Some modifications to files needed to succesfully compile ;)
[wrt350n-kernel.git] / arch / x86 / kvm / vmx.c
blobad36447e696e6c80bbf70ce53e0b88a7e2c2bbe8
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "vmx.h"
20 #include "segment_descriptor.h"
21 #include "mmu.h"
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
31 #include <asm/io.h>
32 #include <asm/desc.h>
34 MODULE_AUTHOR("Qumranet");
35 MODULE_LICENSE("GPL");
37 static int bypass_guest_pf = 1;
38 module_param(bypass_guest_pf, bool, 0);
40 struct vmcs {
41 u32 revision_id;
42 u32 abort;
43 char data[0];
46 struct vcpu_vmx {
47 struct kvm_vcpu vcpu;
48 int launched;
49 u8 fail;
50 u32 idt_vectoring_info;
51 struct kvm_msr_entry *guest_msrs;
52 struct kvm_msr_entry *host_msrs;
53 int nmsrs;
54 int save_nmsrs;
55 int msr_offset_efer;
56 #ifdef CONFIG_X86_64
57 int msr_offset_kernel_gs_base;
58 #endif
59 struct vmcs *vmcs;
60 struct {
61 int loaded;
62 u16 fs_sel, gs_sel, ldt_sel;
63 int gs_ldt_reload_needed;
64 int fs_reload_needed;
65 int guest_efer_loaded;
66 } host_state;
67 struct {
68 struct {
69 bool pending;
70 u8 vector;
71 unsigned rip;
72 } irq;
73 } rmode;
76 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
78 return container_of(vcpu, struct vcpu_vmx, vcpu);
81 static int init_rmode_tss(struct kvm *kvm);
83 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
84 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
86 static struct page *vmx_io_bitmap_a;
87 static struct page *vmx_io_bitmap_b;
89 static struct vmcs_config {
90 int size;
91 int order;
92 u32 revision_id;
93 u32 pin_based_exec_ctrl;
94 u32 cpu_based_exec_ctrl;
95 u32 cpu_based_2nd_exec_ctrl;
96 u32 vmexit_ctrl;
97 u32 vmentry_ctrl;
98 } vmcs_config;
100 #define VMX_SEGMENT_FIELD(seg) \
101 [VCPU_SREG_##seg] = { \
102 .selector = GUEST_##seg##_SELECTOR, \
103 .base = GUEST_##seg##_BASE, \
104 .limit = GUEST_##seg##_LIMIT, \
105 .ar_bytes = GUEST_##seg##_AR_BYTES, \
108 static struct kvm_vmx_segment_field {
109 unsigned selector;
110 unsigned base;
111 unsigned limit;
112 unsigned ar_bytes;
113 } kvm_vmx_segment_fields[] = {
114 VMX_SEGMENT_FIELD(CS),
115 VMX_SEGMENT_FIELD(DS),
116 VMX_SEGMENT_FIELD(ES),
117 VMX_SEGMENT_FIELD(FS),
118 VMX_SEGMENT_FIELD(GS),
119 VMX_SEGMENT_FIELD(SS),
120 VMX_SEGMENT_FIELD(TR),
121 VMX_SEGMENT_FIELD(LDTR),
125 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
126 * away by decrementing the array size.
128 static const u32 vmx_msr_index[] = {
129 #ifdef CONFIG_X86_64
130 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
131 #endif
132 MSR_EFER, MSR_K6_STAR,
134 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
136 static void load_msrs(struct kvm_msr_entry *e, int n)
138 int i;
140 for (i = 0; i < n; ++i)
141 wrmsrl(e[i].index, e[i].data);
144 static void save_msrs(struct kvm_msr_entry *e, int n)
146 int i;
148 for (i = 0; i < n; ++i)
149 rdmsrl(e[i].index, e[i].data);
152 static inline int is_page_fault(u32 intr_info)
154 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
155 INTR_INFO_VALID_MASK)) ==
156 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
159 static inline int is_no_device(u32 intr_info)
161 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
162 INTR_INFO_VALID_MASK)) ==
163 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
166 static inline int is_invalid_opcode(u32 intr_info)
168 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
169 INTR_INFO_VALID_MASK)) ==
170 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
173 static inline int is_external_interrupt(u32 intr_info)
175 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
176 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
179 static inline int cpu_has_vmx_tpr_shadow(void)
181 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
184 static inline int vm_need_tpr_shadow(struct kvm *kvm)
186 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
189 static inline int cpu_has_secondary_exec_ctrls(void)
191 return (vmcs_config.cpu_based_exec_ctrl &
192 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
195 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
197 return (vmcs_config.cpu_based_2nd_exec_ctrl &
198 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
201 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
203 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
204 (irqchip_in_kernel(kvm)));
207 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
209 int i;
211 for (i = 0; i < vmx->nmsrs; ++i)
212 if (vmx->guest_msrs[i].index == msr)
213 return i;
214 return -1;
217 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
219 int i;
221 i = __find_msr_index(vmx, msr);
222 if (i >= 0)
223 return &vmx->guest_msrs[i];
224 return NULL;
227 static void vmcs_clear(struct vmcs *vmcs)
229 u64 phys_addr = __pa(vmcs);
230 u8 error;
232 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
233 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
234 : "cc", "memory");
235 if (error)
236 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
237 vmcs, phys_addr);
240 static void __vcpu_clear(void *arg)
242 struct vcpu_vmx *vmx = arg;
243 int cpu = raw_smp_processor_id();
245 if (vmx->vcpu.cpu == cpu)
246 vmcs_clear(vmx->vmcs);
247 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
248 per_cpu(current_vmcs, cpu) = NULL;
249 rdtscll(vmx->vcpu.arch.host_tsc);
252 static void vcpu_clear(struct vcpu_vmx *vmx)
254 if (vmx->vcpu.cpu == -1)
255 return;
256 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
257 vmx->launched = 0;
260 static unsigned long vmcs_readl(unsigned long field)
262 unsigned long value;
264 asm volatile (ASM_VMX_VMREAD_RDX_RAX
265 : "=a"(value) : "d"(field) : "cc");
266 return value;
269 static u16 vmcs_read16(unsigned long field)
271 return vmcs_readl(field);
274 static u32 vmcs_read32(unsigned long field)
276 return vmcs_readl(field);
279 static u64 vmcs_read64(unsigned long field)
281 #ifdef CONFIG_X86_64
282 return vmcs_readl(field);
283 #else
284 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
285 #endif
288 static noinline void vmwrite_error(unsigned long field, unsigned long value)
290 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
291 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
292 dump_stack();
295 static void vmcs_writel(unsigned long field, unsigned long value)
297 u8 error;
299 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
300 : "=q"(error) : "a"(value), "d"(field) : "cc");
301 if (unlikely(error))
302 vmwrite_error(field, value);
305 static void vmcs_write16(unsigned long field, u16 value)
307 vmcs_writel(field, value);
310 static void vmcs_write32(unsigned long field, u32 value)
312 vmcs_writel(field, value);
315 static void vmcs_write64(unsigned long field, u64 value)
317 #ifdef CONFIG_X86_64
318 vmcs_writel(field, value);
319 #else
320 vmcs_writel(field, value);
321 asm volatile ("");
322 vmcs_writel(field+1, value >> 32);
323 #endif
326 static void vmcs_clear_bits(unsigned long field, u32 mask)
328 vmcs_writel(field, vmcs_readl(field) & ~mask);
331 static void vmcs_set_bits(unsigned long field, u32 mask)
333 vmcs_writel(field, vmcs_readl(field) | mask);
336 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
338 u32 eb;
340 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
341 if (!vcpu->fpu_active)
342 eb |= 1u << NM_VECTOR;
343 if (vcpu->guest_debug.enabled)
344 eb |= 1u << 1;
345 if (vcpu->arch.rmode.active)
346 eb = ~0;
347 vmcs_write32(EXCEPTION_BITMAP, eb);
350 static void reload_tss(void)
352 #ifndef CONFIG_X86_64
355 * VT restores TR but not its size. Useless.
357 struct descriptor_table gdt;
358 struct segment_descriptor *descs;
360 get_gdt(&gdt);
361 descs = (void *)gdt.base;
362 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
363 load_TR_desc();
364 #endif
367 static void load_transition_efer(struct vcpu_vmx *vmx)
369 int efer_offset = vmx->msr_offset_efer;
370 u64 host_efer = vmx->host_msrs[efer_offset].data;
371 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
372 u64 ignore_bits;
374 if (efer_offset < 0)
375 return;
377 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
378 * outside long mode
380 ignore_bits = EFER_NX | EFER_SCE;
381 #ifdef CONFIG_X86_64
382 ignore_bits |= EFER_LMA | EFER_LME;
383 /* SCE is meaningful only in long mode on Intel */
384 if (guest_efer & EFER_LMA)
385 ignore_bits &= ~(u64)EFER_SCE;
386 #endif
387 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
388 return;
390 vmx->host_state.guest_efer_loaded = 1;
391 guest_efer &= ~ignore_bits;
392 guest_efer |= host_efer & ignore_bits;
393 wrmsrl(MSR_EFER, guest_efer);
394 vmx->vcpu.stat.efer_reload++;
397 static void reload_host_efer(struct vcpu_vmx *vmx)
399 if (vmx->host_state.guest_efer_loaded) {
400 vmx->host_state.guest_efer_loaded = 0;
401 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
405 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
407 struct vcpu_vmx *vmx = to_vmx(vcpu);
409 if (vmx->host_state.loaded)
410 return;
412 vmx->host_state.loaded = 1;
414 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
415 * allow segment selectors with cpl > 0 or ti == 1.
417 vmx->host_state.ldt_sel = read_ldt();
418 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
419 vmx->host_state.fs_sel = read_fs();
420 if (!(vmx->host_state.fs_sel & 7)) {
421 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
422 vmx->host_state.fs_reload_needed = 0;
423 } else {
424 vmcs_write16(HOST_FS_SELECTOR, 0);
425 vmx->host_state.fs_reload_needed = 1;
427 vmx->host_state.gs_sel = read_gs();
428 if (!(vmx->host_state.gs_sel & 7))
429 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
430 else {
431 vmcs_write16(HOST_GS_SELECTOR, 0);
432 vmx->host_state.gs_ldt_reload_needed = 1;
435 #ifdef CONFIG_X86_64
436 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
437 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
438 #else
439 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
440 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
441 #endif
443 #ifdef CONFIG_X86_64
444 if (is_long_mode(&vmx->vcpu))
445 save_msrs(vmx->host_msrs +
446 vmx->msr_offset_kernel_gs_base, 1);
448 #endif
449 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
450 load_transition_efer(vmx);
453 static void vmx_load_host_state(struct vcpu_vmx *vmx)
455 unsigned long flags;
457 if (!vmx->host_state.loaded)
458 return;
460 ++vmx->vcpu.stat.host_state_reload;
461 vmx->host_state.loaded = 0;
462 if (vmx->host_state.fs_reload_needed)
463 load_fs(vmx->host_state.fs_sel);
464 if (vmx->host_state.gs_ldt_reload_needed) {
465 load_ldt(vmx->host_state.ldt_sel);
467 * If we have to reload gs, we must take care to
468 * preserve our gs base.
470 local_irq_save(flags);
471 load_gs(vmx->host_state.gs_sel);
472 #ifdef CONFIG_X86_64
473 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
474 #endif
475 local_irq_restore(flags);
477 reload_tss();
478 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
479 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
480 reload_host_efer(vmx);
484 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
485 * vcpu mutex is already taken.
487 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
489 struct vcpu_vmx *vmx = to_vmx(vcpu);
490 u64 phys_addr = __pa(vmx->vmcs);
491 u64 tsc_this, delta;
493 if (vcpu->cpu != cpu) {
494 vcpu_clear(vmx);
495 kvm_migrate_apic_timer(vcpu);
498 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
499 u8 error;
501 per_cpu(current_vmcs, cpu) = vmx->vmcs;
502 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
503 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
504 : "cc");
505 if (error)
506 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
507 vmx->vmcs, phys_addr);
510 if (vcpu->cpu != cpu) {
511 struct descriptor_table dt;
512 unsigned long sysenter_esp;
514 vcpu->cpu = cpu;
516 * Linux uses per-cpu TSS and GDT, so set these when switching
517 * processors.
519 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
520 get_gdt(&dt);
521 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
523 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
524 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
527 * Make sure the time stamp counter is monotonous.
529 rdtscll(tsc_this);
530 delta = vcpu->arch.host_tsc - tsc_this;
531 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
535 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
537 vmx_load_host_state(to_vmx(vcpu));
540 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
542 if (vcpu->fpu_active)
543 return;
544 vcpu->fpu_active = 1;
545 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
546 if (vcpu->arch.cr0 & X86_CR0_TS)
547 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
548 update_exception_bitmap(vcpu);
551 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
553 if (!vcpu->fpu_active)
554 return;
555 vcpu->fpu_active = 0;
556 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
557 update_exception_bitmap(vcpu);
560 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
562 vcpu_clear(to_vmx(vcpu));
565 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
567 return vmcs_readl(GUEST_RFLAGS);
570 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
572 if (vcpu->arch.rmode.active)
573 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
574 vmcs_writel(GUEST_RFLAGS, rflags);
577 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
579 unsigned long rip;
580 u32 interruptibility;
582 rip = vmcs_readl(GUEST_RIP);
583 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
584 vmcs_writel(GUEST_RIP, rip);
587 * We emulated an instruction, so temporary interrupt blocking
588 * should be removed, if set.
590 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
591 if (interruptibility & 3)
592 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
593 interruptibility & ~3);
594 vcpu->arch.interrupt_window_open = 1;
597 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
598 bool has_error_code, u32 error_code)
600 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
601 nr | INTR_TYPE_EXCEPTION
602 | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
603 | INTR_INFO_VALID_MASK);
604 if (has_error_code)
605 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
608 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
610 struct vcpu_vmx *vmx = to_vmx(vcpu);
612 return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
616 * Swap MSR entry in host/guest MSR entry array.
618 #ifdef CONFIG_X86_64
619 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
621 struct kvm_msr_entry tmp;
623 tmp = vmx->guest_msrs[to];
624 vmx->guest_msrs[to] = vmx->guest_msrs[from];
625 vmx->guest_msrs[from] = tmp;
626 tmp = vmx->host_msrs[to];
627 vmx->host_msrs[to] = vmx->host_msrs[from];
628 vmx->host_msrs[from] = tmp;
630 #endif
633 * Set up the vmcs to automatically save and restore system
634 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
635 * mode, as fiddling with msrs is very expensive.
637 static void setup_msrs(struct vcpu_vmx *vmx)
639 int save_nmsrs;
641 save_nmsrs = 0;
642 #ifdef CONFIG_X86_64
643 if (is_long_mode(&vmx->vcpu)) {
644 int index;
646 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
647 if (index >= 0)
648 move_msr_up(vmx, index, save_nmsrs++);
649 index = __find_msr_index(vmx, MSR_LSTAR);
650 if (index >= 0)
651 move_msr_up(vmx, index, save_nmsrs++);
652 index = __find_msr_index(vmx, MSR_CSTAR);
653 if (index >= 0)
654 move_msr_up(vmx, index, save_nmsrs++);
655 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
656 if (index >= 0)
657 move_msr_up(vmx, index, save_nmsrs++);
659 * MSR_K6_STAR is only needed on long mode guests, and only
660 * if efer.sce is enabled.
662 index = __find_msr_index(vmx, MSR_K6_STAR);
663 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
664 move_msr_up(vmx, index, save_nmsrs++);
666 #endif
667 vmx->save_nmsrs = save_nmsrs;
669 #ifdef CONFIG_X86_64
670 vmx->msr_offset_kernel_gs_base =
671 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
672 #endif
673 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
677 * reads and returns guest's timestamp counter "register"
678 * guest_tsc = host_tsc + tsc_offset -- 21.3
680 static u64 guest_read_tsc(void)
682 u64 host_tsc, tsc_offset;
684 rdtscll(host_tsc);
685 tsc_offset = vmcs_read64(TSC_OFFSET);
686 return host_tsc + tsc_offset;
690 * writes 'guest_tsc' into guest's timestamp counter "register"
691 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
693 static void guest_write_tsc(u64 guest_tsc)
695 u64 host_tsc;
697 rdtscll(host_tsc);
698 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
702 * Reads an msr value (of 'msr_index') into 'pdata'.
703 * Returns 0 on success, non-0 otherwise.
704 * Assumes vcpu_load() was already called.
706 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
708 u64 data;
709 struct kvm_msr_entry *msr;
711 if (!pdata) {
712 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
713 return -EINVAL;
716 switch (msr_index) {
717 #ifdef CONFIG_X86_64
718 case MSR_FS_BASE:
719 data = vmcs_readl(GUEST_FS_BASE);
720 break;
721 case MSR_GS_BASE:
722 data = vmcs_readl(GUEST_GS_BASE);
723 break;
724 case MSR_EFER:
725 return kvm_get_msr_common(vcpu, msr_index, pdata);
726 #endif
727 case MSR_IA32_TIME_STAMP_COUNTER:
728 data = guest_read_tsc();
729 break;
730 case MSR_IA32_SYSENTER_CS:
731 data = vmcs_read32(GUEST_SYSENTER_CS);
732 break;
733 case MSR_IA32_SYSENTER_EIP:
734 data = vmcs_readl(GUEST_SYSENTER_EIP);
735 break;
736 case MSR_IA32_SYSENTER_ESP:
737 data = vmcs_readl(GUEST_SYSENTER_ESP);
738 break;
739 default:
740 msr = find_msr_entry(to_vmx(vcpu), msr_index);
741 if (msr) {
742 data = msr->data;
743 break;
745 return kvm_get_msr_common(vcpu, msr_index, pdata);
748 *pdata = data;
749 return 0;
753 * Writes msr value into into the appropriate "register".
754 * Returns 0 on success, non-0 otherwise.
755 * Assumes vcpu_load() was already called.
757 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
759 struct vcpu_vmx *vmx = to_vmx(vcpu);
760 struct kvm_msr_entry *msr;
761 int ret = 0;
763 switch (msr_index) {
764 #ifdef CONFIG_X86_64
765 case MSR_EFER:
766 ret = kvm_set_msr_common(vcpu, msr_index, data);
767 if (vmx->host_state.loaded) {
768 reload_host_efer(vmx);
769 load_transition_efer(vmx);
771 break;
772 case MSR_FS_BASE:
773 vmcs_writel(GUEST_FS_BASE, data);
774 break;
775 case MSR_GS_BASE:
776 vmcs_writel(GUEST_GS_BASE, data);
777 break;
778 #endif
779 case MSR_IA32_SYSENTER_CS:
780 vmcs_write32(GUEST_SYSENTER_CS, data);
781 break;
782 case MSR_IA32_SYSENTER_EIP:
783 vmcs_writel(GUEST_SYSENTER_EIP, data);
784 break;
785 case MSR_IA32_SYSENTER_ESP:
786 vmcs_writel(GUEST_SYSENTER_ESP, data);
787 break;
788 case MSR_IA32_TIME_STAMP_COUNTER:
789 guest_write_tsc(data);
790 break;
791 default:
792 msr = find_msr_entry(vmx, msr_index);
793 if (msr) {
794 msr->data = data;
795 if (vmx->host_state.loaded)
796 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
797 break;
799 ret = kvm_set_msr_common(vcpu, msr_index, data);
802 return ret;
806 * Sync the rsp and rip registers into the vcpu structure. This allows
807 * registers to be accessed by indexing vcpu->arch.regs.
809 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
811 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
812 vcpu->arch.rip = vmcs_readl(GUEST_RIP);
816 * Syncs rsp and rip back into the vmcs. Should be called after possible
817 * modification.
819 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
821 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
822 vmcs_writel(GUEST_RIP, vcpu->arch.rip);
825 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
827 unsigned long dr7 = 0x400;
828 int old_singlestep;
830 old_singlestep = vcpu->guest_debug.singlestep;
832 vcpu->guest_debug.enabled = dbg->enabled;
833 if (vcpu->guest_debug.enabled) {
834 int i;
836 dr7 |= 0x200; /* exact */
837 for (i = 0; i < 4; ++i) {
838 if (!dbg->breakpoints[i].enabled)
839 continue;
840 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
841 dr7 |= 2 << (i*2); /* global enable */
842 dr7 |= 0 << (i*4+16); /* execution breakpoint */
845 vcpu->guest_debug.singlestep = dbg->singlestep;
846 } else
847 vcpu->guest_debug.singlestep = 0;
849 if (old_singlestep && !vcpu->guest_debug.singlestep) {
850 unsigned long flags;
852 flags = vmcs_readl(GUEST_RFLAGS);
853 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
854 vmcs_writel(GUEST_RFLAGS, flags);
857 update_exception_bitmap(vcpu);
858 vmcs_writel(GUEST_DR7, dr7);
860 return 0;
863 static int vmx_get_irq(struct kvm_vcpu *vcpu)
865 struct vcpu_vmx *vmx = to_vmx(vcpu);
866 u32 idtv_info_field;
868 idtv_info_field = vmx->idt_vectoring_info;
869 if (idtv_info_field & INTR_INFO_VALID_MASK) {
870 if (is_external_interrupt(idtv_info_field))
871 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
872 else
873 printk(KERN_DEBUG "pending exception: not handled yet\n");
875 return -1;
878 static __init int cpu_has_kvm_support(void)
880 unsigned long ecx = cpuid_ecx(1);
881 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
884 static __init int vmx_disabled_by_bios(void)
886 u64 msr;
888 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
889 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
890 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
891 == MSR_IA32_FEATURE_CONTROL_LOCKED;
892 /* locked but not enabled */
895 static void hardware_enable(void *garbage)
897 int cpu = raw_smp_processor_id();
898 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
899 u64 old;
901 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
902 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
903 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
904 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
905 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
906 /* enable and lock */
907 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
908 MSR_IA32_FEATURE_CONTROL_LOCKED |
909 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
910 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
911 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
912 : "memory", "cc");
915 static void hardware_disable(void *garbage)
917 asm volatile (ASM_VMX_VMXOFF : : : "cc");
920 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
921 u32 msr, u32 *result)
923 u32 vmx_msr_low, vmx_msr_high;
924 u32 ctl = ctl_min | ctl_opt;
926 rdmsr(msr, vmx_msr_low, vmx_msr_high);
928 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
929 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
931 /* Ensure minimum (required) set of control bits are supported. */
932 if (ctl_min & ~ctl)
933 return -EIO;
935 *result = ctl;
936 return 0;
939 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
941 u32 vmx_msr_low, vmx_msr_high;
942 u32 min, opt;
943 u32 _pin_based_exec_control = 0;
944 u32 _cpu_based_exec_control = 0;
945 u32 _cpu_based_2nd_exec_control = 0;
946 u32 _vmexit_control = 0;
947 u32 _vmentry_control = 0;
949 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
950 opt = 0;
951 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
952 &_pin_based_exec_control) < 0)
953 return -EIO;
955 min = CPU_BASED_HLT_EXITING |
956 #ifdef CONFIG_X86_64
957 CPU_BASED_CR8_LOAD_EXITING |
958 CPU_BASED_CR8_STORE_EXITING |
959 #endif
960 CPU_BASED_USE_IO_BITMAPS |
961 CPU_BASED_MOV_DR_EXITING |
962 CPU_BASED_USE_TSC_OFFSETING;
963 opt = CPU_BASED_TPR_SHADOW |
964 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
965 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
966 &_cpu_based_exec_control) < 0)
967 return -EIO;
968 #ifdef CONFIG_X86_64
969 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
970 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
971 ~CPU_BASED_CR8_STORE_EXITING;
972 #endif
973 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
974 min = 0;
975 opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
976 SECONDARY_EXEC_WBINVD_EXITING;
977 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
978 &_cpu_based_2nd_exec_control) < 0)
979 return -EIO;
981 #ifndef CONFIG_X86_64
982 if (!(_cpu_based_2nd_exec_control &
983 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
984 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
985 #endif
987 min = 0;
988 #ifdef CONFIG_X86_64
989 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
990 #endif
991 opt = 0;
992 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
993 &_vmexit_control) < 0)
994 return -EIO;
996 min = opt = 0;
997 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
998 &_vmentry_control) < 0)
999 return -EIO;
1001 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1003 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1004 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1005 return -EIO;
1007 #ifdef CONFIG_X86_64
1008 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1009 if (vmx_msr_high & (1u<<16))
1010 return -EIO;
1011 #endif
1013 /* Require Write-Back (WB) memory type for VMCS accesses. */
1014 if (((vmx_msr_high >> 18) & 15) != 6)
1015 return -EIO;
1017 vmcs_conf->size = vmx_msr_high & 0x1fff;
1018 vmcs_conf->order = get_order(vmcs_config.size);
1019 vmcs_conf->revision_id = vmx_msr_low;
1021 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1022 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1023 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1024 vmcs_conf->vmexit_ctrl = _vmexit_control;
1025 vmcs_conf->vmentry_ctrl = _vmentry_control;
1027 return 0;
1030 static struct vmcs *alloc_vmcs_cpu(int cpu)
1032 int node = cpu_to_node(cpu);
1033 struct page *pages;
1034 struct vmcs *vmcs;
1036 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1037 if (!pages)
1038 return NULL;
1039 vmcs = page_address(pages);
1040 memset(vmcs, 0, vmcs_config.size);
1041 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1042 return vmcs;
1045 static struct vmcs *alloc_vmcs(void)
1047 return alloc_vmcs_cpu(raw_smp_processor_id());
1050 static void free_vmcs(struct vmcs *vmcs)
1052 free_pages((unsigned long)vmcs, vmcs_config.order);
1055 static void free_kvm_area(void)
1057 int cpu;
1059 for_each_online_cpu(cpu)
1060 free_vmcs(per_cpu(vmxarea, cpu));
1063 static __init int alloc_kvm_area(void)
1065 int cpu;
1067 for_each_online_cpu(cpu) {
1068 struct vmcs *vmcs;
1070 vmcs = alloc_vmcs_cpu(cpu);
1071 if (!vmcs) {
1072 free_kvm_area();
1073 return -ENOMEM;
1076 per_cpu(vmxarea, cpu) = vmcs;
1078 return 0;
1081 static __init int hardware_setup(void)
1083 if (setup_vmcs_config(&vmcs_config) < 0)
1084 return -EIO;
1085 return alloc_kvm_area();
1088 static __exit void hardware_unsetup(void)
1090 free_kvm_area();
1093 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1095 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1097 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1098 vmcs_write16(sf->selector, save->selector);
1099 vmcs_writel(sf->base, save->base);
1100 vmcs_write32(sf->limit, save->limit);
1101 vmcs_write32(sf->ar_bytes, save->ar);
1102 } else {
1103 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1104 << AR_DPL_SHIFT;
1105 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1109 static void enter_pmode(struct kvm_vcpu *vcpu)
1111 unsigned long flags;
1113 vcpu->arch.rmode.active = 0;
1115 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1116 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1117 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1119 flags = vmcs_readl(GUEST_RFLAGS);
1120 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1121 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1122 vmcs_writel(GUEST_RFLAGS, flags);
1124 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1125 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1127 update_exception_bitmap(vcpu);
1129 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1130 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1131 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1132 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1134 vmcs_write16(GUEST_SS_SELECTOR, 0);
1135 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1137 vmcs_write16(GUEST_CS_SELECTOR,
1138 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1139 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1142 static gva_t rmode_tss_base(struct kvm *kvm)
1144 if (!kvm->arch.tss_addr) {
1145 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1146 kvm->memslots[0].npages - 3;
1147 return base_gfn << PAGE_SHIFT;
1149 return kvm->arch.tss_addr;
1152 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1154 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1156 save->selector = vmcs_read16(sf->selector);
1157 save->base = vmcs_readl(sf->base);
1158 save->limit = vmcs_read32(sf->limit);
1159 save->ar = vmcs_read32(sf->ar_bytes);
1160 vmcs_write16(sf->selector, save->base >> 4);
1161 vmcs_write32(sf->base, save->base & 0xfffff);
1162 vmcs_write32(sf->limit, 0xffff);
1163 vmcs_write32(sf->ar_bytes, 0xf3);
1166 static void enter_rmode(struct kvm_vcpu *vcpu)
1168 unsigned long flags;
1170 vcpu->arch.rmode.active = 1;
1172 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1173 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1175 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1176 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1178 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1179 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1181 flags = vmcs_readl(GUEST_RFLAGS);
1182 vcpu->arch.rmode.save_iopl
1183 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1185 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1187 vmcs_writel(GUEST_RFLAGS, flags);
1188 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1189 update_exception_bitmap(vcpu);
1191 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1192 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1193 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1195 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1196 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1197 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1198 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1199 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1201 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1202 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1203 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1204 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1206 kvm_mmu_reset_context(vcpu);
1207 init_rmode_tss(vcpu->kvm);
1210 #ifdef CONFIG_X86_64
1212 static void enter_lmode(struct kvm_vcpu *vcpu)
1214 u32 guest_tr_ar;
1216 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1217 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1218 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1219 __FUNCTION__);
1220 vmcs_write32(GUEST_TR_AR_BYTES,
1221 (guest_tr_ar & ~AR_TYPE_MASK)
1222 | AR_TYPE_BUSY_64_TSS);
1225 vcpu->arch.shadow_efer |= EFER_LMA;
1227 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1228 vmcs_write32(VM_ENTRY_CONTROLS,
1229 vmcs_read32(VM_ENTRY_CONTROLS)
1230 | VM_ENTRY_IA32E_MODE);
1233 static void exit_lmode(struct kvm_vcpu *vcpu)
1235 vcpu->arch.shadow_efer &= ~EFER_LMA;
1237 vmcs_write32(VM_ENTRY_CONTROLS,
1238 vmcs_read32(VM_ENTRY_CONTROLS)
1239 & ~VM_ENTRY_IA32E_MODE);
1242 #endif
1244 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1246 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1247 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1250 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1252 vmx_fpu_deactivate(vcpu);
1254 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1255 enter_pmode(vcpu);
1257 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1258 enter_rmode(vcpu);
1260 #ifdef CONFIG_X86_64
1261 if (vcpu->arch.shadow_efer & EFER_LME) {
1262 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1263 enter_lmode(vcpu);
1264 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1265 exit_lmode(vcpu);
1267 #endif
1269 vmcs_writel(CR0_READ_SHADOW, cr0);
1270 vmcs_writel(GUEST_CR0,
1271 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1272 vcpu->arch.cr0 = cr0;
1274 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1275 vmx_fpu_activate(vcpu);
1278 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1280 vmcs_writel(GUEST_CR3, cr3);
1281 if (vcpu->arch.cr0 & X86_CR0_PE)
1282 vmx_fpu_deactivate(vcpu);
1285 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1287 vmcs_writel(CR4_READ_SHADOW, cr4);
1288 vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
1289 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1290 vcpu->arch.cr4 = cr4;
1293 #ifdef CONFIG_X86_64
1295 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1297 struct vcpu_vmx *vmx = to_vmx(vcpu);
1298 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1300 vcpu->arch.shadow_efer = efer;
1301 if (efer & EFER_LMA) {
1302 vmcs_write32(VM_ENTRY_CONTROLS,
1303 vmcs_read32(VM_ENTRY_CONTROLS) |
1304 VM_ENTRY_IA32E_MODE);
1305 msr->data = efer;
1307 } else {
1308 vmcs_write32(VM_ENTRY_CONTROLS,
1309 vmcs_read32(VM_ENTRY_CONTROLS) &
1310 ~VM_ENTRY_IA32E_MODE);
1312 msr->data = efer & ~EFER_LME;
1314 setup_msrs(vmx);
1317 #endif
1319 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1321 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1323 return vmcs_readl(sf->base);
1326 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1327 struct kvm_segment *var, int seg)
1329 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1330 u32 ar;
1332 var->base = vmcs_readl(sf->base);
1333 var->limit = vmcs_read32(sf->limit);
1334 var->selector = vmcs_read16(sf->selector);
1335 ar = vmcs_read32(sf->ar_bytes);
1336 if (ar & AR_UNUSABLE_MASK)
1337 ar = 0;
1338 var->type = ar & 15;
1339 var->s = (ar >> 4) & 1;
1340 var->dpl = (ar >> 5) & 3;
1341 var->present = (ar >> 7) & 1;
1342 var->avl = (ar >> 12) & 1;
1343 var->l = (ar >> 13) & 1;
1344 var->db = (ar >> 14) & 1;
1345 var->g = (ar >> 15) & 1;
1346 var->unusable = (ar >> 16) & 1;
1349 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1351 u32 ar;
1353 if (var->unusable)
1354 ar = 1 << 16;
1355 else {
1356 ar = var->type & 15;
1357 ar |= (var->s & 1) << 4;
1358 ar |= (var->dpl & 3) << 5;
1359 ar |= (var->present & 1) << 7;
1360 ar |= (var->avl & 1) << 12;
1361 ar |= (var->l & 1) << 13;
1362 ar |= (var->db & 1) << 14;
1363 ar |= (var->g & 1) << 15;
1365 if (ar == 0) /* a 0 value means unusable */
1366 ar = AR_UNUSABLE_MASK;
1368 return ar;
1371 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1372 struct kvm_segment *var, int seg)
1374 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1375 u32 ar;
1377 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1378 vcpu->arch.rmode.tr.selector = var->selector;
1379 vcpu->arch.rmode.tr.base = var->base;
1380 vcpu->arch.rmode.tr.limit = var->limit;
1381 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1382 return;
1384 vmcs_writel(sf->base, var->base);
1385 vmcs_write32(sf->limit, var->limit);
1386 vmcs_write16(sf->selector, var->selector);
1387 if (vcpu->arch.rmode.active && var->s) {
1389 * Hack real-mode segments into vm86 compatibility.
1391 if (var->base == 0xffff0000 && var->selector == 0xf000)
1392 vmcs_writel(sf->base, 0xf0000);
1393 ar = 0xf3;
1394 } else
1395 ar = vmx_segment_access_rights(var);
1396 vmcs_write32(sf->ar_bytes, ar);
1399 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1401 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1403 *db = (ar >> 14) & 1;
1404 *l = (ar >> 13) & 1;
1407 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1409 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1410 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1413 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1415 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1416 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1419 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1421 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1422 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1425 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1427 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1428 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1431 static int init_rmode_tss(struct kvm *kvm)
1433 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1434 u16 data = 0;
1435 int ret = 0;
1436 int r;
1438 down_read(&current->mm->mmap_sem);
1439 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1440 if (r < 0)
1441 goto out;
1442 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1443 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1444 if (r < 0)
1445 goto out;
1446 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1447 if (r < 0)
1448 goto out;
1449 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1450 if (r < 0)
1451 goto out;
1452 data = ~0;
1453 r = kvm_write_guest_page(kvm, fn, &data,
1454 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1455 sizeof(u8));
1456 if (r < 0)
1457 goto out;
1459 ret = 1;
1460 out:
1461 up_read(&current->mm->mmap_sem);
1462 return ret;
1465 static void seg_setup(int seg)
1467 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1469 vmcs_write16(sf->selector, 0);
1470 vmcs_writel(sf->base, 0);
1471 vmcs_write32(sf->limit, 0xffff);
1472 vmcs_write32(sf->ar_bytes, 0x93);
1475 static int alloc_apic_access_page(struct kvm *kvm)
1477 struct kvm_userspace_memory_region kvm_userspace_mem;
1478 int r = 0;
1480 down_write(&current->mm->mmap_sem);
1481 if (kvm->arch.apic_access_page)
1482 goto out;
1483 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1484 kvm_userspace_mem.flags = 0;
1485 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1486 kvm_userspace_mem.memory_size = PAGE_SIZE;
1487 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1488 if (r)
1489 goto out;
1490 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1491 out:
1492 up_write(&current->mm->mmap_sem);
1493 return r;
1497 * Sets up the vmcs for emulated real mode.
1499 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1501 u32 host_sysenter_cs;
1502 u32 junk;
1503 unsigned long a;
1504 struct descriptor_table dt;
1505 int i;
1506 unsigned long kvm_vmx_return;
1507 u32 exec_control;
1509 /* I/O */
1510 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1511 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1513 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1515 /* Control */
1516 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1517 vmcs_config.pin_based_exec_ctrl);
1519 exec_control = vmcs_config.cpu_based_exec_ctrl;
1520 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1521 exec_control &= ~CPU_BASED_TPR_SHADOW;
1522 #ifdef CONFIG_X86_64
1523 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1524 CPU_BASED_CR8_LOAD_EXITING;
1525 #endif
1527 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1529 if (cpu_has_secondary_exec_ctrls()) {
1530 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1531 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1532 exec_control &=
1533 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1534 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1537 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1538 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1539 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1541 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1542 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1543 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1545 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1546 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1547 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1548 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1549 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1550 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1551 #ifdef CONFIG_X86_64
1552 rdmsrl(MSR_FS_BASE, a);
1553 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1554 rdmsrl(MSR_GS_BASE, a);
1555 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1556 #else
1557 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1558 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1559 #endif
1561 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1563 get_idt(&dt);
1564 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1566 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1567 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1568 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1569 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1570 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1572 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1573 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1574 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1575 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1576 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1577 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1579 for (i = 0; i < NR_VMX_MSR; ++i) {
1580 u32 index = vmx_msr_index[i];
1581 u32 data_low, data_high;
1582 u64 data;
1583 int j = vmx->nmsrs;
1585 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1586 continue;
1587 if (wrmsr_safe(index, data_low, data_high) < 0)
1588 continue;
1589 data = data_low | ((u64)data_high << 32);
1590 vmx->host_msrs[j].index = index;
1591 vmx->host_msrs[j].reserved = 0;
1592 vmx->host_msrs[j].data = data;
1593 vmx->guest_msrs[j] = vmx->host_msrs[j];
1594 ++vmx->nmsrs;
1597 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1599 /* 22.2.1, 20.8.1 */
1600 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1602 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1603 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1605 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1606 if (alloc_apic_access_page(vmx->vcpu.kvm) != 0)
1607 return -ENOMEM;
1609 return 0;
1612 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1614 struct vcpu_vmx *vmx = to_vmx(vcpu);
1615 u64 msr;
1616 int ret;
1618 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1619 ret = -ENOMEM;
1620 goto out;
1623 vmx->vcpu.arch.rmode.active = 0;
1625 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1626 set_cr8(&vmx->vcpu, 0);
1627 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1628 if (vmx->vcpu.vcpu_id == 0)
1629 msr |= MSR_IA32_APICBASE_BSP;
1630 kvm_set_apic_base(&vmx->vcpu, msr);
1632 fx_init(&vmx->vcpu);
1635 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1636 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1638 if (vmx->vcpu.vcpu_id == 0) {
1639 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1640 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1641 } else {
1642 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
1643 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
1645 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1646 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1648 seg_setup(VCPU_SREG_DS);
1649 seg_setup(VCPU_SREG_ES);
1650 seg_setup(VCPU_SREG_FS);
1651 seg_setup(VCPU_SREG_GS);
1652 seg_setup(VCPU_SREG_SS);
1654 vmcs_write16(GUEST_TR_SELECTOR, 0);
1655 vmcs_writel(GUEST_TR_BASE, 0);
1656 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1657 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1659 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1660 vmcs_writel(GUEST_LDTR_BASE, 0);
1661 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1662 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1664 vmcs_write32(GUEST_SYSENTER_CS, 0);
1665 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1666 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1668 vmcs_writel(GUEST_RFLAGS, 0x02);
1669 if (vmx->vcpu.vcpu_id == 0)
1670 vmcs_writel(GUEST_RIP, 0xfff0);
1671 else
1672 vmcs_writel(GUEST_RIP, 0);
1673 vmcs_writel(GUEST_RSP, 0);
1675 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1676 vmcs_writel(GUEST_DR7, 0x400);
1678 vmcs_writel(GUEST_GDTR_BASE, 0);
1679 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1681 vmcs_writel(GUEST_IDTR_BASE, 0);
1682 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1684 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1685 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1686 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1688 guest_write_tsc(0);
1690 /* Special registers */
1691 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1693 setup_msrs(vmx);
1695 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1697 if (cpu_has_vmx_tpr_shadow()) {
1698 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1699 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1700 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1701 page_to_phys(vmx->vcpu.arch.apic->regs_page));
1702 vmcs_write32(TPR_THRESHOLD, 0);
1705 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1706 vmcs_write64(APIC_ACCESS_ADDR,
1707 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
1709 vmx->vcpu.arch.cr0 = 0x60000010;
1710 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
1711 vmx_set_cr4(&vmx->vcpu, 0);
1712 #ifdef CONFIG_X86_64
1713 vmx_set_efer(&vmx->vcpu, 0);
1714 #endif
1715 vmx_fpu_activate(&vmx->vcpu);
1716 update_exception_bitmap(&vmx->vcpu);
1718 return 0;
1720 out:
1721 return ret;
1724 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1726 struct vcpu_vmx *vmx = to_vmx(vcpu);
1728 if (vcpu->arch.rmode.active) {
1729 vmx->rmode.irq.pending = true;
1730 vmx->rmode.irq.vector = irq;
1731 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
1732 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1733 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
1734 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1735 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
1736 return;
1738 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1739 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1742 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1744 int word_index = __ffs(vcpu->arch.irq_summary);
1745 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1746 int irq = word_index * BITS_PER_LONG + bit_index;
1748 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1749 if (!vcpu->arch.irq_pending[word_index])
1750 clear_bit(word_index, &vcpu->arch.irq_summary);
1751 vmx_inject_irq(vcpu, irq);
1755 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1756 struct kvm_run *kvm_run)
1758 u32 cpu_based_vm_exec_control;
1760 vcpu->arch.interrupt_window_open =
1761 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1762 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1764 if (vcpu->arch.interrupt_window_open &&
1765 vcpu->arch.irq_summary &&
1766 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1768 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1770 kvm_do_inject_irq(vcpu);
1772 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1773 if (!vcpu->arch.interrupt_window_open &&
1774 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
1776 * Interrupts blocked. Wait for unblock.
1778 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1779 else
1780 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1781 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1784 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
1786 int ret;
1787 struct kvm_userspace_memory_region tss_mem = {
1788 .slot = 8,
1789 .guest_phys_addr = addr,
1790 .memory_size = PAGE_SIZE * 3,
1791 .flags = 0,
1794 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
1795 if (ret)
1796 return ret;
1797 kvm->arch.tss_addr = addr;
1798 return 0;
1801 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1803 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1805 set_debugreg(dbg->bp[0], 0);
1806 set_debugreg(dbg->bp[1], 1);
1807 set_debugreg(dbg->bp[2], 2);
1808 set_debugreg(dbg->bp[3], 3);
1810 if (dbg->singlestep) {
1811 unsigned long flags;
1813 flags = vmcs_readl(GUEST_RFLAGS);
1814 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1815 vmcs_writel(GUEST_RFLAGS, flags);
1819 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1820 int vec, u32 err_code)
1822 if (!vcpu->arch.rmode.active)
1823 return 0;
1826 * Instruction with address size override prefix opcode 0x67
1827 * Cause the #SS fault with 0 error code in VM86 mode.
1829 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1830 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
1831 return 1;
1832 return 0;
1835 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1837 struct vcpu_vmx *vmx = to_vmx(vcpu);
1838 u32 intr_info, error_code;
1839 unsigned long cr2, rip;
1840 u32 vect_info;
1841 enum emulation_result er;
1843 vect_info = vmx->idt_vectoring_info;
1844 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1846 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1847 !is_page_fault(intr_info))
1848 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1849 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1851 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1852 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1853 set_bit(irq, vcpu->arch.irq_pending);
1854 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1857 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1858 return 1; /* already handled by vmx_vcpu_run() */
1860 if (is_no_device(intr_info)) {
1861 vmx_fpu_activate(vcpu);
1862 return 1;
1865 if (is_invalid_opcode(intr_info)) {
1866 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1867 if (er != EMULATE_DONE)
1868 kvm_queue_exception(vcpu, UD_VECTOR);
1869 return 1;
1872 error_code = 0;
1873 rip = vmcs_readl(GUEST_RIP);
1874 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1875 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1876 if (is_page_fault(intr_info)) {
1877 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1878 return kvm_mmu_page_fault(vcpu, cr2, error_code);
1881 if (vcpu->arch.rmode.active &&
1882 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1883 error_code)) {
1884 if (vcpu->arch.halt_request) {
1885 vcpu->arch.halt_request = 0;
1886 return kvm_emulate_halt(vcpu);
1888 return 1;
1891 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
1892 (INTR_TYPE_EXCEPTION | 1)) {
1893 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1894 return 0;
1896 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1897 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1898 kvm_run->ex.error_code = error_code;
1899 return 0;
1902 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1903 struct kvm_run *kvm_run)
1905 ++vcpu->stat.irq_exits;
1906 return 1;
1909 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1911 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1912 return 0;
1915 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1917 unsigned long exit_qualification;
1918 int size, down, in, string, rep;
1919 unsigned port;
1921 ++vcpu->stat.io_exits;
1922 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1923 string = (exit_qualification & 16) != 0;
1925 if (string) {
1926 if (emulate_instruction(vcpu,
1927 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1928 return 0;
1929 return 1;
1932 size = (exit_qualification & 7) + 1;
1933 in = (exit_qualification & 8) != 0;
1934 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1935 rep = (exit_qualification & 32) != 0;
1936 port = exit_qualification >> 16;
1938 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1941 static void
1942 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1945 * Patch in the VMCALL instruction:
1947 hypercall[0] = 0x0f;
1948 hypercall[1] = 0x01;
1949 hypercall[2] = 0xc1;
1952 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1954 unsigned long exit_qualification;
1955 int cr;
1956 int reg;
1958 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1959 cr = exit_qualification & 15;
1960 reg = (exit_qualification >> 8) & 15;
1961 switch ((exit_qualification >> 4) & 3) {
1962 case 0: /* mov to cr */
1963 switch (cr) {
1964 case 0:
1965 vcpu_load_rsp_rip(vcpu);
1966 set_cr0(vcpu, vcpu->arch.regs[reg]);
1967 skip_emulated_instruction(vcpu);
1968 return 1;
1969 case 3:
1970 vcpu_load_rsp_rip(vcpu);
1971 set_cr3(vcpu, vcpu->arch.regs[reg]);
1972 skip_emulated_instruction(vcpu);
1973 return 1;
1974 case 4:
1975 vcpu_load_rsp_rip(vcpu);
1976 set_cr4(vcpu, vcpu->arch.regs[reg]);
1977 skip_emulated_instruction(vcpu);
1978 return 1;
1979 case 8:
1980 vcpu_load_rsp_rip(vcpu);
1981 set_cr8(vcpu, vcpu->arch.regs[reg]);
1982 skip_emulated_instruction(vcpu);
1983 if (irqchip_in_kernel(vcpu->kvm))
1984 return 1;
1985 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1986 return 0;
1988 break;
1989 case 2: /* clts */
1990 vcpu_load_rsp_rip(vcpu);
1991 vmx_fpu_deactivate(vcpu);
1992 vcpu->arch.cr0 &= ~X86_CR0_TS;
1993 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1994 vmx_fpu_activate(vcpu);
1995 skip_emulated_instruction(vcpu);
1996 return 1;
1997 case 1: /*mov from cr*/
1998 switch (cr) {
1999 case 3:
2000 vcpu_load_rsp_rip(vcpu);
2001 vcpu->arch.regs[reg] = vcpu->arch.cr3;
2002 vcpu_put_rsp_rip(vcpu);
2003 skip_emulated_instruction(vcpu);
2004 return 1;
2005 case 8:
2006 vcpu_load_rsp_rip(vcpu);
2007 vcpu->arch.regs[reg] = get_cr8(vcpu);
2008 vcpu_put_rsp_rip(vcpu);
2009 skip_emulated_instruction(vcpu);
2010 return 1;
2012 break;
2013 case 3: /* lmsw */
2014 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2016 skip_emulated_instruction(vcpu);
2017 return 1;
2018 default:
2019 break;
2021 kvm_run->exit_reason = 0;
2022 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2023 (int)(exit_qualification >> 4) & 3, cr);
2024 return 0;
2027 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2029 unsigned long exit_qualification;
2030 unsigned long val;
2031 int dr, reg;
2034 * FIXME: this code assumes the host is debugging the guest.
2035 * need to deal with guest debugging itself too.
2037 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2038 dr = exit_qualification & 7;
2039 reg = (exit_qualification >> 8) & 15;
2040 vcpu_load_rsp_rip(vcpu);
2041 if (exit_qualification & 16) {
2042 /* mov from dr */
2043 switch (dr) {
2044 case 6:
2045 val = 0xffff0ff0;
2046 break;
2047 case 7:
2048 val = 0x400;
2049 break;
2050 default:
2051 val = 0;
2053 vcpu->arch.regs[reg] = val;
2054 } else {
2055 /* mov to dr */
2057 vcpu_put_rsp_rip(vcpu);
2058 skip_emulated_instruction(vcpu);
2059 return 1;
2062 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2064 kvm_emulate_cpuid(vcpu);
2065 return 1;
2068 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2070 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2071 u64 data;
2073 if (vmx_get_msr(vcpu, ecx, &data)) {
2074 kvm_inject_gp(vcpu, 0);
2075 return 1;
2078 /* FIXME: handling of bits 32:63 of rax, rdx */
2079 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2080 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2081 skip_emulated_instruction(vcpu);
2082 return 1;
2085 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2087 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2088 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2089 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2091 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2092 kvm_inject_gp(vcpu, 0);
2093 return 1;
2096 skip_emulated_instruction(vcpu);
2097 return 1;
2100 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2101 struct kvm_run *kvm_run)
2103 return 1;
2106 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2107 struct kvm_run *kvm_run)
2109 u32 cpu_based_vm_exec_control;
2111 /* clear pending irq */
2112 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2113 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2114 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2116 * If the user space waits to inject interrupts, exit as soon as
2117 * possible
2119 if (kvm_run->request_interrupt_window &&
2120 !vcpu->arch.irq_summary) {
2121 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2122 ++vcpu->stat.irq_window_exits;
2123 return 0;
2125 return 1;
2128 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2130 skip_emulated_instruction(vcpu);
2131 return kvm_emulate_halt(vcpu);
2134 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2136 skip_emulated_instruction(vcpu);
2137 kvm_emulate_hypercall(vcpu);
2138 return 1;
2141 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2143 skip_emulated_instruction(vcpu);
2144 /* TODO: Add support for VT-d/pass-through device */
2145 return 1;
2148 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2150 u64 exit_qualification;
2151 enum emulation_result er;
2152 unsigned long offset;
2154 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2155 offset = exit_qualification & 0xffful;
2157 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2159 if (er != EMULATE_DONE) {
2160 printk(KERN_ERR
2161 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2162 offset);
2163 return -ENOTSUPP;
2165 return 1;
2169 * The exit handlers return 1 if the exit was handled fully and guest execution
2170 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2171 * to be done to userspace and return 0.
2173 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2174 struct kvm_run *kvm_run) = {
2175 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2176 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2177 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2178 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2179 [EXIT_REASON_CR_ACCESS] = handle_cr,
2180 [EXIT_REASON_DR_ACCESS] = handle_dr,
2181 [EXIT_REASON_CPUID] = handle_cpuid,
2182 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2183 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2184 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2185 [EXIT_REASON_HLT] = handle_halt,
2186 [EXIT_REASON_VMCALL] = handle_vmcall,
2187 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2188 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2189 [EXIT_REASON_WBINVD] = handle_wbinvd,
2192 static const int kvm_vmx_max_exit_handlers =
2193 ARRAY_SIZE(kvm_vmx_exit_handlers);
2196 * The guest has exited. See if we can fix it or if we need userspace
2197 * assistance.
2199 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2201 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2202 struct vcpu_vmx *vmx = to_vmx(vcpu);
2203 u32 vectoring_info = vmx->idt_vectoring_info;
2205 if (unlikely(vmx->fail)) {
2206 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2207 kvm_run->fail_entry.hardware_entry_failure_reason
2208 = vmcs_read32(VM_INSTRUCTION_ERROR);
2209 return 0;
2212 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2213 exit_reason != EXIT_REASON_EXCEPTION_NMI)
2214 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2215 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2216 if (exit_reason < kvm_vmx_max_exit_handlers
2217 && kvm_vmx_exit_handlers[exit_reason])
2218 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2219 else {
2220 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2221 kvm_run->hw.hardware_exit_reason = exit_reason;
2223 return 0;
2226 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2230 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2232 int max_irr, tpr;
2234 if (!vm_need_tpr_shadow(vcpu->kvm))
2235 return;
2237 if (!kvm_lapic_enabled(vcpu) ||
2238 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2239 vmcs_write32(TPR_THRESHOLD, 0);
2240 return;
2243 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2244 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2247 static void enable_irq_window(struct kvm_vcpu *vcpu)
2249 u32 cpu_based_vm_exec_control;
2251 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2252 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2253 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2256 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2258 struct vcpu_vmx *vmx = to_vmx(vcpu);
2259 u32 idtv_info_field, intr_info_field;
2260 int has_ext_irq, interrupt_window_open;
2261 int vector;
2263 update_tpr_threshold(vcpu);
2265 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2266 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2267 idtv_info_field = vmx->idt_vectoring_info;
2268 if (intr_info_field & INTR_INFO_VALID_MASK) {
2269 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2270 /* TODO: fault when IDT_Vectoring */
2271 if (printk_ratelimit())
2272 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2274 if (has_ext_irq)
2275 enable_irq_window(vcpu);
2276 return;
2278 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2279 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2280 == INTR_TYPE_EXT_INTR
2281 && vcpu->arch.rmode.active) {
2282 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2284 vmx_inject_irq(vcpu, vect);
2285 if (unlikely(has_ext_irq))
2286 enable_irq_window(vcpu);
2287 return;
2290 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2291 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2292 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2294 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2295 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2296 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2297 if (unlikely(has_ext_irq))
2298 enable_irq_window(vcpu);
2299 return;
2301 if (!has_ext_irq)
2302 return;
2303 interrupt_window_open =
2304 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2305 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2306 if (interrupt_window_open) {
2307 vector = kvm_cpu_get_interrupt(vcpu);
2308 vmx_inject_irq(vcpu, vector);
2309 kvm_timer_intr_post(vcpu, vector);
2310 } else
2311 enable_irq_window(vcpu);
2315 * Failure to inject an interrupt should give us the information
2316 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2317 * when fetching the interrupt redirection bitmap in the real-mode
2318 * tss, this doesn't happen. So we do it ourselves.
2320 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2322 vmx->rmode.irq.pending = 0;
2323 if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2324 return;
2325 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2326 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2327 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2328 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2329 return;
2331 vmx->idt_vectoring_info =
2332 VECTORING_INFO_VALID_MASK
2333 | INTR_TYPE_EXT_INTR
2334 | vmx->rmode.irq.vector;
2337 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2339 struct vcpu_vmx *vmx = to_vmx(vcpu);
2340 u32 intr_info;
2343 * Loading guest fpu may have cleared host cr0.ts
2345 vmcs_writel(HOST_CR0, read_cr0());
2347 asm(
2348 /* Store host registers */
2349 #ifdef CONFIG_X86_64
2350 "push %%rdx; push %%rbp;"
2351 "push %%rcx \n\t"
2352 #else
2353 "push %%edx; push %%ebp;"
2354 "push %%ecx \n\t"
2355 #endif
2356 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2357 /* Check if vmlaunch of vmresume is needed */
2358 "cmpl $0, %c[launched](%0) \n\t"
2359 /* Load guest registers. Don't clobber flags. */
2360 #ifdef CONFIG_X86_64
2361 "mov %c[cr2](%0), %%rax \n\t"
2362 "mov %%rax, %%cr2 \n\t"
2363 "mov %c[rax](%0), %%rax \n\t"
2364 "mov %c[rbx](%0), %%rbx \n\t"
2365 "mov %c[rdx](%0), %%rdx \n\t"
2366 "mov %c[rsi](%0), %%rsi \n\t"
2367 "mov %c[rdi](%0), %%rdi \n\t"
2368 "mov %c[rbp](%0), %%rbp \n\t"
2369 "mov %c[r8](%0), %%r8 \n\t"
2370 "mov %c[r9](%0), %%r9 \n\t"
2371 "mov %c[r10](%0), %%r10 \n\t"
2372 "mov %c[r11](%0), %%r11 \n\t"
2373 "mov %c[r12](%0), %%r12 \n\t"
2374 "mov %c[r13](%0), %%r13 \n\t"
2375 "mov %c[r14](%0), %%r14 \n\t"
2376 "mov %c[r15](%0), %%r15 \n\t"
2377 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2378 #else
2379 "mov %c[cr2](%0), %%eax \n\t"
2380 "mov %%eax, %%cr2 \n\t"
2381 "mov %c[rax](%0), %%eax \n\t"
2382 "mov %c[rbx](%0), %%ebx \n\t"
2383 "mov %c[rdx](%0), %%edx \n\t"
2384 "mov %c[rsi](%0), %%esi \n\t"
2385 "mov %c[rdi](%0), %%edi \n\t"
2386 "mov %c[rbp](%0), %%ebp \n\t"
2387 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2388 #endif
2389 /* Enter guest mode */
2390 "jne .Llaunched \n\t"
2391 ASM_VMX_VMLAUNCH "\n\t"
2392 "jmp .Lkvm_vmx_return \n\t"
2393 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2394 ".Lkvm_vmx_return: "
2395 /* Save guest registers, load host registers, keep flags */
2396 #ifdef CONFIG_X86_64
2397 "xchg %0, (%%rsp) \n\t"
2398 "mov %%rax, %c[rax](%0) \n\t"
2399 "mov %%rbx, %c[rbx](%0) \n\t"
2400 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2401 "mov %%rdx, %c[rdx](%0) \n\t"
2402 "mov %%rsi, %c[rsi](%0) \n\t"
2403 "mov %%rdi, %c[rdi](%0) \n\t"
2404 "mov %%rbp, %c[rbp](%0) \n\t"
2405 "mov %%r8, %c[r8](%0) \n\t"
2406 "mov %%r9, %c[r9](%0) \n\t"
2407 "mov %%r10, %c[r10](%0) \n\t"
2408 "mov %%r11, %c[r11](%0) \n\t"
2409 "mov %%r12, %c[r12](%0) \n\t"
2410 "mov %%r13, %c[r13](%0) \n\t"
2411 "mov %%r14, %c[r14](%0) \n\t"
2412 "mov %%r15, %c[r15](%0) \n\t"
2413 "mov %%cr2, %%rax \n\t"
2414 "mov %%rax, %c[cr2](%0) \n\t"
2416 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
2417 #else
2418 "xchg %0, (%%esp) \n\t"
2419 "mov %%eax, %c[rax](%0) \n\t"
2420 "mov %%ebx, %c[rbx](%0) \n\t"
2421 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2422 "mov %%edx, %c[rdx](%0) \n\t"
2423 "mov %%esi, %c[rsi](%0) \n\t"
2424 "mov %%edi, %c[rdi](%0) \n\t"
2425 "mov %%ebp, %c[rbp](%0) \n\t"
2426 "mov %%cr2, %%eax \n\t"
2427 "mov %%eax, %c[cr2](%0) \n\t"
2429 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2430 #endif
2431 "setbe %c[fail](%0) \n\t"
2432 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2433 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2434 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2435 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2436 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2437 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2438 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2439 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2440 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2441 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2442 #ifdef CONFIG_X86_64
2443 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2444 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2445 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2446 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2447 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2448 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2449 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2450 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2451 #endif
2452 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2453 : "cc", "memory"
2454 #ifdef CONFIG_X86_64
2455 , "rbx", "rdi", "rsi"
2456 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2457 #else
2458 , "ebx", "edi", "rsi"
2459 #endif
2462 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2463 if (vmx->rmode.irq.pending)
2464 fixup_rmode_irq(vmx);
2466 vcpu->arch.interrupt_window_open =
2467 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2469 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2470 vmx->launched = 1;
2472 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2474 /* We need to handle NMIs before interrupts are enabled */
2475 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2476 asm("int $2");
2479 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2481 struct vcpu_vmx *vmx = to_vmx(vcpu);
2483 if (vmx->vmcs) {
2484 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2485 free_vmcs(vmx->vmcs);
2486 vmx->vmcs = NULL;
2490 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2492 struct vcpu_vmx *vmx = to_vmx(vcpu);
2494 vmx_free_vmcs(vcpu);
2495 kfree(vmx->host_msrs);
2496 kfree(vmx->guest_msrs);
2497 kvm_vcpu_uninit(vcpu);
2498 kmem_cache_free(kvm_vcpu_cache, vmx);
2501 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2503 int err;
2504 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2505 int cpu;
2507 if (!vmx)
2508 return ERR_PTR(-ENOMEM);
2510 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2511 if (err)
2512 goto free_vcpu;
2514 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2515 if (!vmx->guest_msrs) {
2516 err = -ENOMEM;
2517 goto uninit_vcpu;
2520 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2521 if (!vmx->host_msrs)
2522 goto free_guest_msrs;
2524 vmx->vmcs = alloc_vmcs();
2525 if (!vmx->vmcs)
2526 goto free_msrs;
2528 vmcs_clear(vmx->vmcs);
2530 cpu = get_cpu();
2531 vmx_vcpu_load(&vmx->vcpu, cpu);
2532 err = vmx_vcpu_setup(vmx);
2533 vmx_vcpu_put(&vmx->vcpu);
2534 put_cpu();
2535 if (err)
2536 goto free_vmcs;
2538 return &vmx->vcpu;
2540 free_vmcs:
2541 free_vmcs(vmx->vmcs);
2542 free_msrs:
2543 kfree(vmx->host_msrs);
2544 free_guest_msrs:
2545 kfree(vmx->guest_msrs);
2546 uninit_vcpu:
2547 kvm_vcpu_uninit(&vmx->vcpu);
2548 free_vcpu:
2549 kmem_cache_free(kvm_vcpu_cache, vmx);
2550 return ERR_PTR(err);
2553 static void __init vmx_check_processor_compat(void *rtn)
2555 struct vmcs_config vmcs_conf;
2557 *(int *)rtn = 0;
2558 if (setup_vmcs_config(&vmcs_conf) < 0)
2559 *(int *)rtn = -EIO;
2560 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2561 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2562 smp_processor_id());
2563 *(int *)rtn = -EIO;
2567 static struct kvm_x86_ops vmx_x86_ops = {
2568 .cpu_has_kvm_support = cpu_has_kvm_support,
2569 .disabled_by_bios = vmx_disabled_by_bios,
2570 .hardware_setup = hardware_setup,
2571 .hardware_unsetup = hardware_unsetup,
2572 .check_processor_compatibility = vmx_check_processor_compat,
2573 .hardware_enable = hardware_enable,
2574 .hardware_disable = hardware_disable,
2575 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
2577 .vcpu_create = vmx_create_vcpu,
2578 .vcpu_free = vmx_free_vcpu,
2579 .vcpu_reset = vmx_vcpu_reset,
2581 .prepare_guest_switch = vmx_save_host_state,
2582 .vcpu_load = vmx_vcpu_load,
2583 .vcpu_put = vmx_vcpu_put,
2584 .vcpu_decache = vmx_vcpu_decache,
2586 .set_guest_debug = set_guest_debug,
2587 .guest_debug_pre = kvm_guest_debug_pre,
2588 .get_msr = vmx_get_msr,
2589 .set_msr = vmx_set_msr,
2590 .get_segment_base = vmx_get_segment_base,
2591 .get_segment = vmx_get_segment,
2592 .set_segment = vmx_set_segment,
2593 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2594 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2595 .set_cr0 = vmx_set_cr0,
2596 .set_cr3 = vmx_set_cr3,
2597 .set_cr4 = vmx_set_cr4,
2598 #ifdef CONFIG_X86_64
2599 .set_efer = vmx_set_efer,
2600 #endif
2601 .get_idt = vmx_get_idt,
2602 .set_idt = vmx_set_idt,
2603 .get_gdt = vmx_get_gdt,
2604 .set_gdt = vmx_set_gdt,
2605 .cache_regs = vcpu_load_rsp_rip,
2606 .decache_regs = vcpu_put_rsp_rip,
2607 .get_rflags = vmx_get_rflags,
2608 .set_rflags = vmx_set_rflags,
2610 .tlb_flush = vmx_flush_tlb,
2612 .run = vmx_vcpu_run,
2613 .handle_exit = kvm_handle_exit,
2614 .skip_emulated_instruction = skip_emulated_instruction,
2615 .patch_hypercall = vmx_patch_hypercall,
2616 .get_irq = vmx_get_irq,
2617 .set_irq = vmx_inject_irq,
2618 .queue_exception = vmx_queue_exception,
2619 .exception_injected = vmx_exception_injected,
2620 .inject_pending_irq = vmx_intr_assist,
2621 .inject_pending_vectors = do_interrupt_requests,
2623 .set_tss_addr = vmx_set_tss_addr,
2626 static int __init vmx_init(void)
2628 void *iova;
2629 int r;
2631 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2632 if (!vmx_io_bitmap_a)
2633 return -ENOMEM;
2635 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2636 if (!vmx_io_bitmap_b) {
2637 r = -ENOMEM;
2638 goto out;
2642 * Allow direct access to the PC debug port (it is often used for I/O
2643 * delays, but the vmexits simply slow things down).
2645 iova = kmap(vmx_io_bitmap_a);
2646 memset(iova, 0xff, PAGE_SIZE);
2647 clear_bit(0x80, iova);
2648 kunmap(vmx_io_bitmap_a);
2650 iova = kmap(vmx_io_bitmap_b);
2651 memset(iova, 0xff, PAGE_SIZE);
2652 kunmap(vmx_io_bitmap_b);
2654 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2655 if (r)
2656 goto out1;
2658 if (bypass_guest_pf)
2659 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2661 return 0;
2663 out1:
2664 __free_page(vmx_io_bitmap_b);
2665 out:
2666 __free_page(vmx_io_bitmap_a);
2667 return r;
2670 static void __exit vmx_exit(void)
2672 __free_page(vmx_io_bitmap_b);
2673 __free_page(vmx_io_bitmap_a);
2675 kvm_exit();
2678 module_init(vmx_init)
2679 module_exit(vmx_exit)