA32_SYSENTER_EIP
:
734 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
736 case MSR_IA32_SYSENTER_ESP
:
737 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
740 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
745 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
753 * Writes msr value into into the appropriate "register".
754 * Returns 0 on success, non-0 otherwise.
755 * Assumes vcpu_load() was already called.
757 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
759 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
760 struct kvm_msr_entry
*msr
;
766 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
767 if (vmx
->host_state
.loaded
) {
768 reload_host_efer(vmx
);
769 load_transition_efer(vmx
);
773 vmcs_writel(GUEST_FS_BASE
, data
);
776 vmcs_writel(GUEST_GS_BASE
, data
);
779 case MSR_IA32_SYSENTER_CS
:
780 vmcs_write32(GUEST_SYSENTER_CS
, data
);
782 case MSR_IA32_SYSENTER_EIP
:
783 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
785 case MSR_IA32_SYSENTER_ESP
:
786 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
788 case MSR_IA32_TIME_STAMP_COUNTER
:
789 guest_write_tsc(data
);
792 msr
= find_msr_entry(vmx
, msr_index
);
795 if (vmx
->host_state
.loaded
)
796 load_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
799 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
806 * Sync the rsp and rip registers into the vcpu structure. This allows
807 * registers to be accessed by indexing vcpu->arch.regs.
809 static void vcpu_load_rsp_rip(struct kvm_vcpu
*vcpu
)
811 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
812 vcpu
->arch
.rip
= vmcs_readl(GUEST_RIP
);
816 * Syncs rsp and rip back into the vmcs. Should be called after possible
819 static void vcpu_put_rsp_rip(struct kvm_vcpu
*vcpu
)
821 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
822 vmcs_writel(GUEST_RIP
, vcpu
->arch
.rip
);
825 static int set_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_debug_guest
*dbg
)
827 unsigned long dr7
= 0x400;
830 old_singlestep
= vcpu
->guest_debug
.singlestep
;
832 vcpu
->guest_debug
.enabled
= dbg
->enabled
;
833 if (vcpu
->guest_debug
.enabled
) {
836 dr7
|= 0x200; /* exact */
837 for (i
= 0; i
< 4; ++i
) {
838 if (!dbg
->breakpoints
[i
].enabled
)
840 vcpu
->guest_debug
.bp
[i
] = dbg
->breakpoints
[i
].address
;
841 dr7
|= 2 << (i
*2); /* global enable */
842 dr7
|= 0 << (i
*4+16); /* execution breakpoint */
845 vcpu
->guest_debug
.singlestep
= dbg
->singlestep
;
847 vcpu
->guest_debug
.singlestep
= 0;
849 if (old_singlestep
&& !vcpu
->guest_debug
.singlestep
) {
852 flags
= vmcs_readl(GUEST_RFLAGS
);
853 flags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
854 vmcs_writel(GUEST_RFLAGS
, flags
);
857 update_exception_bitmap(vcpu
);
858 vmcs_writel(GUEST_DR7
, dr7
);
863 static int vmx_get_irq(struct kvm_vcpu
*vcpu
)
865 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
868 idtv_info_field
= vmx
->idt_vectoring_info
;
869 if (idtv_info_field
& INTR_INFO_VALID_MASK
) {
870 if (is_external_interrupt(idtv_info_field
))
871 return idtv_info_field
& VECTORING_INFO_VECTOR_MASK
;
873 printk(KERN_DEBUG
"pending exception: not handled yet\n");
878 static __init
int cpu_has_kvm_support(void)
880 unsigned long ecx
= cpuid_ecx(1);
881 return test_bit(5, &ecx
); /* CPUID.1:ECX.VMX[bit 5] -> VT */
884 static __init
int vmx_disabled_by_bios(void)
888 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
889 return (msr
& (MSR_IA32_FEATURE_CONTROL_LOCKED
|
890 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
))
891 == MSR_IA32_FEATURE_CONTROL_LOCKED
;
892 /* locked but not enabled */
895 static void hardware_enable(void *garbage
)
897 int cpu
= raw_smp_processor_id();
898 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
901 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
902 if ((old
& (MSR_IA32_FEATURE_CONTROL_LOCKED
|
903 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
))
904 != (MSR_IA32_FEATURE_CONTROL_LOCKED
|
905 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
))
906 /* enable and lock */
907 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
|
908 MSR_IA32_FEATURE_CONTROL_LOCKED
|
909 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
);
910 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
911 asm volatile (ASM_VMX_VMXON_RAX
: : "a"(&phys_addr
), "m"(phys_addr
)
915 static void hardware_disable(void *garbage
)
917 asm volatile (ASM_VMX_VMXOFF
: : : "cc");
920 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
921 u32 msr
, u32
*result
)
923 u32 vmx_msr_low
, vmx_msr_high
;
924 u32 ctl
= ctl_min
| ctl_opt
;
926 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
928 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
929 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
931 /* Ensure minimum (required) set of control bits are supported. */
939 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
941 u32 vmx_msr_low
, vmx_msr_high
;
943 u32 _pin_based_exec_control
= 0;
944 u32 _cpu_based_exec_control
= 0;
945 u32 _cpu_based_2nd_exec_control
= 0;
946 u32 _vmexit_control
= 0;
947 u32 _vmentry_control
= 0;
949 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
951 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
952 &_pin_based_exec_control
) < 0)
955 min
= CPU_BASED_HLT_EXITING
|
957 CPU_BASED_CR8_LOAD_EXITING
|
958 CPU_BASED_CR8_STORE_EXITING
|
960 CPU_BASED_USE_IO_BITMAPS
|
961 CPU_BASED_MOV_DR_EXITING
|
962 CPU_BASED_USE_TSC_OFFSETING
;
963 opt
= CPU_BASED_TPR_SHADOW
|
964 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
965 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
966 &_cpu_based_exec_control
) < 0)
969 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
970 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
971 ~CPU_BASED_CR8_STORE_EXITING
;
973 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
975 opt
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
976 SECONDARY_EXEC_WBINVD_EXITING
;
977 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS2
,
978 &_cpu_based_2nd_exec_control
) < 0)
981 #ifndef CONFIG_X86_64
982 if (!(_cpu_based_2nd_exec_control
&
983 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
984 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
989 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
992 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
993 &_vmexit_control
) < 0)
997 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
998 &_vmentry_control
) < 0)
1001 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
1003 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1004 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
1007 #ifdef CONFIG_X86_64
1008 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1009 if (vmx_msr_high
& (1u<<16))
1013 /* Require Write-Back (WB) memory type for VMCS accesses. */
1014 if (((vmx_msr_high
>> 18) & 15) != 6)
1017 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
1018 vmcs_conf
->order
= get_order(vmcs_config
.size
);
1019 vmcs_conf
->revision_id
= vmx_msr_low
;
1021 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
1022 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
1023 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
1024 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
1025 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
1030 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
1032 int node
= cpu_to_node(cpu
);
1036 pages
= alloc_pages_node(node
, GFP_KERNEL
, vmcs_config
.order
);
1039 vmcs
= page_address(pages
);
1040 memset(vmcs
, 0, vmcs_config
.size
);
1041 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
1045 static struct vmcs
*alloc_vmcs(void)
1047 return alloc_vmcs_cpu(raw_smp_processor_id());
1050 static void free_vmcs(struct vmcs
*vmcs
)
1052 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
1055 static void free_kvm_area(void)
1059 for_each_online_cpu(cpu
)
1060 free_vmcs(per_cpu(vmxarea
, cpu
));
1063 static __init
int alloc_kvm_area(void)
1067 for_each_online_cpu(cpu
) {
1070 vmcs
= alloc_vmcs_cpu(cpu
);
1076 per_cpu(vmxarea
, cpu
) = vmcs
;
1081 static __init
int hardware_setup(void)
1083 if (setup_vmcs_config(&vmcs_config
) < 0)
1085 return alloc_kvm_area();
1088 static __exit
void hardware_unsetup(void)
1093 static void fix_pmode_dataseg(int seg
, struct kvm_save_segment
*save
)
1095 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1097 if (vmcs_readl(sf
->base
) == save
->base
&& (save
->base
& AR_S_MASK
)) {
1098 vmcs_write16(sf
->selector
, save
->selector
);
1099 vmcs_writel(sf
->base
, save
->base
);
1100 vmcs_write32(sf
->limit
, save
->limit
);
1101 vmcs_write32(sf
->ar_bytes
, save
->ar
);
1103 u32 dpl
= (vmcs_read16(sf
->selector
) & SELECTOR_RPL_MASK
)
1105 vmcs_write32(sf
->ar_bytes
, 0x93 | dpl
);
1109 static void enter_pmode(struct kvm_vcpu
*vcpu
)
1111 unsigned long flags
;
1113 vcpu
->arch
.rmode
.active
= 0;
1115 vmcs_writel(GUEST_TR_BASE
, vcpu
->arch
.rmode
.tr
.base
);
1116 vmcs_write32(GUEST_TR_LIMIT
, vcpu
->arch
.rmode
.tr
.limit
);
1117 vmcs_write32(GUEST_TR_AR_BYTES
, vcpu
->arch
.rmode
.tr
.ar
);
1119 flags
= vmcs_readl(GUEST_RFLAGS
);
1120 flags
&= ~(X86_EFLAGS_IOPL
| X86_EFLAGS_VM
);
1121 flags
|= (vcpu
->arch
.rmode
.save_iopl
<< IOPL_SHIFT
);
1122 vmcs_writel(GUEST_RFLAGS
, flags
);
1124 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
1125 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
1127 update_exception_bitmap(vcpu
);
1129 fix_pmode_dataseg(VCPU_SREG_ES
, &vcpu
->arch
.rmode
.es
);
1130 fix_pmode_dataseg(VCPU_SREG_DS
, &vcpu
->arch
.rmode
.ds
);
1131 fix_pmode_dataseg(VCPU_SREG_GS
, &vcpu
->arch
.rmode
.gs
);
1132 fix_pmode_dataseg(VCPU_SREG_FS
, &vcpu
->arch
.rmode
.fs
);
1134 vmcs_write16(GUEST_SS_SELECTOR
, 0);
1135 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
1137 vmcs_write16(GUEST_CS_SELECTOR
,
1138 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
1139 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1142 static gva_t
rmode_tss_base(struct kvm
*kvm
)
1144 if (!kvm
->arch
.tss_addr
) {
1145 gfn_t base_gfn
= kvm
->memslots
[0].base_gfn
+
1146 kvm
->memslots
[0].npages
- 3;
1147 return base_gfn
<< PAGE_SHIFT
;
1149 return kvm
->arch
.tss_addr
;
1152 static void fix_rmode_seg(int seg
, struct kvm_save_segment
*save
)
1154 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1156 save
->selector
= vmcs_read16(sf
->selector
);
1157 save
->base
= vmcs_readl(sf
->base
);
1158 save
->limit
= vmcs_read32(sf
->limit
);
1159 save
->ar
= vmcs_read32(sf
->ar_bytes
);
1160 vmcs_write16(sf
->selector
, save
->base
>> 4);
1161 vmcs_write32(sf
->base
, save
->base
& 0xfffff);
1162 vmcs_write32(sf
->limit
, 0xffff);
1163 vmcs_write32(sf
->ar_bytes
, 0xf3);
1166 static void enter_rmode(struct kvm_vcpu
*vcpu
)
1168 unsigned long flags
;
1170 vcpu
->arch
.rmode
.active
= 1;
1172 vcpu
->arch
.rmode
.tr
.base
= vmcs_readl(GUEST_TR_BASE
);
1173 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
1175 vcpu
->arch
.rmode
.tr
.limit
= vmcs_read32(GUEST_TR_LIMIT
);
1176 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
1178 vcpu
->arch
.rmode
.tr
.ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1179 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1181 flags
= vmcs_readl(GUEST_RFLAGS
);
1182 vcpu
->arch
.rmode
.save_iopl
1183 = (flags
& X86_EFLAGS_IOPL
) >> IOPL_SHIFT
;
1185 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1187 vmcs_writel(GUEST_RFLAGS
, flags
);
1188 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
1189 update_exception_bitmap(vcpu
);
1191 vmcs_write16(GUEST_SS_SELECTOR
, vmcs_readl(GUEST_SS_BASE
) >> 4);
1192 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
1193 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
1195 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
1196 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1197 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
1198 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
1199 vmcs_write16(GUEST_CS_SELECTOR
, vmcs_readl(GUEST_CS_BASE
) >> 4);
1201 fix_rmode_seg(VCPU_SREG_ES
, &vcpu
->arch
.rmode
.es
);
1202 fix_rmode_seg(VCPU_SREG_DS
, &vcpu
->arch
.rmode
.ds
);
1203 fix_rmode_seg(VCPU_SREG_GS
, &vcpu
->arch
.rmode
.gs
);
1204 fix_rmode_seg(VCPU_SREG_FS
, &vcpu
->arch
.rmode
.fs
);
1206 kvm_mmu_reset_context(vcpu
);
1207 init_rmode_tss(vcpu
->kvm
);
1210 #ifdef CONFIG_X86_64
1212 static void enter_lmode(struct kvm_vcpu
*vcpu
)
1216 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1217 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
1218 printk(KERN_DEBUG
"%s: tss fixup for long mode. \n",
1220 vmcs_write32(GUEST_TR_AR_BYTES
,
1221 (guest_tr_ar
& ~AR_TYPE_MASK
)
1222 | AR_TYPE_BUSY_64_TSS
);
1225 vcpu
->arch
.shadow_efer
|= EFER_LMA
;
1227 find_msr_entry(to_vmx(vcpu
), MSR_EFER
)->data
|= EFER_LMA
| EFER_LME
;
1228 vmcs_write32(VM_ENTRY_CONTROLS
,
1229 vmcs_read32(VM_ENTRY_CONTROLS
)
1230 | VM_ENTRY_IA32E_MODE
);
1233 static void exit_lmode(struct kvm_vcpu
*vcpu
)
1235 vcpu
->arch
.shadow_efer
&= ~EFER_LMA
;
1237 vmcs_write32(VM_ENTRY_CONTROLS
,
1238 vmcs_read32(VM_ENTRY_CONTROLS
)
1239 & ~VM_ENTRY_IA32E_MODE
);
1244 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1246 vcpu
->arch
.cr4
&= KVM_GUEST_CR4_MASK
;
1247 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & ~KVM_GUEST_CR4_MASK
;
1250 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1252 vmx_fpu_deactivate(vcpu
);
1254 if (vcpu
->arch
.rmode
.active
&& (cr0
& X86_CR0_PE
))
1257 if (!vcpu
->arch
.rmode
.active
&& !(cr0
& X86_CR0_PE
))
1260 #ifdef CONFIG_X86_64
1261 if (vcpu
->arch
.shadow_efer
& EFER_LME
) {
1262 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
1264 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
1269 vmcs_writel(CR0_READ_SHADOW
, cr0
);
1270 vmcs_writel(GUEST_CR0
,
1271 (cr0
& ~KVM_GUEST_CR0_MASK
) | KVM_VM_CR0_ALWAYS_ON
);
1272 vcpu
->arch
.cr0
= cr0
;
1274 if (!(cr0
& X86_CR0_TS
) || !(cr0
& X86_CR0_PE
))
1275 vmx_fpu_activate(vcpu
);
1278 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
1280 vmcs_writel(GUEST_CR3
, cr3
);
1281 if (vcpu
->arch
.cr0
& X86_CR0_PE
)
1282 vmx_fpu_deactivate(vcpu
);
1285 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1287 vmcs_writel(CR4_READ_SHADOW
, cr4
);
1288 vmcs_writel(GUEST_CR4
, cr4
| (vcpu
->arch
.rmode
.active
?
1289 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
));
1290 vcpu
->arch
.cr4
= cr4
;
1293 #ifdef CONFIG_X86_64
1295 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1297 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1298 struct kvm_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
1300 vcpu
->arch
.shadow_efer
= efer
;
1301 if (efer
& EFER_LMA
) {
1302 vmcs_write32(VM_ENTRY_CONTROLS
,
1303 vmcs_read32(VM_ENTRY_CONTROLS
) |
1304 VM_ENTRY_IA32E_MODE
);
1308 vmcs_write32(VM_ENTRY_CONTROLS
,
1309 vmcs_read32(VM_ENTRY_CONTROLS
) &
1310 ~VM_ENTRY_IA32E_MODE
);
1312 msr
->data
= efer
& ~EFER_LME
;
1319 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1321 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1323 return vmcs_readl(sf
->base
);
1326 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
1327 struct kvm_segment
*var
, int seg
)
1329 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1332 var
->base
= vmcs_readl(sf
->base
);
1333 var
->limit
= vmcs_read32(sf
->limit
);
1334 var
->selector
= vmcs_read16(sf
->selector
);
1335 ar
= vmcs_read32(sf
->ar_bytes
);
1336 if (ar
& AR_UNUSABLE_MASK
)
1338 var
->type
= ar
& 15;
1339 var
->s
= (ar
>> 4) & 1;
1340 var
->dpl
= (ar
>> 5) & 3;
1341 var
->present
= (ar
>> 7) & 1;
1342 var
->avl
= (ar
>> 12) & 1;
1343 var
->l
= (ar
>> 13) & 1;
1344 var
->db
= (ar
>> 14) & 1;
1345 var
->g
= (ar
>> 15) & 1;
1346 var
->unusable
= (ar
>> 16) & 1;
1349 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
1356 ar
= var
->type
& 15;
1357 ar
|= (var
->s
& 1) << 4;
1358 ar
|= (var
->dpl
& 3) << 5;
1359 ar
|= (var
->present
& 1) << 7;
1360 ar
|= (var
->avl
& 1) << 12;
1361 ar
|= (var
->l
& 1) << 13;
1362 ar
|= (var
->db
& 1) << 14;
1363 ar
|= (var
->g
& 1) << 15;
1365 if (ar
== 0) /* a 0 value means unusable */
1366 ar
= AR_UNUSABLE_MASK
;
1371 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
1372 struct kvm_segment
*var
, int seg
)
1374 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1377 if (vcpu
->arch
.rmode
.active
&& seg
== VCPU_SREG_TR
) {
1378 vcpu
->arch
.rmode
.tr
.selector
= var
->selector
;
1379 vcpu
->arch
.rmode
.tr
.base
= var
->base
;
1380 vcpu
->arch
.rmode
.tr
.limit
= var
->limit
;
1381 vcpu
->arch
.rmode
.tr
.ar
= vmx_segment_access_rights(var
);
1384 vmcs_writel(sf
->base
, var
->base
);
1385 vmcs_write32(sf
->limit
, var
->limit
);
1386 vmcs_write16(sf
->selector
, var
->selector
);
1387 if (vcpu
->arch
.rmode
.active
&& var
->s
) {
1389 * Hack real-mode segments into vm86 compatibility.
1391 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
1392 vmcs_writel(sf
->base
, 0xf0000);
1395 ar
= vmx_segment_access_rights(var
);
1396 vmcs_write32(sf
->ar_bytes
, ar
);
1399 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
1401 u32 ar
= vmcs_read32(GUEST_CS_AR_BYTES
);
1403 *db
= (ar
>> 14) & 1;
1404 *l
= (ar
>> 13) & 1;
1407 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1409 dt
->limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
1410 dt
->base
= vmcs_readl(GUEST_IDTR_BASE
);
1413 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1415 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->limit
);
1416 vmcs_writel(GUEST_IDTR_BASE
, dt
->base
);
1419 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1421 dt
->limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
1422 dt
->base
= vmcs_readl(GUEST_GDTR_BASE
);
1425 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1427 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->limit
);
1428 vmcs_writel(GUEST_GDTR_BASE
, dt
->base
);
1431 static int init_rmode_tss(struct kvm
*kvm
)
1433 gfn_t fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
1438 down_read(¤t
->mm
->mmap_sem
);
1439 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
1442 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
1443 r
= kvm_write_guest_page(kvm
, fn
++, &data
, 0x66, sizeof(u16
));
1446 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
1449 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
1453 r
= kvm_write_guest_page(kvm
, fn
, &data
,
1454 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
1461 up_read(¤t
->mm
->mmap_sem
);
1465 static void seg_setup(int seg
)
1467 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1469 vmcs_write16(sf
->selector
, 0);
1470 vmcs_writel(sf
->base
, 0);
1471 vmcs_write32(sf
->limit
, 0xffff);
1472 vmcs_write32(sf
->ar_bytes
, 0x93);
1475 static int alloc_apic_access_page(struct kvm
*kvm
)
1477 struct kvm_userspace_memory_region kvm_userspace_mem
;
1480 down_write(¤t
->mm
->mmap_sem
);
1481 if (kvm
->arch
.apic_access_page
)
1483 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
1484 kvm_userspace_mem
.flags
= 0;
1485 kvm_userspace_mem
.guest_phys_addr
= 0xfee00000ULL
;
1486 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
1487 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
1490 kvm
->arch
.apic_access_page
= gfn_to_page(kvm
, 0xfee00);
1492 up_write(¤t
->mm
->mmap_sem
);
1497 * Sets up the vmcs for emulated real mode.
1499 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
1501 u32 host_sysenter_cs
;
1504 struct descriptor_table dt
;
1506 unsigned long kvm_vmx_return
;
1510 vmcs_write64(IO_BITMAP_A
, page_to_phys(vmx_io_bitmap_a
));
1511 vmcs_write64(IO_BITMAP_B
, page_to_phys(vmx_io_bitmap_b
));
1513 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
1516 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
1517 vmcs_config
.pin_based_exec_ctrl
);
1519 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
1520 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
1521 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
1522 #ifdef CONFIG_X86_64
1523 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
1524 CPU_BASED_CR8_LOAD_EXITING
;
1527 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
1529 if (cpu_has_secondary_exec_ctrls()) {
1530 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
1531 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
1533 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
1534 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
1537 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, !!bypass_guest_pf
);
1538 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, !!bypass_guest_pf
);
1539 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
1541 vmcs_writel(HOST_CR0
, read_cr0()); /* 22.2.3 */
1542 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
1543 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1545 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
1546 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1547 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1548 vmcs_write16(HOST_FS_SELECTOR
, read_fs()); /* 22.2.4 */
1549 vmcs_write16(HOST_GS_SELECTOR
, read_gs()); /* 22.2.4 */
1550 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1551 #ifdef CONFIG_X86_64
1552 rdmsrl(MSR_FS_BASE
, a
);
1553 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
1554 rdmsrl(MSR_GS_BASE
, a
);
1555 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
1557 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
1558 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
1561 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
1564 vmcs_writel(HOST_IDTR_BASE
, dt
.base
); /* 22.2.4 */
1566 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return
));
1567 vmcs_writel(HOST_RIP
, kvm_vmx_return
); /* 22.2.5 */
1568 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
1569 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
1570 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
1572 rdmsr(MSR_IA32_SYSENTER_CS
, host_sysenter_cs
, junk
);
1573 vmcs_write32(HOST_IA32_SYSENTER_CS
, host_sysenter_cs
);
1574 rdmsrl(MSR_IA32_SYSENTER_ESP
, a
);
1575 vmcs_writel(HOST_IA32_SYSENTER_ESP
, a
); /* 22.2.3 */
1576 rdmsrl(MSR_IA32_SYSENTER_EIP
, a
);
1577 vmcs_writel(HOST_IA32_SYSENTER_EIP
, a
); /* 22.2.3 */
1579 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
1580 u32 index
= vmx_msr_index
[i
];
1581 u32 data_low
, data_high
;
1585 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
1587 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
1589 data
= data_low
| ((u64
)data_high
<< 32);
1590 vmx
->host_msrs
[j
].index
= index
;
1591 vmx
->host_msrs
[j
].reserved
= 0;
1592 vmx
->host_msrs
[j
].data
= data
;
1593 vmx
->guest_msrs
[j
] = vmx
->host_msrs
[j
];
1597 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
1599 /* 22.2.1, 20.8.1 */
1600 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
1602 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
1603 vmcs_writel(CR4_GUEST_HOST_MASK
, KVM_GUEST_CR4_MASK
);
1605 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
1606 if (alloc_apic_access_page(vmx
->vcpu
.kvm
) != 0)
1612 static int vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
1614 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1618 if (!init_rmode_tss(vmx
->vcpu
.kvm
)) {
1623 vmx
->vcpu
.arch
.rmode
.active
= 0;
1625 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
1626 set_cr8(&vmx
->vcpu
, 0);
1627 msr
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
1628 if (vmx
->vcpu
.vcpu_id
== 0)
1629 msr
|= MSR_IA32_APICBASE_BSP
;
1630 kvm_set_apic_base(&vmx
->vcpu
, msr
);
1632 fx_init(&vmx
->vcpu
);
1635 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1636 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1638 if (vmx
->vcpu
.vcpu_id
== 0) {
1639 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
1640 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
1642 vmcs_write16(GUEST_CS_SELECTOR
, vmx
->vcpu
.arch
.sipi_vector
<< 8);
1643 vmcs_writel(GUEST_CS_BASE
, vmx
->vcpu
.arch
.sipi_vector
<< 12);
1645 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1646 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1648 seg_setup(VCPU_SREG_DS
);
1649 seg_setup(VCPU_SREG_ES
);
1650 seg_setup(VCPU_SREG_FS
);
1651 seg_setup(VCPU_SREG_GS
);
1652 seg_setup(VCPU_SREG_SS
);
1654 vmcs_write16(GUEST_TR_SELECTOR
, 0);
1655 vmcs_writel(GUEST_TR_BASE
, 0);
1656 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
1657 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1659 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
1660 vmcs_writel(GUEST_LDTR_BASE
, 0);
1661 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
1662 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
1664 vmcs_write32(GUEST_SYSENTER_CS
, 0);
1665 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
1666 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
1668 vmcs_writel(GUEST_RFLAGS
, 0x02);
1669 if (vmx
->vcpu
.vcpu_id
== 0)
1670 vmcs_writel(GUEST_RIP
, 0xfff0);
1672 vmcs_writel(GUEST_RIP
, 0);
1673 vmcs_writel(GUEST_RSP
, 0);
1675 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1676 vmcs_writel(GUEST_DR7
, 0x400);
1678 vmcs_writel(GUEST_GDTR_BASE
, 0);
1679 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
1681 vmcs_writel(GUEST_IDTR_BASE
, 0);
1682 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
1684 vmcs_write32(GUEST_ACTIVITY_STATE
, 0);
1685 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
1686 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
1690 /* Special registers */
1691 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
1695 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
1697 if (cpu_has_vmx_tpr_shadow()) {
1698 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
1699 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
1700 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
1701 page_to_phys(vmx
->vcpu
.arch
.apic
->regs_page
));
1702 vmcs_write32(TPR_THRESHOLD
, 0);
1705 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
1706 vmcs_write64(APIC_ACCESS_ADDR
,
1707 page_to_phys(vmx
->vcpu
.kvm
->arch
.apic_access_page
));
1709 vmx
->vcpu
.arch
.cr0
= 0x60000010;
1710 vmx_set_cr0(&vmx
->vcpu
, vmx
->vcpu
.arch
.cr0
); /* enter rmode */
1711 vmx_set_cr4(&vmx
->vcpu
, 0);
1712 #ifdef CONFIG_X86_64
1713 vmx_set_efer(&vmx
->vcpu
, 0);
1715 vmx_fpu_activate(&vmx
->vcpu
);
1716 update_exception_bitmap(&vmx
->vcpu
);
1724 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
, int irq
)
1726 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1728 if (vcpu
->arch
.rmode
.active
) {
1729 vmx
->rmode
.irq
.pending
= true;
1730 vmx
->rmode
.irq
.vector
= irq
;
1731 vmx
->rmode
.irq
.rip
= vmcs_readl(GUEST_RIP
);
1732 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
1733 irq
| INTR_TYPE_SOFT_INTR
| INTR_INFO_VALID_MASK
);
1734 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
1735 vmcs_writel(GUEST_RIP
, vmx
->rmode
.irq
.rip
- 1);
1738 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
1739 irq
| INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
1742 static void kvm_do_inject_irq(struct kvm_vcpu
*vcpu
)
1744 int word_index
= __ffs(vcpu
->arch
.irq_summary
);
1745 int bit_index
= __ffs(vcpu
->arch
.irq_pending
[word_index
]);
1746 int irq
= word_index
* BITS_PER_LONG
+ bit_index
;
1748 clear_bit(bit_index
, &vcpu
->arch
.irq_pending
[word_index
]);
1749 if (!vcpu
->arch
.irq_pending
[word_index
])
1750 clear_bit(word_index
, &vcpu
->arch
.irq_summary
);
1751 vmx_inject_irq(vcpu
, irq
);
1755 static void do_interrupt_requests(struct kvm_vcpu
*vcpu
,
1756 struct kvm_run
*kvm_run
)
1758 u32 cpu_based_vm_exec_control
;
1760 vcpu
->arch
.interrupt_window_open
=
1761 ((vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
1762 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & 3) == 0);
1764 if (vcpu
->arch
.interrupt_window_open
&&
1765 vcpu
->arch
.irq_summary
&&
1766 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
) & INTR_INFO_VALID_MASK
))
1768 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1770 kvm_do_inject_irq(vcpu
);
1772 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
1773 if (!vcpu
->arch
.interrupt_window_open
&&
1774 (vcpu
->arch
.irq_summary
|| kvm_run
->request_interrupt_window
))
1776 * Interrupts blocked. Wait for unblock.
1778 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
1780 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
1781 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
1784 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
1787 struct kvm_userspace_memory_region tss_mem
= {
1789 .guest_phys_addr
= addr
,
1790 .memory_size
= PAGE_SIZE
* 3,
1794 ret
= kvm_set_memory_region(kvm
, &tss_mem
, 0);
1797 kvm
->arch
.tss_addr
= addr
;
1801 static void kvm_guest_debug_pre(struct kvm_vcpu
*vcpu
)
1803 struct kvm_guest_debug
*dbg
= &vcpu
->guest_debug
;
1805 set_debugreg(dbg
->bp
[0], 0);
1806 set_debugreg(dbg
->bp
[1], 1);
1807 set_debugreg(dbg
->bp
[2], 2);
1808 set_debugreg(dbg
->bp
[3], 3);
1810 if (dbg
->singlestep
) {
1811 unsigned long flags
;
1813 flags
= vmcs_readl(GUEST_RFLAGS
);
1814 flags
|= X86_EFLAGS_TF
| X86_EFLAGS_RF
;
1815 vmcs_writel(GUEST_RFLAGS
, flags
);
1819 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
1820 int vec
, u32 err_code
)
1822 if (!vcpu
->arch
.rmode
.active
)
1826 * Instruction with address size override prefix opcode 0x67
1827 * Cause the #SS fault with 0 error code in VM86 mode.
1829 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0)
1830 if (emulate_instruction(vcpu
, NULL
, 0, 0, 0) == EMULATE_DONE
)
1835 static int handle_exception(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1837 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1838 u32 intr_info
, error_code
;
1839 unsigned long cr2
, rip
;
1841 enum emulation_result er
;
1843 vect_info
= vmx
->idt_vectoring_info
;
1844 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
1846 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
1847 !is_page_fault(intr_info
))
1848 printk(KERN_ERR
"%s: unexpected, vectoring info 0x%x "
1849 "intr info 0x%x\n", __FUNCTION__
, vect_info
, intr_info
);
1851 if (!irqchip_in_kernel(vcpu
->kvm
) && is_external_interrupt(vect_info
)) {
1852 int irq
= vect_info
& VECTORING_INFO_VECTOR_MASK
;
1853 set_bit(irq
, vcpu
->arch
.irq_pending
);
1854 set_bit(irq
/ BITS_PER_LONG
, &vcpu
->arch
.irq_summary
);
1857 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == 0x200) /* nmi */
1858 return 1; /* already handled by vmx_vcpu_run() */
1860 if (is_no_device(intr_info
)) {
1861 vmx_fpu_activate(vcpu
);
1865 if (is_invalid_opcode(intr_info
)) {
1866 er
= emulate_instruction(vcpu
, kvm_run
, 0, 0, EMULTYPE_TRAP_UD
);
1867 if (er
!= EMULATE_DONE
)
1868 kvm_queue_exception(vcpu
, UD_VECTOR
);
1873 rip
= vmcs_readl(GUEST_RIP
);
1874 if (intr_info
& INTR_INFO_DELIEVER_CODE_MASK
)
1875 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
1876 if (is_page_fault(intr_info
)) {
1877 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
1878 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
);
1881 if (vcpu
->arch
.rmode
.active
&&
1882 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
1884 if (vcpu
->arch
.halt_request
) {
1885 vcpu
->arch
.halt_request
= 0;
1886 return kvm_emulate_halt(vcpu
);
1891 if ((intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
)) ==
1892 (INTR_TYPE_EXCEPTION
| 1)) {
1893 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1896 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
1897 kvm_run
->ex
.exception
= intr_info
& INTR_INFO_VECTOR_MASK
;
1898 kvm_run
->ex
.error_code
= error_code
;
1902 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
,
1903 struct kvm_run
*kvm_run
)
1905 ++vcpu
->stat
.irq_exits
;
1909 static int handle_triple_fault(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1911 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1915 static int handle_io(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1917 unsigned long exit_qualification
;
1918 int size
, down
, in
, string
, rep
;
1921 ++vcpu
->stat
.io_exits
;
1922 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
1923 string
= (exit_qualification
& 16) != 0;
1926 if (emulate_instruction(vcpu
,
1927 kvm_run
, 0, 0, 0) == EMULATE_DO_MMIO
)
1932 size
= (exit_qualification
& 7) + 1;
1933 in
= (exit_qualification
& 8) != 0;
1934 down
= (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_DF
) != 0;
1935 rep
= (exit_qualification
& 32) != 0;
1936 port
= exit_qualification
>> 16;
1938 return kvm_emulate_pio(vcpu
, kvm_run
, in
, size
, port
);
1942 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
1945 * Patch in the VMCALL instruction:
1947 hypercall
[0] = 0x0f;
1948 hypercall
[1] = 0x01;
1949 hypercall
[2] = 0xc1;
1952 static int handle_cr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1954 unsigned long exit_qualification
;
1958 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
1959 cr
= exit_qualification
& 15;
1960 reg
= (exit_qualification
>> 8) & 15;
1961 switch ((exit_qualification
>> 4) & 3) {
1962 case 0: /* mov to cr */
1965 vcpu_load_rsp_rip(vcpu
);
1966 set_cr0(vcpu
, vcpu
->arch
.regs
[reg
]);
1967 skip_emulated_instruction(vcpu
);
1970 vcpu_load_rsp_rip(vcpu
);
1971 set_cr3(vcpu
, vcpu
->arch
.regs
[reg
]);
1972 skip_emulated_instruction(vcpu
);
1975 vcpu_load_rsp_rip(vcpu
);
1976 set_cr4(vcpu
, vcpu
->arch
.regs
[reg
]);
1977 skip_emulated_instruction(vcpu
);
1980 vcpu_load_rsp_rip(vcpu
);
1981 set_cr8(vcpu
, vcpu
->arch
.regs
[reg
]);
1982 skip_emulated_instruction(vcpu
);
1983 if (irqchip_in_kernel(vcpu
->kvm
))
1985 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
1990 vcpu_load_rsp_rip(vcpu
);
1991 vmx_fpu_deactivate(vcpu
);
1992 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
1993 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
1994 vmx_fpu_activate(vcpu
);
1995 skip_emulated_instruction(vcpu
);
1997 case 1: /*mov from cr*/
2000 vcpu_load_rsp_rip(vcpu
);
2001 vcpu
->arch
.regs
[reg
] = vcpu
->arch
.cr3
;
2002 vcpu_put_rsp_rip(vcpu
);
2003 skip_emulated_instruction(vcpu
);
2006 vcpu_load_rsp_rip(vcpu
);
2007 vcpu
->arch
.regs
[reg
] = get_cr8(vcpu
);
2008 vcpu_put_rsp_rip(vcpu
);
2009 skip_emulated_instruction(vcpu
);
2014 lmsw(vcpu
, (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f);
2016 skip_emulated_instruction(vcpu
);
2021 kvm_run
->exit_reason
= 0;
2022 pr_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
2023 (int)(exit_qualification
>> 4) & 3, cr
);
2027 static int handle_dr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2029 unsigned long exit_qualification
;
2034 * FIXME: this code assumes the host is debugging the guest.
2035 * need to deal with guest debugging itself too.
2037 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2038 dr
= exit_qualification
& 7;
2039 reg
= (exit_qualification
>> 8) & 15;
2040 vcpu_load_rsp_rip(vcpu
);
2041 if (exit_qualification
& 16) {
2053 vcpu
->arch
.regs
[reg
] = val
;
2057 vcpu_put_rsp_rip(vcpu
);
2058 skip_emulated_instruction(vcpu
);
2062 static int handle_cpuid(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2064 kvm_emulate_cpuid(vcpu
);
2068 static int handle_rdmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2070 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2073 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
2074 kvm_inject_gp(vcpu
, 0);
2078 /* FIXME: handling of bits 32:63 of rax, rdx */
2079 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
2080 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
2081 skip_emulated_instruction(vcpu
);
2085 static int handle_wrmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2087 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2088 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
2089 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
2091 if (vmx_set_msr(vcpu
, ecx
, data
) != 0) {
2092 kvm_inject_gp(vcpu
, 0);
2096 skip_emulated_instruction(vcpu
);
2100 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
,
2101 struct kvm_run
*kvm_run
)
2106 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
,
2107 struct kvm_run
*kvm_run
)
2109 u32 cpu_based_vm_exec_control
;
2111 /* clear pending irq */
2112 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2113 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
2114 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2116 * If the user space waits to inject interrupts, exit as soon as
2119 if (kvm_run
->request_interrupt_window
&&
2120 !vcpu
->arch
.irq_summary
) {
2121 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
2122 ++vcpu
->stat
.irq_window_exits
;
2128 static int handle_halt(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2130 skip_emulated_instruction(vcpu
);
2131 return kvm_emulate_halt(vcpu
);
2134 static int handle_vmcall(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2136 skip_emulated_instruction(vcpu
);
2137 kvm_emulate_hypercall(vcpu
);
2141 static int handle_wbinvd(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2143 skip_emulated_instruction(vcpu
);
2144 /* TODO: Add support for VT-d/pass-through device */
2148 static int handle_apic_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2150 u64 exit_qualification
;
2151 enum emulation_result er
;
2152 unsigned long offset
;
2154 exit_qualification
= vmcs_read64(EXIT_QUALIFICATION
);
2155 offset
= exit_qualification
& 0xffful
;
2157 er
= emulate_instruction(vcpu
, kvm_run
, 0, 0, 0);
2159 if (er
!= EMULATE_DONE
) {
2161 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2169 * The exit handlers return 1 if the exit was handled fully and guest execution
2170 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2171 * to be done to userspace and return 0.
2173 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
,
2174 struct kvm_run
*kvm_run
) = {
2175 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
2176 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
2177 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
2178 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
2179 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
2180 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
2181 [EXIT_REASON_CPUID
] = handle_cpuid
,
2182 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
2183 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
2184 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
2185 [EXIT_REASON_HLT
] = handle_halt
,
2186 [EXIT_REASON_VMCALL
] = handle_vmcall
,
2187 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
2188 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
2189 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
2192 static const int kvm_vmx_max_exit_handlers
=
2193 ARRAY_SIZE(kvm_vmx_exit_handlers
);
2196 * The guest has exited. See if we can fix it or if we need userspace
2199 static int kvm_handle_exit(struct kvm_run
*kvm_run
, struct kvm_vcpu
*vcpu
)
2201 u32 exit_reason
= vmcs_read32(VM_EXIT_REASON
);
2202 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2203 u32 vectoring_info
= vmx
->idt_vectoring_info
;
2205 if (unlikely(vmx
->fail
)) {
2206 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
2207 kvm_run
->fail_entry
.hardware_entry_failure_reason
2208 = vmcs_read32(VM_INSTRUCTION_ERROR
);
2212 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
2213 exit_reason
!= EXIT_REASON_EXCEPTION_NMI
)
2214 printk(KERN_WARNING
"%s: unexpected, valid vectoring info and "
2215 "exit reason is 0x%x\n", __FUNCTION__
, exit_reason
);
2216 if (exit_reason
< kvm_vmx_max_exit_handlers
2217 && kvm_vmx_exit_handlers
[exit_reason
])
2218 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
, kvm_run
);
2220 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
2221 kvm_run
->hw
.hardware_exit_reason
= exit_reason
;
2226 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
2230 static void update_tpr_threshold(struct kvm_vcpu
*vcpu
)
2234 if (!vm_need_tpr_shadow(vcpu
->kvm
))
2237 if (!kvm_lapic_enabled(vcpu
) ||
2238 ((max_irr
= kvm_lapic_find_highest_irr(vcpu
)) == -1)) {
2239 vmcs_write32(TPR_THRESHOLD
, 0);
2243 tpr
= (kvm_lapic_get_cr8(vcpu
) & 0x0f) << 4;
2244 vmcs_write32(TPR_THRESHOLD
, (max_irr
> tpr
) ? tpr
>> 4 : max_irr
>> 4);
2247 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2249 u32 cpu_based_vm_exec_control
;
2251 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2252 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
2253 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2256 static void vmx_intr_assist(struct kvm_vcpu
*vcpu
)
2258 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2259 u32 idtv_info_field
, intr_info_field
;
2260 int has_ext_irq
, interrupt_window_open
;
2263 update_tpr_threshold(vcpu
);
2265 has_ext_irq
= kvm_cpu_has_interrupt(vcpu
);
2266 intr_info_field
= vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
);
2267 idtv_info_field
= vmx
->idt_vectoring_info
;
2268 if (intr_info_field
& INTR_INFO_VALID_MASK
) {
2269 if (idtv_info_field
& INTR_INFO_VALID_MASK
) {
2270 /* TODO: fault when IDT_Vectoring */
2271 if (printk_ratelimit())
2272 printk(KERN_ERR
"Fault when IDT_Vectoring\n");
2275 enable_irq_window(vcpu
);
2278 if (unlikely(idtv_info_field
& INTR_INFO_VALID_MASK
)) {
2279 if ((idtv_info_field
& VECTORING_INFO_TYPE_MASK
)
2280 == INTR_TYPE_EXT_INTR
2281 && vcpu
->arch
.rmode
.active
) {
2282 u8 vect
= idtv_info_field
& VECTORING_INFO_VECTOR_MASK
;
2284 vmx_inject_irq(vcpu
, vect
);
2285 if (unlikely(has_ext_irq
))
2286 enable_irq_window(vcpu
);
2290 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, idtv_info_field
);
2291 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2292 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
));
2294 if (unlikely(idtv_info_field
& INTR_INFO_DELIEVER_CODE_MASK
))
2295 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
2296 vmcs_read32(IDT_VECTORING_ERROR_CODE
));
2297 if (unlikely(has_ext_irq
))
2298 enable_irq_window(vcpu
);
2303 interrupt_window_open
=
2304 ((vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
2305 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & 3) == 0);
2306 if (interrupt_window_open
) {
2307 vector
= kvm_cpu_get_interrupt(vcpu
);
2308 vmx_inject_irq(vcpu
, vector
);
2309 kvm_timer_intr_post(vcpu
, vector
);
2311 enable_irq_window(vcpu
);
2315 * Failure to inject an interrupt should give us the information
2316 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2317 * when fetching the interrupt redirection bitmap in the real-mode
2318 * tss, this doesn't happen. So we do it ourselves.
2320 static void fixup_rmode_irq(struct vcpu_vmx
*vmx
)
2322 vmx
->rmode
.irq
.pending
= 0;
2323 if (vmcs_readl(GUEST_RIP
) + 1 != vmx
->rmode
.irq
.rip
)
2325 vmcs_writel(GUEST_RIP
, vmx
->rmode
.irq
.rip
);
2326 if (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) {
2327 vmx
->idt_vectoring_info
&= ~VECTORING_INFO_TYPE_MASK
;
2328 vmx
->idt_vectoring_info
|= INTR_TYPE_EXT_INTR
;
2331 vmx
->idt_vectoring_info
=
2332 VECTORING_INFO_VALID_MASK
2333 | INTR_TYPE_EXT_INTR
2334 | vmx
->rmode
.irq
.vector
;
2337 static void vmx_vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2339 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2343 * Loading guest fpu may have cleared host cr0.ts
2345 vmcs_writel(HOST_CR0
, read_cr0());
2348 /* Store host registers */
2349 #ifdef CONFIG_X86_64
2350 "push %%rdx; push %%rbp;"
2353 "push %%edx; push %%ebp;"
2356 ASM_VMX_VMWRITE_RSP_RDX
"\n\t"
2357 /* Check if vmlaunch of vmresume is needed */
2358 "cmpl $0, %c[launched](%0) \n\t"
2359 /* Load guest registers. Don't clobber flags. */
2360 #ifdef CONFIG_X86_64
2361 "mov %c[cr2](%0), %%rax \n\t"
2362 "mov %%rax, %%cr2 \n\t"
2363 "mov %c[rax](%0), %%rax \n\t"
2364 "mov %c[rbx](%0), %%rbx \n\t"
2365 "mov %c[rdx](%0), %%rdx \n\t"
2366 "mov %c[rsi](%0), %%rsi \n\t"
2367 "mov %c[rdi](%0), %%rdi \n\t"
2368 "mov %c[rbp](%0), %%rbp \n\t"
2369 "mov %c[r8](%0), %%r8 \n\t"
2370 "mov %c[r9](%0), %%r9 \n\t"
2371 "mov %c[r10](%0), %%r10 \n\t"
2372 "mov %c[r11](%0), %%r11 \n\t"
2373 "mov %c[r12](%0), %%r12 \n\t"
2374 "mov %c[r13](%0), %%r13 \n\t"
2375 "mov %c[r14](%0), %%r14 \n\t"
2376 "mov %c[r15](%0), %%r15 \n\t"
2377 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2379 "mov %c[cr2](%0), %%eax \n\t"
2380 "mov %%eax, %%cr2 \n\t"
2381 "mov %c[rax](%0), %%eax \n\t"
2382 "mov %c[rbx](%0), %%ebx \n\t"
2383 "mov %c[rdx](%0), %%edx \n\t"
2384 "mov %c[rsi](%0), %%esi \n\t"
2385 "mov %c[rdi](%0), %%edi \n\t"
2386 "mov %c[rbp](%0), %%ebp \n\t"
2387 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2389 /* Enter guest mode */
2390 "jne .Llaunched \n\t"
2391 ASM_VMX_VMLAUNCH
"\n\t"
2392 "jmp .Lkvm_vmx_return \n\t"
2393 ".Llaunched: " ASM_VMX_VMRESUME
"\n\t"
2394 ".Lkvm_vmx_return: "
2395 /* Save guest registers, load host registers, keep flags */
2396 #ifdef CONFIG_X86_64
2397 "xchg %0, (%%rsp) \n\t"
2398 "mov %%rax, %c[rax](%0) \n\t"
2399 "mov %%rbx, %c[rbx](%0) \n\t"
2400 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2401 "mov %%rdx, %c[rdx](%0) \n\t"
2402 "mov %%rsi, %c[rsi](%0) \n\t"
2403 "mov %%rdi, %c[rdi](%0) \n\t"
2404 "mov %%rbp, %c[rbp](%0) \n\t"
2405 "mov %%r8, %c[r8](%0) \n\t"
2406 "mov %%r9, %c[r9](%0) \n\t"
2407 "mov %%r10, %c[r10](%0) \n\t"
2408 "mov %%r11, %c[r11](%0) \n\t"
2409 "mov %%r12, %c[r12](%0) \n\t"
2410 "mov %%r13, %c[r13](%0) \n\t"
2411 "mov %%r14, %c[r14](%0) \n\t"
2412 "mov %%r15, %c[r15](%0) \n\t"
2413 "mov %%cr2, %%rax \n\t"
2414 "mov %%rax, %c[cr2](%0) \n\t"
2416 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
2418 "xchg %0, (%%esp) \n\t"
2419 "mov %%eax, %c[rax](%0) \n\t"
2420 "mov %%ebx, %c[rbx](%0) \n\t"
2421 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2422 "mov %%edx, %c[rdx](%0) \n\t"
2423 "mov %%esi, %c[rsi](%0) \n\t"
2424 "mov %%edi, %c[rdi](%0) \n\t"
2425 "mov %%ebp, %c[rbp](%0) \n\t"
2426 "mov %%cr2, %%eax \n\t"
2427 "mov %%eax, %c[cr2](%0) \n\t"
2429 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2431 "setbe %c[fail](%0) \n\t"
2432 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
2433 [launched
]"i"(offsetof(struct vcpu_vmx
, launched
)),
2434 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
2435 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
2436 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
2437 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
2438 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
2439 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
2440 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
2441 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
2442 #ifdef CONFIG_X86_64
2443 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
2444 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
2445 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
2446 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
2447 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
2448 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
2449 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
2450 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
2452 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
))
2454 #ifdef CONFIG_X86_64
2455 , "rbx", "rdi", "rsi"
2456 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2458 , "ebx", "edi", "rsi"
2462 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
2463 if (vmx
->rmode
.irq
.pending
)
2464 fixup_rmode_irq(vmx
);
2466 vcpu
->arch
.interrupt_window_open
=
2467 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & 3) == 0;
2469 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS
));
2472 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
2474 /* We need to handle NMIs before interrupts are enabled */
2475 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == 0x200) /* nmi */
2479 static void vmx_free_vmcs(struct kvm_vcpu
*vcpu
)
2481 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2484 on_each_cpu(__vcpu_clear
, vmx
, 0, 1);
2485 free_vmcs(vmx
->vmcs
);
2490 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
2492 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2494 vmx_free_vmcs(vcpu
);
2495 kfree(vmx
->host_msrs
);
2496 kfree(vmx
->guest_msrs
);
2497 kvm_vcpu_uninit(vcpu
);
2498 kmem_cache_free(kvm_vcpu_cache
, vmx
);
2501 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
2504 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
2508 return ERR_PTR(-ENOMEM
);
2510 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
2514 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2515 if (!vmx
->guest_msrs
) {
2520 vmx
->host_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2521 if (!vmx
->host_msrs
)
2522 goto free_guest_msrs
;
2524 vmx
->vmcs
= alloc_vmcs();
2528 vmcs_clear(vmx
->vmcs
);
2531 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
2532 err
= vmx_vcpu_setup(vmx
);
2533 vmx_vcpu_put(&vmx
->vcpu
);
2541 free_vmcs(vmx
->vmcs
);
2543 kfree(vmx
->host_msrs
);
2545 kfree(vmx
->guest_msrs
);
2547 kvm_vcpu_uninit(&vmx
->vcpu
);
2549 kmem_cache_free(kvm_vcpu_cache
, vmx
);
2550 return ERR_PTR(err
);
2553 static void __init
vmx_check_processor_compat(void *rtn
)
2555 struct vmcs_config vmcs_conf
;
2558 if (setup_vmcs_config(&vmcs_conf
) < 0)
2560 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
2561 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
2562 smp_processor_id());
2567 static struct kvm_x86_ops vmx_x86_ops
= {
2568 .cpu_has_kvm_support
= cpu_has_kvm_support
,
2569 .disabled_by_bios
= vmx_disabled_by_bios
,
2570 .hardware_setup
= hardware_setup
,
2571 .hardware_unsetup
= hardware_unsetup
,
2572 .check_processor_compatibility
= vmx_check_processor_compat
,
2573 .hardware_enable
= hardware_enable
,
2574 .hardware_disable
= hardware_disable
,
2575 .cpu_has_accelerated_tpr
= cpu_has_vmx_virtualize_apic_accesses
,
2577 .vcpu_create
= vmx_create_vcpu
,
2578 .vcpu_free
= vmx_free_vcpu
,
2579 .vcpu_reset
= vmx_vcpu_reset
,
2581 .prepare_guest_switch
= vmx_save_host_state
,
2582 .vcpu_load
= vmx_vcpu_load
,
2583 .vcpu_put
= vmx_vcpu_put
,
2584 .vcpu_decache
= vmx_vcpu_decache
,
2586 .set_guest_debug
= set_guest_debug
,
2587 .guest_debug_pre
= kvm_guest_debug_pre
,
2588 .get_msr
= vmx_get_msr
,
2589 .set_msr
= vmx_set_msr
,
2590 .get_segment_base
= vmx_get_segment_base
,
2591 .get_segment
= vmx_get_segment
,
2592 .set_segment
= vmx_set_segment
,
2593 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
2594 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
2595 .set_cr0
= vmx_set_cr0
,
2596 .set_cr3
= vmx_set_cr3
,
2597 .set_cr4
= vmx_set_cr4
,
2598 #ifdef CONFIG_X86_64
2599 .set_efer
= vmx_set_efer
,
2601 .get_idt
= vmx_get_idt
,
2602 .set_idt
= vmx_set_idt
,
2603 .get_gdt
= vmx_get_gdt
,
2604 .set_gdt
= vmx_set_gdt
,
2605 .cache_regs
= vcpu_load_rsp_rip
,
2606 .decache_regs
= vcpu_put_rsp_rip
,
2607 .get_rflags
= vmx_get_rflags
,
2608 .set_rflags
= vmx_set_rflags
,
2610 .tlb_flush
= vmx_flush_tlb
,
2612 .run
= vmx_vcpu_run
,
2613 .handle_exit
= kvm_handle_exit
,
2614 .skip_emulated_instruction
= skip_emulated_instruction
,
2615 .patch_hypercall
= vmx_patch_hypercall
,
2616 .get_irq
= vmx_get_irq
,
2617 .set_irq
= vmx_inject_irq
,
2618 .queue_exception
= vmx_queue_exception
,
2619 .exception_injected
= vmx_exception_injected
,
2620 .inject_pending_irq
= vmx_intr_assist
,
2621 .inject_pending_vectors
= do_interrupt_requests
,
2623 .set_tss_addr
= vmx_set_tss_addr
,
2626 static int __init
vmx_init(void)
2631 vmx_io_bitmap_a
= alloc_page(GFP_KERNEL
| __GFP_HIGHMEM
);
2632 if (!vmx_io_bitmap_a
)
2635 vmx_io_bitmap_b
= alloc_page(GFP_KERNEL
| __GFP_HIGHMEM
);
2636 if (!vmx_io_bitmap_b
) {
2642 * Allow direct access to the PC debug port (it is often used for I/O
2643 * delays, but the vmexits simply slow things down).
2645 iova
= kmap(vmx_io_bitmap_a
);
2646 memset(iova
, 0xff, PAGE_SIZE
);
2647 clear_bit(0x80, iova
);
2648 kunmap(vmx_io_bitmap_a
);
2650 iova
= kmap(vmx_io_bitmap_b
);
2651 memset(iova
, 0xff, PAGE_SIZE
);
2652 kunmap(vmx_io_bitmap_b
);
2654 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
), THIS_MODULE
);
2658 if (bypass_guest_pf
)
2659 kvm_mmu_set_nonpresent_ptes(~0xffeull
, 0ull);
2664 __free_page(vmx_io_bitmap_b
);
2666 __free_page(vmx_io_bitmap_a
);
2670 static void __exit
vmx_exit(void)
2672 __free_page(vmx_io_bitmap_b
);
2673 __free_page(vmx_io_bitmap_a
);
2678 module_init(vmx_init
)
2679 module_exit(vmx_exit
)