Some modifications to files needed to succesfully compile ;)
[wrt350n-kernel.git] / arch / x86 / mm / fault.c
blobfdc667422df9913f2f5d861a3e80fad14eab7f4d
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4 */
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/ptrace.h>
13 #include <linux/mman.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/init.h>
18 #include <linux/tty.h>
19 #include <linux/vt_kern.h> /* For unblank_screen() */
20 #include <linux/compiler.h>
21 #include <linux/highmem.h>
22 #include <linux/bootmem.h> /* for max_low_pfn */
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
29 #include <asm/system.h>
30 #include <asm/desc.h>
31 #include <asm/segment.h>
32 #include <asm/pgalloc.h>
33 #include <asm/smp.h>
34 #include <asm/tlbflush.h>
35 #include <asm/proto.h>
36 #include <asm-generic/sections.h>
39 * Page fault error code bits
40 * bit 0 == 0 means no page found, 1 means protection fault
41 * bit 1 == 0 means read, 1 means write
42 * bit 2 == 0 means kernel, 1 means user-mode
43 * bit 3 == 1 means use of reserved bit detected
44 * bit 4 == 1 means fault was an instruction fetch
46 #define PF_PROT (1<<0)
47 #define PF_WRITE (1<<1)
48 #define PF_USER (1<<2)
49 #define PF_RSVD (1<<3)
50 #define PF_INSTR (1<<4)
52 static inline int notify_page_fault(struct pt_regs *regs)
54 #ifdef CONFIG_KPROBES
55 int ret = 0;
57 /* kprobe_running() needs smp_processor_id() */
58 #ifdef CONFIG_X86_32
59 if (!user_mode_vm(regs)) {
60 #else
61 if (!user_mode(regs)) {
62 #endif
63 preempt_disable();
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 ret = 1;
66 preempt_enable();
69 return ret;
70 #else
71 return 0;
72 #endif
76 * X86_32
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
80 * X86_64
81 * Sometimes the CPU reports invalid exceptions on prefetch.
82 * Check that here and ignore it.
84 * Opcode checker based on code by Richard Brunner
86 static int is_prefetch(struct pt_regs *regs, unsigned long addr,
87 unsigned long error_code)
89 unsigned char *instr;
90 int scan_more = 1;
91 int prefetch = 0;
92 unsigned char *max_instr;
94 #ifdef CONFIG_X86_32
95 if (!(__supported_pte_mask & _PAGE_NX))
96 return 0;
97 #endif
99 /* If it was a exec fault on NX page, ignore */
100 if (error_code & PF_INSTR)
101 return 0;
103 instr = (unsigned char *)convert_ip_to_linear(current, regs);
104 max_instr = instr + 15;
106 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
107 return 0;
109 while (scan_more && instr < max_instr) {
110 unsigned char opcode;
111 unsigned char instr_hi;
112 unsigned char instr_lo;
114 if (probe_kernel_address(instr, opcode))
115 break;
117 instr_hi = opcode & 0xf0;
118 instr_lo = opcode & 0x0f;
119 instr++;
121 switch (instr_hi) {
122 case 0x20:
123 case 0x30:
125 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
126 * In X86_64 long mode, the CPU will signal invalid
127 * opcode if some of these prefixes are present so
128 * X86_64 will never get here anyway
130 scan_more = ((instr_lo & 7) == 0x6);
131 break;
132 #ifdef CONFIG_X86_64
133 case 0x40:
135 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
136 * Need to figure out under what instruction mode the
137 * instruction was issued. Could check the LDT for lm,
138 * but for now it's good enough to assume that long
139 * mode only uses well known segments or kernel.
141 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
142 break;
143 #endif
144 case 0x60:
145 /* 0x64 thru 0x67 are valid prefixes in all modes. */
146 scan_more = (instr_lo & 0xC) == 0x4;
147 break;
148 case 0xF0:
149 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
150 scan_more = !instr_lo || (instr_lo>>1) == 1;
151 break;
152 case 0x00:
153 /* Prefetch instruction is 0x0F0D or 0x0F18 */
154 scan_more = 0;
156 if (probe_kernel_address(instr, opcode))
157 break;
158 prefetch = (instr_lo == 0xF) &&
159 (opcode == 0x0D || opcode == 0x18);
160 break;
161 default:
162 scan_more = 0;
163 break;
166 return prefetch;
169 static void force_sig_info_fault(int si_signo, int si_code,
170 unsigned long address, struct task_struct *tsk)
172 siginfo_t info;
174 info.si_signo = si_signo;
175 info.si_errno = 0;
176 info.si_code = si_code;
177 info.si_addr = (void __user *)address;
178 force_sig_info(si_signo, &info, tsk);
181 #ifdef CONFIG_X86_64
182 static int bad_address(void *p)
184 unsigned long dummy;
185 return probe_kernel_address((unsigned long *)p, dummy);
187 #endif
189 static void dump_pagetable(unsigned long address)
191 #ifdef CONFIG_X86_32
192 __typeof__(pte_val(__pte(0))) page;
194 page = read_cr3();
195 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
196 #ifdef CONFIG_X86_PAE
197 printk("*pdpt = %016Lx ", page);
198 if ((page >> PAGE_SHIFT) < max_low_pfn
199 && page & _PAGE_PRESENT) {
200 page &= PAGE_MASK;
201 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
202 & (PTRS_PER_PMD - 1)];
203 printk(KERN_CONT "*pde = %016Lx ", page);
204 page &= ~_PAGE_NX;
206 #else
207 printk("*pde = %08lx ", page);
208 #endif
211 * We must not directly access the pte in the highpte
212 * case if the page table is located in highmem.
213 * And let's rather not kmap-atomic the pte, just in case
214 * it's allocated already.
216 if ((page >> PAGE_SHIFT) < max_low_pfn
217 && (page & _PAGE_PRESENT)
218 && !(page & _PAGE_PSE)) {
219 page &= PAGE_MASK;
220 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
221 & (PTRS_PER_PTE - 1)];
222 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
225 printk("\n");
226 #else /* CONFIG_X86_64 */
227 pgd_t *pgd;
228 pud_t *pud;
229 pmd_t *pmd;
230 pte_t *pte;
232 pgd = (pgd_t *)read_cr3();
234 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
235 pgd += pgd_index(address);
236 if (bad_address(pgd)) goto bad;
237 printk("PGD %lx ", pgd_val(*pgd));
238 if (!pgd_present(*pgd)) goto ret;
240 pud = pud_offset(pgd, address);
241 if (bad_address(pud)) goto bad;
242 printk("PUD %lx ", pud_val(*pud));
243 if (!pud_present(*pud) || pud_large(*pud))
244 goto ret;
246 pmd = pmd_offset(pud, address);
247 if (bad_address(pmd)) goto bad;
248 printk("PMD %lx ", pmd_val(*pmd));
249 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
251 pte = pte_offset_kernel(pmd, address);
252 if (bad_address(pte)) goto bad;
253 printk("PTE %lx", pte_val(*pte));
254 ret:
255 printk("\n");
256 return;
257 bad:
258 printk("BAD\n");
259 #endif
262 #ifdef CONFIG_X86_32
263 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
265 unsigned index = pgd_index(address);
266 pgd_t *pgd_k;
267 pud_t *pud, *pud_k;
268 pmd_t *pmd, *pmd_k;
270 pgd += index;
271 pgd_k = init_mm.pgd + index;
273 if (!pgd_present(*pgd_k))
274 return NULL;
277 * set_pgd(pgd, *pgd_k); here would be useless on PAE
278 * and redundant with the set_pmd() on non-PAE. As would
279 * set_pud.
282 pud = pud_offset(pgd, address);
283 pud_k = pud_offset(pgd_k, address);
284 if (!pud_present(*pud_k))
285 return NULL;
287 pmd = pmd_offset(pud, address);
288 pmd_k = pmd_offset(pud_k, address);
289 if (!pmd_present(*pmd_k))
290 return NULL;
291 if (!pmd_present(*pmd)) {
292 set_pmd(pmd, *pmd_k);
293 arch_flush_lazy_mmu_mode();
294 } else
295 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
296 return pmd_k;
298 #endif
300 #ifdef CONFIG_X86_64
301 static const char errata93_warning[] =
302 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
303 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
304 KERN_ERR "******* Please consider a BIOS update.\n"
305 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
306 #endif
308 /* Workaround for K8 erratum #93 & buggy BIOS.
309 BIOS SMM functions are required to use a specific workaround
310 to avoid corruption of the 64bit RIP register on C stepping K8.
311 A lot of BIOS that didn't get tested properly miss this.
312 The OS sees this as a page fault with the upper 32bits of RIP cleared.
313 Try to work around it here.
314 Note we only handle faults in kernel here.
315 Does nothing for X86_32
317 static int is_errata93(struct pt_regs *regs, unsigned long address)
319 #ifdef CONFIG_X86_64
320 static int warned;
321 if (address != regs->ip)
322 return 0;
323 if ((address >> 32) != 0)
324 return 0;
325 address |= 0xffffffffUL << 32;
326 if ((address >= (u64)_stext && address <= (u64)_etext) ||
327 (address >= MODULES_VADDR && address <= MODULES_END)) {
328 if (!warned) {
329 printk(errata93_warning);
330 warned = 1;
332 regs->ip = address;
333 return 1;
335 #endif
336 return 0;
340 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
341 * addresses >4GB. We catch this in the page fault handler because these
342 * addresses are not reachable. Just detect this case and return. Any code
343 * segment in LDT is compatibility mode.
345 static int is_errata100(struct pt_regs *regs, unsigned long address)
347 #ifdef CONFIG_X86_64
348 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
349 (address >> 32))
350 return 1;
351 #endif
352 return 0;
355 void do_invalid_op(struct pt_regs *, unsigned long);
357 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
359 #ifdef CONFIG_X86_F00F_BUG
360 unsigned long nr;
362 * Pentium F0 0F C7 C8 bug workaround.
364 if (boot_cpu_data.f00f_bug) {
365 nr = (address - idt_descr.address) >> 3;
367 if (nr == 6) {
368 do_invalid_op(regs, 0);
369 return 1;
372 #endif
373 return 0;
376 static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
377 unsigned long address)
379 #ifdef CONFIG_X86_32
380 if (!oops_may_print())
381 return;
382 #endif
384 #ifdef CONFIG_X86_PAE
385 if (error_code & PF_INSTR) {
386 unsigned int level;
387 pte_t *pte = lookup_address(address, &level);
389 if (pte && pte_present(*pte) && !pte_exec(*pte))
390 printk(KERN_CRIT "kernel tried to execute "
391 "NX-protected page - exploit attempt? "
392 "(uid: %d)\n", current->uid);
394 #endif
396 printk(KERN_ALERT "BUG: unable to handle kernel ");
397 if (address < PAGE_SIZE)
398 printk(KERN_CONT "NULL pointer dereference");
399 else
400 printk(KERN_CONT "paging request");
401 #ifdef CONFIG_X86_32
402 printk(KERN_CONT " at %08lx\n", address);
403 #else
404 printk(KERN_CONT " at %016lx\n", address);
405 #endif
406 printk(KERN_ALERT "IP:");
407 printk_address(regs->ip, 1);
408 dump_pagetable(address);
411 #ifdef CONFIG_X86_64
412 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
413 unsigned long error_code)
415 unsigned long flags = oops_begin();
416 struct task_struct *tsk;
418 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
419 current->comm, address);
420 dump_pagetable(address);
421 tsk = current;
422 tsk->thread.cr2 = address;
423 tsk->thread.trap_no = 14;
424 tsk->thread.error_code = error_code;
425 if (__die("Bad pagetable", regs, error_code))
426 regs = NULL;
427 oops_end(flags, regs, SIGKILL);
429 #endif
431 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
433 if ((error_code & PF_WRITE) && !pte_write(*pte))
434 return 0;
435 if ((error_code & PF_INSTR) && !pte_exec(*pte))
436 return 0;
438 return 1;
442 * Handle a spurious fault caused by a stale TLB entry. This allows
443 * us to lazily refresh the TLB when increasing the permissions of a
444 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very
445 * expensive since that implies doing a full cross-processor TLB
446 * flush, even if no stale TLB entries exist on other processors.
447 * There are no security implications to leaving a stale TLB when
448 * increasing the permissions on a page.
450 static int spurious_fault(unsigned long address,
451 unsigned long error_code)
453 pgd_t *pgd;
454 pud_t *pud;
455 pmd_t *pmd;
456 pte_t *pte;
458 /* Reserved-bit violation or user access to kernel space? */
459 if (error_code & (PF_USER | PF_RSVD))
460 return 0;
462 pgd = init_mm.pgd + pgd_index(address);
463 if (!pgd_present(*pgd))
464 return 0;
466 pud = pud_offset(pgd, address);
467 if (!pud_present(*pud))
468 return 0;
470 if (pud_large(*pud))
471 return spurious_fault_check(error_code, (pte_t *) pud);
473 pmd = pmd_offset(pud, address);
474 if (!pmd_present(*pmd))
475 return 0;
477 if (pmd_large(*pmd))
478 return spurious_fault_check(error_code, (pte_t *) pmd);
480 pte = pte_offset_kernel(pmd, address);
481 if (!pte_present(*pte))
482 return 0;
484 return spurious_fault_check(error_code, pte);
488 * X86_32
489 * Handle a fault on the vmalloc or module mapping area
491 * X86_64
492 * Handle a fault on the vmalloc area
494 * This assumes no large pages in there.
496 static int vmalloc_fault(unsigned long address)
498 #ifdef CONFIG_X86_32
499 unsigned long pgd_paddr;
500 pmd_t *pmd_k;
501 pte_t *pte_k;
503 * Synchronize this task's top level page-table
504 * with the 'reference' page table.
506 * Do _not_ use "current" here. We might be inside
507 * an interrupt in the middle of a task switch..
509 pgd_paddr = read_cr3();
510 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
511 if (!pmd_k)
512 return -1;
513 pte_k = pte_offset_kernel(pmd_k, address);
514 if (!pte_present(*pte_k))
515 return -1;
516 return 0;
517 #else
518 pgd_t *pgd, *pgd_ref;
519 pud_t *pud, *pud_ref;
520 pmd_t *pmd, *pmd_ref;
521 pte_t *pte, *pte_ref;
523 /* Make sure we are in vmalloc area */
524 if (!(address >= VMALLOC_START && address < VMALLOC_END))
525 return -1;
527 /* Copy kernel mappings over when needed. This can also
528 happen within a race in page table update. In the later
529 case just flush. */
531 pgd = pgd_offset(current->mm ?: &init_mm, address);
532 pgd_ref = pgd_offset_k(address);
533 if (pgd_none(*pgd_ref))
534 return -1;
535 if (pgd_none(*pgd))
536 set_pgd(pgd, *pgd_ref);
537 else
538 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
540 /* Below here mismatches are bugs because these lower tables
541 are shared */
543 pud = pud_offset(pgd, address);
544 pud_ref = pud_offset(pgd_ref, address);
545 if (pud_none(*pud_ref))
546 return -1;
547 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
548 BUG();
549 pmd = pmd_offset(pud, address);
550 pmd_ref = pmd_offset(pud_ref, address);
551 if (pmd_none(*pmd_ref))
552 return -1;
553 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
554 BUG();
555 pte_ref = pte_offset_kernel(pmd_ref, address);
556 if (!pte_present(*pte_ref))
557 return -1;
558 pte = pte_offset_kernel(pmd, address);
559 /* Don't use pte_page here, because the mappings can point
560 outside mem_map, and the NUMA hash lookup cannot handle
561 that. */
562 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
563 BUG();
564 return 0;
565 #endif
568 int show_unhandled_signals = 1;
571 * This routine handles page faults. It determines the address,
572 * and the problem, and then passes it off to one of the appropriate
573 * routines.
575 #ifdef CONFIG_X86_64
576 asmlinkage
577 #endif
578 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
580 struct task_struct *tsk;
581 struct mm_struct *mm;
582 struct vm_area_struct *vma;
583 unsigned long address;
584 int write, si_code;
585 int fault;
586 #ifdef CONFIG_X86_64
587 unsigned long flags;
588 #endif
591 * We can fault from pretty much anywhere, with unknown IRQ state.
593 trace_hardirqs_fixup();
595 tsk = current;
596 mm = tsk->mm;
597 prefetchw(&mm->mmap_sem);
599 /* get the address */
600 address = read_cr2();
602 si_code = SEGV_MAPERR;
604 if (notify_page_fault(regs))
605 return;
608 * We fault-in kernel-space virtual memory on-demand. The
609 * 'reference' page table is init_mm.pgd.
611 * NOTE! We MUST NOT take any locks for this case. We may
612 * be in an interrupt or a critical region, and should
613 * only copy the information from the master page table,
614 * nothing more.
616 * This verifies that the fault happens in kernel space
617 * (error_code & 4) == 0, and that the fault was not a
618 * protection error (error_code & 9) == 0.
620 #ifdef CONFIG_X86_32
621 if (unlikely(address >= TASK_SIZE)) {
622 #else
623 if (unlikely(address >= TASK_SIZE64)) {
624 #endif
625 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
626 vmalloc_fault(address) >= 0)
627 return;
629 /* Can handle a stale RO->RW TLB */
630 if (spurious_fault(address, error_code))
631 return;
634 * Don't take the mm semaphore here. If we fixup a prefetch
635 * fault we could otherwise deadlock.
637 goto bad_area_nosemaphore;
641 #ifdef CONFIG_X86_32
642 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
643 fault has been handled. */
644 if (regs->flags & (X86_EFLAGS_IF|VM_MASK))
645 local_irq_enable();
648 * If we're in an interrupt, have no user context or are running in an
649 * atomic region then we must not take the fault.
651 if (in_atomic() || !mm)
652 goto bad_area_nosemaphore;
653 #else /* CONFIG_X86_64 */
654 if (likely(regs->flags & X86_EFLAGS_IF))
655 local_irq_enable();
657 if (unlikely(error_code & PF_RSVD))
658 pgtable_bad(address, regs, error_code);
661 * If we're in an interrupt, have no user context or are running in an
662 * atomic region then we must not take the fault.
664 if (unlikely(in_atomic() || !mm))
665 goto bad_area_nosemaphore;
668 * User-mode registers count as a user access even for any
669 * potential system fault or CPU buglet.
671 if (user_mode_vm(regs))
672 error_code |= PF_USER;
673 again:
674 #endif
675 /* When running in the kernel we expect faults to occur only to
676 * addresses in user space. All other faults represent errors in the
677 * kernel and should generate an OOPS. Unfortunately, in the case of an
678 * erroneous fault occurring in a code path which already holds mmap_sem
679 * we will deadlock attempting to validate the fault against the
680 * address space. Luckily the kernel only validly references user
681 * space from well defined areas of code, which are listed in the
682 * exceptions table.
684 * As the vast majority of faults will be valid we will only perform
685 * the source reference check when there is a possibility of a deadlock.
686 * Attempt to lock the address space, if we cannot we then validate the
687 * source. If this is invalid we can skip the address space check,
688 * thus avoiding the deadlock.
690 if (!down_read_trylock(&mm->mmap_sem)) {
691 if ((error_code & PF_USER) == 0 &&
692 !search_exception_tables(regs->ip))
693 goto bad_area_nosemaphore;
694 down_read(&mm->mmap_sem);
697 vma = find_vma(mm, address);
698 if (!vma)
699 goto bad_area;
700 if (vma->vm_start <= address)
701 goto good_area;
702 if (!(vma->vm_flags & VM_GROWSDOWN))
703 goto bad_area;
704 if (error_code & PF_USER) {
706 * Accessing the stack below %sp is always a bug.
707 * The large cushion allows instructions like enter
708 * and pusha to work. ("enter $65535,$31" pushes
709 * 32 pointers and then decrements %sp by 65535.)
711 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
712 goto bad_area;
714 if (expand_stack(vma, address))
715 goto bad_area;
717 * Ok, we have a good vm_area for this memory access, so
718 * we can handle it..
720 good_area:
721 si_code = SEGV_ACCERR;
722 write = 0;
723 switch (error_code & (PF_PROT|PF_WRITE)) {
724 default: /* 3: write, present */
725 /* fall through */
726 case PF_WRITE: /* write, not present */
727 if (!(vma->vm_flags & VM_WRITE))
728 goto bad_area;
729 write++;
730 break;
731 case PF_PROT: /* read, present */
732 goto bad_area;
733 case 0: /* read, not present */
734 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
735 goto bad_area;
738 #ifdef CONFIG_X86_32
739 survive:
740 #endif
742 * If for any reason at all we couldn't handle the fault,
743 * make sure we exit gracefully rather than endlessly redo
744 * the fault.
746 fault = handle_mm_fault(mm, vma, address, write);
747 if (unlikely(fault & VM_FAULT_ERROR)) {
748 if (fault & VM_FAULT_OOM)
749 goto out_of_memory;
750 else if (fault & VM_FAULT_SIGBUS)
751 goto do_sigbus;
752 BUG();
754 if (fault & VM_FAULT_MAJOR)
755 tsk->maj_flt++;
756 else
757 tsk->min_flt++;
759 #ifdef CONFIG_X86_32
761 * Did it hit the DOS screen memory VA from vm86 mode?
763 if (v8086_mode(regs)) {
764 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
765 if (bit < 32)
766 tsk->thread.screen_bitmap |= 1 << bit;
768 #endif
769 up_read(&mm->mmap_sem);
770 return;
773 * Something tried to access memory that isn't in our memory map..
774 * Fix it, but check if it's kernel or user first..
776 bad_area:
777 up_read(&mm->mmap_sem);
779 bad_area_nosemaphore:
780 /* User mode accesses just cause a SIGSEGV */
781 if (error_code & PF_USER) {
783 * It's possible to have interrupts off here.
785 local_irq_enable();
788 * Valid to do another page fault here because this one came
789 * from user space.
791 if (is_prefetch(regs, address, error_code))
792 return;
794 if (is_errata100(regs, address))
795 return;
797 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
798 printk_ratelimit()) {
799 printk(
800 #ifdef CONFIG_X86_32
801 "%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx",
802 #else
803 "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx",
804 #endif
805 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
806 tsk->comm, task_pid_nr(tsk), address, regs->ip,
807 regs->sp, error_code);
808 print_vma_addr(" in ", regs->ip);
809 printk("\n");
812 tsk->thread.cr2 = address;
813 /* Kernel addresses are always protection faults */
814 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
815 tsk->thread.trap_no = 14;
816 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
817 return;
820 if (is_f00f_bug(regs, address))
821 return;
823 no_context:
824 /* Are we prepared to handle this kernel fault? */
825 if (fixup_exception(regs))
826 return;
829 * X86_32
830 * Valid to do another page fault here, because if this fault
831 * had been triggered by is_prefetch fixup_exception would have
832 * handled it.
834 * X86_64
835 * Hall of shame of CPU/BIOS bugs.
837 if (is_prefetch(regs, address, error_code))
838 return;
840 if (is_errata93(regs, address))
841 return;
844 * Oops. The kernel tried to access some bad page. We'll have to
845 * terminate things with extreme prejudice.
847 #ifdef CONFIG_X86_32
848 bust_spinlocks(1);
849 #else
850 flags = oops_begin();
851 #endif
853 show_fault_oops(regs, error_code, address);
855 tsk->thread.cr2 = address;
856 tsk->thread.trap_no = 14;
857 tsk->thread.error_code = error_code;
859 #ifdef CONFIG_X86_32
860 die("Oops", regs, error_code);
861 bust_spinlocks(0);
862 do_exit(SIGKILL);
863 #else
864 if (__die("Oops", regs, error_code))
865 regs = NULL;
866 /* Executive summary in case the body of the oops scrolled away */
867 printk(KERN_EMERG "CR2: %016lx\n", address);
868 oops_end(flags, regs, SIGKILL);
869 #endif
872 * We ran out of memory, or some other thing happened to us that made
873 * us unable to handle the page fault gracefully.
875 out_of_memory:
876 up_read(&mm->mmap_sem);
877 if (is_global_init(tsk)) {
878 yield();
879 #ifdef CONFIG_X86_32
880 down_read(&mm->mmap_sem);
881 goto survive;
882 #else
883 goto again;
884 #endif
887 printk("VM: killing process %s\n", tsk->comm);
888 if (error_code & PF_USER)
889 do_group_exit(SIGKILL);
890 goto no_context;
892 do_sigbus:
893 up_read(&mm->mmap_sem);
895 /* Kernel mode? Handle exceptions or die */
896 if (!(error_code & PF_USER))
897 goto no_context;
898 #ifdef CONFIG_X86_32
899 /* User space => ok to do another page fault */
900 if (is_prefetch(regs, address, error_code))
901 return;
902 #endif
903 tsk->thread.cr2 = address;
904 tsk->thread.error_code = error_code;
905 tsk->thread.trap_no = 14;
906 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
909 DEFINE_SPINLOCK(pgd_lock);
910 LIST_HEAD(pgd_list);
912 void vmalloc_sync_all(void)
914 #ifdef CONFIG_X86_32
916 * Note that races in the updates of insync and start aren't
917 * problematic: insync can only get set bits added, and updates to
918 * start are only improving performance (without affecting correctness
919 * if undone).
921 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
922 static unsigned long start = TASK_SIZE;
923 unsigned long address;
925 if (SHARED_KERNEL_PMD)
926 return;
928 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
929 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
930 if (!test_bit(pgd_index(address), insync)) {
931 unsigned long flags;
932 struct page *page;
934 spin_lock_irqsave(&pgd_lock, flags);
935 list_for_each_entry(page, &pgd_list, lru) {
936 if (!vmalloc_sync_one(page_address(page),
937 address))
938 break;
940 spin_unlock_irqrestore(&pgd_lock, flags);
941 if (!page)
942 set_bit(pgd_index(address), insync);
944 if (address == start && test_bit(pgd_index(address), insync))
945 start = address + PGDIR_SIZE;
947 #else /* CONFIG_X86_64 */
949 * Note that races in the updates of insync and start aren't
950 * problematic: insync can only get set bits added, and updates to
951 * start are only improving performance (without affecting correctness
952 * if undone).
954 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
955 static unsigned long start = VMALLOC_START & PGDIR_MASK;
956 unsigned long address;
958 for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
959 if (!test_bit(pgd_index(address), insync)) {
960 const pgd_t *pgd_ref = pgd_offset_k(address);
961 unsigned long flags;
962 struct page *page;
964 if (pgd_none(*pgd_ref))
965 continue;
966 spin_lock_irqsave(&pgd_lock, flags);
967 list_for_each_entry(page, &pgd_list, lru) {
968 pgd_t *pgd;
969 pgd = (pgd_t *)page_address(page) + pgd_index(address);
970 if (pgd_none(*pgd))
971 set_pgd(pgd, *pgd_ref);
972 else
973 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
975 spin_unlock_irqrestore(&pgd_lock, flags);
976 set_bit(pgd_index(address), insync);
978 if (address == start)
979 start = address + PGDIR_SIZE;
981 /* Check that there is no need to do the same for the modules area. */
982 BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
983 BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
984 (__START_KERNEL & PGDIR_MASK)));
985 #endif