Some modifications to files needed to succesfully compile ;)
[wrt350n-kernel.git] / arch / x86 / mm / init_64.c
bloba4a9cccdd4f2d5c012119e60489eedbb05c0af39
1 /*
2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/nmi.h>
32 #include <asm/processor.h>
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/dma.h>
38 #include <asm/fixmap.h>
39 #include <asm/e820.h>
40 #include <asm/apic.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/proto.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/kdebug.h>
47 #include <asm/numa.h>
48 #include <asm/cacheflush.h>
50 const struct dma_mapping_ops *dma_ops;
51 EXPORT_SYMBOL(dma_ops);
53 static unsigned long dma_reserve __initdata;
55 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
58 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
59 * physical space so we can cache the place of the first one and move
60 * around without checking the pgd every time.
63 void show_mem(void)
65 long i, total = 0, reserved = 0;
66 long shared = 0, cached = 0;
67 struct page *page;
68 pg_data_t *pgdat;
70 printk(KERN_INFO "Mem-info:\n");
71 show_free_areas();
72 printk(KERN_INFO "Free swap: %6ldkB\n",
73 nr_swap_pages << (PAGE_SHIFT-10));
75 for_each_online_pgdat(pgdat) {
76 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
78 * This loop can take a while with 256 GB and
79 * 4k pages so defer the NMI watchdog:
81 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
82 touch_nmi_watchdog();
84 if (!pfn_valid(pgdat->node_start_pfn + i))
85 continue;
87 page = pfn_to_page(pgdat->node_start_pfn + i);
88 total++;
89 if (PageReserved(page))
90 reserved++;
91 else if (PageSwapCache(page))
92 cached++;
93 else if (page_count(page))
94 shared += page_count(page) - 1;
97 printk(KERN_INFO "%lu pages of RAM\n", total);
98 printk(KERN_INFO "%lu reserved pages\n", reserved);
99 printk(KERN_INFO "%lu pages shared\n", shared);
100 printk(KERN_INFO "%lu pages swap cached\n", cached);
103 int after_bootmem;
105 static __init void *spp_getpage(void)
107 void *ptr;
109 if (after_bootmem)
110 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
111 else
112 ptr = alloc_bootmem_pages(PAGE_SIZE);
114 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
115 panic("set_pte_phys: cannot allocate page data %s\n",
116 after_bootmem ? "after bootmem" : "");
119 pr_debug("spp_getpage %p\n", ptr);
121 return ptr;
124 static __init void
125 set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
127 pgd_t *pgd;
128 pud_t *pud;
129 pmd_t *pmd;
130 pte_t *pte, new_pte;
132 pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
134 pgd = pgd_offset_k(vaddr);
135 if (pgd_none(*pgd)) {
136 printk(KERN_ERR
137 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
138 return;
140 pud = pud_offset(pgd, vaddr);
141 if (pud_none(*pud)) {
142 pmd = (pmd_t *) spp_getpage();
143 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
144 if (pmd != pmd_offset(pud, 0)) {
145 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
146 pmd, pmd_offset(pud, 0));
147 return;
150 pmd = pmd_offset(pud, vaddr);
151 if (pmd_none(*pmd)) {
152 pte = (pte_t *) spp_getpage();
153 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
154 if (pte != pte_offset_kernel(pmd, 0)) {
155 printk(KERN_ERR "PAGETABLE BUG #02!\n");
156 return;
159 new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
161 pte = pte_offset_kernel(pmd, vaddr);
162 if (!pte_none(*pte) &&
163 pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
164 pte_ERROR(*pte);
165 set_pte(pte, new_pte);
168 * It's enough to flush this one mapping.
169 * (PGE mappings get flushed as well)
171 __flush_tlb_one(vaddr);
174 /* NOTE: this is meant to be run only at boot */
175 void __init
176 __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
178 unsigned long address = __fix_to_virt(idx);
180 if (idx >= __end_of_fixed_addresses) {
181 printk(KERN_ERR "Invalid __set_fixmap\n");
182 return;
184 set_pte_phys(address, phys, prot);
187 static unsigned long __initdata table_start;
188 static unsigned long __meminitdata table_end;
190 static __meminit void *alloc_low_page(unsigned long *phys)
192 unsigned long pfn = table_end++;
193 void *adr;
195 if (after_bootmem) {
196 adr = (void *)get_zeroed_page(GFP_ATOMIC);
197 *phys = __pa(adr);
199 return adr;
202 if (pfn >= end_pfn)
203 panic("alloc_low_page: ran out of memory");
205 adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
206 memset(adr, 0, PAGE_SIZE);
207 *phys = pfn * PAGE_SIZE;
208 return adr;
211 static __meminit void unmap_low_page(void *adr)
213 if (after_bootmem)
214 return;
216 early_iounmap(adr, PAGE_SIZE);
219 /* Must run before zap_low_mappings */
220 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
222 pmd_t *pmd, *last_pmd;
223 unsigned long vaddr;
224 int i, pmds;
226 pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
227 vaddr = __START_KERNEL_map;
228 pmd = level2_kernel_pgt;
229 last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
231 for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
232 for (i = 0; i < pmds; i++) {
233 if (pmd_present(pmd[i]))
234 goto continue_outer_loop;
236 vaddr += addr & ~PMD_MASK;
237 addr &= PMD_MASK;
239 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
240 set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
241 __flush_tlb_all();
243 return (void *)vaddr;
244 continue_outer_loop:
247 printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
249 return NULL;
253 * To avoid virtual aliases later:
255 __meminit void early_iounmap(void *addr, unsigned long size)
257 unsigned long vaddr;
258 pmd_t *pmd;
259 int i, pmds;
261 vaddr = (unsigned long)addr;
262 pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
263 pmd = level2_kernel_pgt + pmd_index(vaddr);
265 for (i = 0; i < pmds; i++)
266 pmd_clear(pmd + i);
268 __flush_tlb_all();
271 static void __meminit
272 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
274 int i = pmd_index(address);
276 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
277 pmd_t *pmd = pmd_page + pmd_index(address);
279 if (address >= end) {
280 if (!after_bootmem) {
281 for (; i < PTRS_PER_PMD; i++, pmd++)
282 set_pmd(pmd, __pmd(0));
284 break;
287 if (pmd_val(*pmd))
288 continue;
290 set_pte((pte_t *)pmd,
291 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
295 static void __meminit
296 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
298 pmd_t *pmd = pmd_offset(pud, 0);
299 spin_lock(&init_mm.page_table_lock);
300 phys_pmd_init(pmd, address, end);
301 spin_unlock(&init_mm.page_table_lock);
302 __flush_tlb_all();
305 static void __meminit
306 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
308 int i = pud_index(addr);
310 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
311 unsigned long pmd_phys;
312 pud_t *pud = pud_page + pud_index(addr);
313 pmd_t *pmd;
315 if (addr >= end)
316 break;
318 if (!after_bootmem &&
319 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
320 set_pud(pud, __pud(0));
321 continue;
324 if (pud_val(*pud)) {
325 phys_pmd_update(pud, addr, end);
326 continue;
329 pmd = alloc_low_page(&pmd_phys);
331 spin_lock(&init_mm.page_table_lock);
332 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
333 phys_pmd_init(pmd, addr, end);
334 spin_unlock(&init_mm.page_table_lock);
336 unmap_low_page(pmd);
338 __flush_tlb_all();
341 static void __init find_early_table_space(unsigned long end)
343 unsigned long puds, pmds, tables, start;
345 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
346 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
347 tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
348 round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
351 * RED-PEN putting page tables only on node 0 could
352 * cause a hotspot and fill up ZONE_DMA. The page tables
353 * need roughly 0.5KB per GB.
355 start = 0x8000;
356 table_start = find_e820_area(start, end, tables, PAGE_SIZE);
357 if (table_start == -1UL)
358 panic("Cannot find space for the kernel page tables");
360 table_start >>= PAGE_SHIFT;
361 table_end = table_start;
363 early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
364 end, table_start << PAGE_SHIFT,
365 (table_start << PAGE_SHIFT) + tables);
369 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
370 * This runs before bootmem is initialized and gets pages directly from
371 * the physical memory. To access them they are temporarily mapped.
373 void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
375 unsigned long next;
377 pr_debug("init_memory_mapping\n");
380 * Find space for the kernel direct mapping tables.
382 * Later we should allocate these tables in the local node of the
383 * memory mapped. Unfortunately this is done currently before the
384 * nodes are discovered.
386 if (!after_bootmem)
387 find_early_table_space(end);
389 start = (unsigned long)__va(start);
390 end = (unsigned long)__va(end);
392 for (; start < end; start = next) {
393 pgd_t *pgd = pgd_offset_k(start);
394 unsigned long pud_phys;
395 pud_t *pud;
397 if (after_bootmem)
398 pud = pud_offset(pgd, start & PGDIR_MASK);
399 else
400 pud = alloc_low_page(&pud_phys);
402 next = start + PGDIR_SIZE;
403 if (next > end)
404 next = end;
405 phys_pud_init(pud, __pa(start), __pa(next));
406 if (!after_bootmem)
407 set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
408 unmap_low_page(pud);
411 if (!after_bootmem)
412 mmu_cr4_features = read_cr4();
413 __flush_tlb_all();
415 if (!after_bootmem)
416 reserve_early(table_start << PAGE_SHIFT,
417 table_end << PAGE_SHIFT, "PGTABLE");
420 #ifndef CONFIG_NUMA
421 void __init paging_init(void)
423 unsigned long max_zone_pfns[MAX_NR_ZONES];
425 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
426 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
427 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
428 max_zone_pfns[ZONE_NORMAL] = end_pfn;
430 memory_present(0, 0, end_pfn);
431 sparse_init();
432 free_area_init_nodes(max_zone_pfns);
434 #endif
437 * Memory hotplug specific functions
439 void online_page(struct page *page)
441 ClearPageReserved(page);
442 init_page_count(page);
443 __free_page(page);
444 totalram_pages++;
445 num_physpages++;
448 #ifdef CONFIG_MEMORY_HOTPLUG
450 * Memory is added always to NORMAL zone. This means you will never get
451 * additional DMA/DMA32 memory.
453 int arch_add_memory(int nid, u64 start, u64 size)
455 struct pglist_data *pgdat = NODE_DATA(nid);
456 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
457 unsigned long start_pfn = start >> PAGE_SHIFT;
458 unsigned long nr_pages = size >> PAGE_SHIFT;
459 int ret;
461 init_memory_mapping(start, start + size-1);
463 ret = __add_pages(zone, start_pfn, nr_pages);
464 WARN_ON(1);
466 return ret;
468 EXPORT_SYMBOL_GPL(arch_add_memory);
470 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
471 int memory_add_physaddr_to_nid(u64 start)
473 return 0;
475 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
476 #endif
478 #endif /* CONFIG_MEMORY_HOTPLUG */
480 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
481 kcore_modules, kcore_vsyscall;
483 void __init mem_init(void)
485 long codesize, reservedpages, datasize, initsize;
487 pci_iommu_alloc();
489 /* clear_bss() already clear the empty_zero_page */
491 /* temporary debugging - double check it's true: */
493 int i;
495 for (i = 0; i < 1024; i++)
496 WARN_ON_ONCE(empty_zero_page[i]);
499 reservedpages = 0;
501 /* this will put all low memory onto the freelists */
502 #ifdef CONFIG_NUMA
503 totalram_pages = numa_free_all_bootmem();
504 #else
505 totalram_pages = free_all_bootmem();
506 #endif
507 reservedpages = end_pfn - totalram_pages -
508 absent_pages_in_range(0, end_pfn);
509 after_bootmem = 1;
511 codesize = (unsigned long) &_etext - (unsigned long) &_text;
512 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
513 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
515 /* Register memory areas for /proc/kcore */
516 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
517 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
518 VMALLOC_END-VMALLOC_START);
519 kclist_add(&kcore_kernel, &_stext, _end - _stext);
520 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
521 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
522 VSYSCALL_END - VSYSCALL_START);
524 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
525 "%ldk reserved, %ldk data, %ldk init)\n",
526 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
527 end_pfn << (PAGE_SHIFT-10),
528 codesize >> 10,
529 reservedpages << (PAGE_SHIFT-10),
530 datasize >> 10,
531 initsize >> 10);
533 cpa_init();
536 void free_init_pages(char *what, unsigned long begin, unsigned long end)
538 unsigned long addr = begin;
540 if (addr >= end)
541 return;
544 * If debugging page accesses then do not free this memory but
545 * mark them not present - any buggy init-section access will
546 * create a kernel page fault:
548 #ifdef CONFIG_DEBUG_PAGEALLOC
549 printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
550 begin, PAGE_ALIGN(end));
551 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
552 #else
553 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
555 for (; addr < end; addr += PAGE_SIZE) {
556 ClearPageReserved(virt_to_page(addr));
557 init_page_count(virt_to_page(addr));
558 memset((void *)(addr & ~(PAGE_SIZE-1)),
559 POISON_FREE_INITMEM, PAGE_SIZE);
560 free_page(addr);
561 totalram_pages++;
563 #endif
566 void free_initmem(void)
568 free_init_pages("unused kernel memory",
569 (unsigned long)(&__init_begin),
570 (unsigned long)(&__init_end));
573 #ifdef CONFIG_DEBUG_RODATA
574 const int rodata_test_data = 0xC3;
575 EXPORT_SYMBOL_GPL(rodata_test_data);
577 void mark_rodata_ro(void)
579 unsigned long start = (unsigned long)_stext, end;
581 #ifdef CONFIG_HOTPLUG_CPU
582 /* It must still be possible to apply SMP alternatives. */
583 if (num_possible_cpus() > 1)
584 start = (unsigned long)_etext;
585 #endif
587 #ifdef CONFIG_KPROBES
588 start = (unsigned long)__start_rodata;
589 #endif
591 end = (unsigned long)__end_rodata;
592 start = (start + PAGE_SIZE - 1) & PAGE_MASK;
593 end &= PAGE_MASK;
594 if (end <= start)
595 return;
598 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
599 (end - start) >> 10);
600 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
603 * The rodata section (but not the kernel text!) should also be
604 * not-executable.
606 start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
607 set_memory_nx(start, (end - start) >> PAGE_SHIFT);
609 rodata_test();
611 #ifdef CONFIG_CPA_DEBUG
612 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
613 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
615 printk(KERN_INFO "Testing CPA: again\n");
616 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
617 #endif
619 #endif
621 #ifdef CONFIG_BLK_DEV_INITRD
622 void free_initrd_mem(unsigned long start, unsigned long end)
624 free_init_pages("initrd memory", start, end);
626 #endif
628 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
630 #ifdef CONFIG_NUMA
631 int nid = phys_to_nid(phys);
632 #endif
633 unsigned long pfn = phys >> PAGE_SHIFT;
635 if (pfn >= end_pfn) {
637 * This can happen with kdump kernels when accessing
638 * firmware tables:
640 if (pfn < end_pfn_map)
641 return;
643 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
644 phys, len);
645 return;
648 /* Should check here against the e820 map to avoid double free */
649 #ifdef CONFIG_NUMA
650 reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
651 #else
652 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
653 #endif
654 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
655 dma_reserve += len / PAGE_SIZE;
656 set_dma_reserve(dma_reserve);
660 int kern_addr_valid(unsigned long addr)
662 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
663 pgd_t *pgd;
664 pud_t *pud;
665 pmd_t *pmd;
666 pte_t *pte;
668 if (above != 0 && above != -1UL)
669 return 0;
671 pgd = pgd_offset_k(addr);
672 if (pgd_none(*pgd))
673 return 0;
675 pud = pud_offset(pgd, addr);
676 if (pud_none(*pud))
677 return 0;
679 pmd = pmd_offset(pud, addr);
680 if (pmd_none(*pmd))
681 return 0;
683 if (pmd_large(*pmd))
684 return pfn_valid(pmd_pfn(*pmd));
686 pte = pte_offset_kernel(pmd, addr);
687 if (pte_none(*pte))
688 return 0;
690 return pfn_valid(pte_pfn(*pte));
694 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
695 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
696 * not need special handling anymore:
698 static struct vm_area_struct gate_vma = {
699 .vm_start = VSYSCALL_START,
700 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
701 .vm_page_prot = PAGE_READONLY_EXEC,
702 .vm_flags = VM_READ | VM_EXEC
705 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
707 #ifdef CONFIG_IA32_EMULATION
708 if (test_tsk_thread_flag(tsk, TIF_IA32))
709 return NULL;
710 #endif
711 return &gate_vma;
714 int in_gate_area(struct task_struct *task, unsigned long addr)
716 struct vm_area_struct *vma = get_gate_vma(task);
718 if (!vma)
719 return 0;
721 return (addr >= vma->vm_start) && (addr < vma->vm_end);
725 * Use this when you have no reliable task/vma, typically from interrupt
726 * context. It is less reliable than using the task's vma and may give
727 * false positives:
729 int in_gate_area_no_task(unsigned long addr)
731 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
734 const char *arch_vma_name(struct vm_area_struct *vma)
736 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
737 return "[vdso]";
738 if (vma == &gate_vma)
739 return "[vsyscall]";
740 return NULL;
743 #ifdef CONFIG_SPARSEMEM_VMEMMAP
745 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
747 int __meminit
748 vmemmap_populate(struct page *start_page, unsigned long size, int node)
750 unsigned long addr = (unsigned long)start_page;
751 unsigned long end = (unsigned long)(start_page + size);
752 unsigned long next;
753 pgd_t *pgd;
754 pud_t *pud;
755 pmd_t *pmd;
757 for (; addr < end; addr = next) {
758 next = pmd_addr_end(addr, end);
760 pgd = vmemmap_pgd_populate(addr, node);
761 if (!pgd)
762 return -ENOMEM;
764 pud = vmemmap_pud_populate(pgd, addr, node);
765 if (!pud)
766 return -ENOMEM;
768 pmd = pmd_offset(pud, addr);
769 if (pmd_none(*pmd)) {
770 pte_t entry;
771 void *p;
773 p = vmemmap_alloc_block(PMD_SIZE, node);
774 if (!p)
775 return -ENOMEM;
777 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
778 PAGE_KERNEL_LARGE);
779 set_pmd(pmd, __pmd(pte_val(entry)));
781 printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
782 addr, addr + PMD_SIZE - 1, p, node);
783 } else {
784 vmemmap_verify((pte_t *)pmd, node, addr, next);
787 return 0;
789 #endif