x86: a P4 is a P6 not an i486
[wrt350n-kernel.git] / arch / powerpc / kernel / time.c
blob3b26fbd6bec9ee4978ff6430ce1ef27a55723089
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
69 #include <asm/cputime.h>
70 #ifdef CONFIG_PPC_ISERIES
71 #include <asm/iseries/it_lp_queue.h>
72 #include <asm/iseries/hv_call_xm.h>
73 #endif
75 /* powerpc clocksource/clockevent code */
77 #include <linux/clockchips.h>
78 #include <linux/clocksource.h>
80 static cycle_t rtc_read(void);
81 static struct clocksource clocksource_rtc = {
82 .name = "rtc",
83 .rating = 400,
84 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
85 .mask = CLOCKSOURCE_MASK(64),
86 .shift = 22,
87 .mult = 0, /* To be filled in */
88 .read = rtc_read,
91 static cycle_t timebase_read(void);
92 static struct clocksource clocksource_timebase = {
93 .name = "timebase",
94 .rating = 400,
95 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
96 .mask = CLOCKSOURCE_MASK(64),
97 .shift = 22,
98 .mult = 0, /* To be filled in */
99 .read = timebase_read,
102 #define DECREMENTER_MAX 0x7fffffff
104 static int decrementer_set_next_event(unsigned long evt,
105 struct clock_event_device *dev);
106 static void decrementer_set_mode(enum clock_event_mode mode,
107 struct clock_event_device *dev);
109 static struct clock_event_device decrementer_clockevent = {
110 .name = "decrementer",
111 .rating = 200,
112 .shift = 16,
113 .mult = 0, /* To be filled in */
114 .irq = 0,
115 .set_next_event = decrementer_set_next_event,
116 .set_mode = decrementer_set_mode,
117 .features = CLOCK_EVT_FEAT_ONESHOT,
120 struct decrementer_clock {
121 struct clock_event_device event;
122 u64 next_tb;
125 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
127 #ifdef CONFIG_PPC_ISERIES
128 static unsigned long __initdata iSeries_recal_titan;
129 static signed long __initdata iSeries_recal_tb;
131 /* Forward declaration is only needed for iSereis compiles */
132 void __init clocksource_init(void);
133 #endif
135 #define XSEC_PER_SEC (1024*1024)
137 #ifdef CONFIG_PPC64
138 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
139 #else
140 /* compute ((xsec << 12) * max) >> 32 */
141 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
142 #endif
144 unsigned long tb_ticks_per_jiffy;
145 unsigned long tb_ticks_per_usec = 100; /* sane default */
146 EXPORT_SYMBOL(tb_ticks_per_usec);
147 unsigned long tb_ticks_per_sec;
148 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
149 u64 tb_to_xs;
150 unsigned tb_to_us;
152 #define TICKLEN_SCALE TICK_LENGTH_SHIFT
153 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
154 u64 ticklen_to_xs; /* 0.64 fraction */
156 /* If last_tick_len corresponds to about 1/HZ seconds, then
157 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
158 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
160 DEFINE_SPINLOCK(rtc_lock);
161 EXPORT_SYMBOL_GPL(rtc_lock);
163 static u64 tb_to_ns_scale __read_mostly;
164 static unsigned tb_to_ns_shift __read_mostly;
165 static unsigned long boot_tb __read_mostly;
167 struct gettimeofday_struct do_gtod;
169 extern struct timezone sys_tz;
170 static long timezone_offset;
172 unsigned long ppc_proc_freq;
173 EXPORT_SYMBOL(ppc_proc_freq);
174 unsigned long ppc_tb_freq;
176 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
177 static DEFINE_PER_CPU(u64, last_jiffy);
179 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
181 * Factors for converting from cputime_t (timebase ticks) to
182 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
183 * These are all stored as 0.64 fixed-point binary fractions.
185 u64 __cputime_jiffies_factor;
186 EXPORT_SYMBOL(__cputime_jiffies_factor);
187 u64 __cputime_msec_factor;
188 EXPORT_SYMBOL(__cputime_msec_factor);
189 u64 __cputime_sec_factor;
190 EXPORT_SYMBOL(__cputime_sec_factor);
191 u64 __cputime_clockt_factor;
192 EXPORT_SYMBOL(__cputime_clockt_factor);
193 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
194 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
196 static void calc_cputime_factors(void)
198 struct div_result res;
200 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
201 __cputime_jiffies_factor = res.result_low;
202 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
203 __cputime_msec_factor = res.result_low;
204 div128_by_32(1, 0, tb_ticks_per_sec, &res);
205 __cputime_sec_factor = res.result_low;
206 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
207 __cputime_clockt_factor = res.result_low;
211 * Read the PURR on systems that have it, otherwise the timebase.
213 static u64 read_purr(void)
215 if (cpu_has_feature(CPU_FTR_PURR))
216 return mfspr(SPRN_PURR);
217 return mftb();
221 * Read the SPURR on systems that have it, otherwise the purr
223 static u64 read_spurr(u64 purr)
226 * cpus without PURR won't have a SPURR
227 * We already know the former when we use this, so tell gcc
229 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
230 return mfspr(SPRN_SPURR);
231 return purr;
235 * Account time for a transition between system, hard irq
236 * or soft irq state.
238 void account_system_vtime(struct task_struct *tsk)
240 u64 now, nowscaled, delta, deltascaled, sys_time;
241 unsigned long flags;
243 local_irq_save(flags);
244 now = read_purr();
245 nowscaled = read_spurr(now);
246 delta = now - get_paca()->startpurr;
247 deltascaled = nowscaled - get_paca()->startspurr;
248 get_paca()->startpurr = now;
249 get_paca()->startspurr = nowscaled;
250 if (!in_interrupt()) {
251 /* deltascaled includes both user and system time.
252 * Hence scale it based on the purr ratio to estimate
253 * the system time */
254 sys_time = get_paca()->system_time;
255 if (get_paca()->user_time)
256 deltascaled = deltascaled * sys_time /
257 (sys_time + get_paca()->user_time);
258 delta += sys_time;
259 get_paca()->system_time = 0;
261 account_system_time(tsk, 0, delta);
262 account_system_time_scaled(tsk, deltascaled);
263 per_cpu(cputime_last_delta, smp_processor_id()) = delta;
264 per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
265 local_irq_restore(flags);
269 * Transfer the user and system times accumulated in the paca
270 * by the exception entry and exit code to the generic process
271 * user and system time records.
272 * Must be called with interrupts disabled.
274 void account_process_tick(struct task_struct *tsk, int user_tick)
276 cputime_t utime, utimescaled;
278 utime = get_paca()->user_time;
279 get_paca()->user_time = 0;
280 account_user_time(tsk, utime);
282 utimescaled = cputime_to_scaled(utime);
283 account_user_time_scaled(tsk, utimescaled);
287 * Stuff for accounting stolen time.
289 struct cpu_purr_data {
290 int initialized; /* thread is running */
291 u64 tb; /* last TB value read */
292 u64 purr; /* last PURR value read */
293 u64 spurr; /* last SPURR value read */
297 * Each entry in the cpu_purr_data array is manipulated only by its
298 * "owner" cpu -- usually in the timer interrupt but also occasionally
299 * in process context for cpu online. As long as cpus do not touch
300 * each others' cpu_purr_data, disabling local interrupts is
301 * sufficient to serialize accesses.
303 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
305 static void snapshot_tb_and_purr(void *data)
307 unsigned long flags;
308 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
310 local_irq_save(flags);
311 p->tb = get_tb_or_rtc();
312 p->purr = mfspr(SPRN_PURR);
313 wmb();
314 p->initialized = 1;
315 local_irq_restore(flags);
319 * Called during boot when all cpus have come up.
321 void snapshot_timebases(void)
323 if (!cpu_has_feature(CPU_FTR_PURR))
324 return;
325 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
329 * Must be called with interrupts disabled.
331 void calculate_steal_time(void)
333 u64 tb, purr;
334 s64 stolen;
335 struct cpu_purr_data *pme;
337 pme = &__get_cpu_var(cpu_purr_data);
338 if (!pme->initialized)
339 return; /* !CPU_FTR_PURR or early in early boot */
340 tb = mftb();
341 purr = mfspr(SPRN_PURR);
342 stolen = (tb - pme->tb) - (purr - pme->purr);
343 if (stolen > 0)
344 account_steal_time(current, stolen);
345 pme->tb = tb;
346 pme->purr = purr;
349 #ifdef CONFIG_PPC_SPLPAR
351 * Must be called before the cpu is added to the online map when
352 * a cpu is being brought up at runtime.
354 static void snapshot_purr(void)
356 struct cpu_purr_data *pme;
357 unsigned long flags;
359 if (!cpu_has_feature(CPU_FTR_PURR))
360 return;
361 local_irq_save(flags);
362 pme = &__get_cpu_var(cpu_purr_data);
363 pme->tb = mftb();
364 pme->purr = mfspr(SPRN_PURR);
365 pme->initialized = 1;
366 local_irq_restore(flags);
369 #endif /* CONFIG_PPC_SPLPAR */
371 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
372 #define calc_cputime_factors()
373 #define calculate_steal_time() do { } while (0)
374 #endif
376 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
377 #define snapshot_purr() do { } while (0)
378 #endif
381 * Called when a cpu comes up after the system has finished booting,
382 * i.e. as a result of a hotplug cpu action.
384 void snapshot_timebase(void)
386 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
387 snapshot_purr();
390 void __delay(unsigned long loops)
392 unsigned long start;
393 int diff;
395 if (__USE_RTC()) {
396 start = get_rtcl();
397 do {
398 /* the RTCL register wraps at 1000000000 */
399 diff = get_rtcl() - start;
400 if (diff < 0)
401 diff += 1000000000;
402 } while (diff < loops);
403 } else {
404 start = get_tbl();
405 while (get_tbl() - start < loops)
406 HMT_low();
407 HMT_medium();
410 EXPORT_SYMBOL(__delay);
412 void udelay(unsigned long usecs)
414 __delay(tb_ticks_per_usec * usecs);
416 EXPORT_SYMBOL(udelay);
420 * There are two copies of tb_to_xs and stamp_xsec so that no
421 * lock is needed to access and use these values in
422 * do_gettimeofday. We alternate the copies and as long as a
423 * reasonable time elapses between changes, there will never
424 * be inconsistent values. ntpd has a minimum of one minute
425 * between updates.
427 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
428 u64 new_tb_to_xs)
430 unsigned temp_idx;
431 struct gettimeofday_vars *temp_varp;
433 temp_idx = (do_gtod.var_idx == 0);
434 temp_varp = &do_gtod.vars[temp_idx];
436 temp_varp->tb_to_xs = new_tb_to_xs;
437 temp_varp->tb_orig_stamp = new_tb_stamp;
438 temp_varp->stamp_xsec = new_stamp_xsec;
439 smp_mb();
440 do_gtod.varp = temp_varp;
441 do_gtod.var_idx = temp_idx;
444 * tb_update_count is used to allow the userspace gettimeofday code
445 * to assure itself that it sees a consistent view of the tb_to_xs and
446 * stamp_xsec variables. It reads the tb_update_count, then reads
447 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
448 * the two values of tb_update_count match and are even then the
449 * tb_to_xs and stamp_xsec values are consistent. If not, then it
450 * loops back and reads them again until this criteria is met.
451 * We expect the caller to have done the first increment of
452 * vdso_data->tb_update_count already.
454 vdso_data->tb_orig_stamp = new_tb_stamp;
455 vdso_data->stamp_xsec = new_stamp_xsec;
456 vdso_data->tb_to_xs = new_tb_to_xs;
457 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
458 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
459 smp_wmb();
460 ++(vdso_data->tb_update_count);
463 #ifdef CONFIG_SMP
464 unsigned long profile_pc(struct pt_regs *regs)
466 unsigned long pc = instruction_pointer(regs);
468 if (in_lock_functions(pc))
469 return regs->link;
471 return pc;
473 EXPORT_SYMBOL(profile_pc);
474 #endif
476 #ifdef CONFIG_PPC_ISERIES
479 * This function recalibrates the timebase based on the 49-bit time-of-day
480 * value in the Titan chip. The Titan is much more accurate than the value
481 * returned by the service processor for the timebase frequency.
484 static int __init iSeries_tb_recal(void)
486 struct div_result divres;
487 unsigned long titan, tb;
489 /* Make sure we only run on iSeries */
490 if (!firmware_has_feature(FW_FEATURE_ISERIES))
491 return -ENODEV;
493 tb = get_tb();
494 titan = HvCallXm_loadTod();
495 if ( iSeries_recal_titan ) {
496 unsigned long tb_ticks = tb - iSeries_recal_tb;
497 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
498 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
499 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
500 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
501 char sign = '+';
502 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
503 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
505 if ( tick_diff < 0 ) {
506 tick_diff = -tick_diff;
507 sign = '-';
509 if ( tick_diff ) {
510 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
511 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
512 new_tb_ticks_per_jiffy, sign, tick_diff );
513 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
514 tb_ticks_per_sec = new_tb_ticks_per_sec;
515 calc_cputime_factors();
516 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
517 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
518 tb_to_xs = divres.result_low;
519 do_gtod.varp->tb_to_xs = tb_to_xs;
520 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
521 vdso_data->tb_to_xs = tb_to_xs;
523 else {
524 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
525 " new tb_ticks_per_jiffy = %lu\n"
526 " old tb_ticks_per_jiffy = %lu\n",
527 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
531 iSeries_recal_titan = titan;
532 iSeries_recal_tb = tb;
534 /* Called here as now we know accurate values for the timebase */
535 clocksource_init();
536 return 0;
538 late_initcall(iSeries_tb_recal);
540 /* Called from platform early init */
541 void __init iSeries_time_init_early(void)
543 iSeries_recal_tb = get_tb();
544 iSeries_recal_titan = HvCallXm_loadTod();
546 #endif /* CONFIG_PPC_ISERIES */
549 * For iSeries shared processors, we have to let the hypervisor
550 * set the hardware decrementer. We set a virtual decrementer
551 * in the lppaca and call the hypervisor if the virtual
552 * decrementer is less than the current value in the hardware
553 * decrementer. (almost always the new decrementer value will
554 * be greater than the current hardware decementer so the hypervisor
555 * call will not be needed)
559 * timer_interrupt - gets called when the decrementer overflows,
560 * with interrupts disabled.
562 void timer_interrupt(struct pt_regs * regs)
564 struct pt_regs *old_regs;
565 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
566 struct clock_event_device *evt = &decrementer->event;
567 u64 now;
569 /* Ensure a positive value is written to the decrementer, or else
570 * some CPUs will continuue to take decrementer exceptions */
571 set_dec(DECREMENTER_MAX);
573 #ifdef CONFIG_PPC32
574 if (atomic_read(&ppc_n_lost_interrupts) != 0)
575 do_IRQ(regs);
576 #endif
578 now = get_tb_or_rtc();
579 if (now < decrementer->next_tb) {
580 /* not time for this event yet */
581 now = decrementer->next_tb - now;
582 if (now <= DECREMENTER_MAX)
583 set_dec((int)now);
584 return;
586 old_regs = set_irq_regs(regs);
587 irq_enter();
589 calculate_steal_time();
591 #ifdef CONFIG_PPC_ISERIES
592 if (firmware_has_feature(FW_FEATURE_ISERIES))
593 get_lppaca()->int_dword.fields.decr_int = 0;
594 #endif
596 if (evt->event_handler)
597 evt->event_handler(evt);
599 #ifdef CONFIG_PPC_ISERIES
600 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
601 process_hvlpevents();
602 #endif
604 #ifdef CONFIG_PPC64
605 /* collect purr register values often, for accurate calculations */
606 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
607 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
608 cu->current_tb = mfspr(SPRN_PURR);
610 #endif
612 irq_exit();
613 set_irq_regs(old_regs);
616 void wakeup_decrementer(void)
618 unsigned long ticks;
621 * The timebase gets saved on sleep and restored on wakeup,
622 * so all we need to do is to reset the decrementer.
624 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
625 if (ticks < tb_ticks_per_jiffy)
626 ticks = tb_ticks_per_jiffy - ticks;
627 else
628 ticks = 1;
629 set_dec(ticks);
632 #ifdef CONFIG_SUSPEND
633 void generic_suspend_disable_irqs(void)
635 preempt_disable();
637 /* Disable the decrementer, so that it doesn't interfere
638 * with suspending.
641 set_dec(0x7fffffff);
642 local_irq_disable();
643 set_dec(0x7fffffff);
646 void generic_suspend_enable_irqs(void)
648 wakeup_decrementer();
650 local_irq_enable();
651 preempt_enable();
654 /* Overrides the weak version in kernel/power/main.c */
655 void arch_suspend_disable_irqs(void)
657 if (ppc_md.suspend_disable_irqs)
658 ppc_md.suspend_disable_irqs();
659 generic_suspend_disable_irqs();
662 /* Overrides the weak version in kernel/power/main.c */
663 void arch_suspend_enable_irqs(void)
665 generic_suspend_enable_irqs();
666 if (ppc_md.suspend_enable_irqs)
667 ppc_md.suspend_enable_irqs();
669 #endif
671 #ifdef CONFIG_SMP
672 void __init smp_space_timers(unsigned int max_cpus)
674 int i;
675 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
677 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
678 previous_tb -= tb_ticks_per_jiffy;
680 for_each_possible_cpu(i) {
681 if (i == boot_cpuid)
682 continue;
683 per_cpu(last_jiffy, i) = previous_tb;
686 #endif
689 * Scheduler clock - returns current time in nanosec units.
691 * Note: mulhdu(a, b) (multiply high double unsigned) returns
692 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
693 * are 64-bit unsigned numbers.
695 unsigned long long sched_clock(void)
697 if (__USE_RTC())
698 return get_rtc();
699 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
702 static int __init get_freq(char *name, int cells, unsigned long *val)
704 struct device_node *cpu;
705 const unsigned int *fp;
706 int found = 0;
708 /* The cpu node should have timebase and clock frequency properties */
709 cpu = of_find_node_by_type(NULL, "cpu");
711 if (cpu) {
712 fp = of_get_property(cpu, name, NULL);
713 if (fp) {
714 found = 1;
715 *val = of_read_ulong(fp, cells);
718 of_node_put(cpu);
721 return found;
724 void __init generic_calibrate_decr(void)
726 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
728 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
729 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
731 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
732 "(not found)\n");
735 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
737 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
738 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
740 printk(KERN_ERR "WARNING: Estimating processor frequency "
741 "(not found)\n");
744 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
745 /* Set the time base to zero */
746 mtspr(SPRN_TBWL, 0);
747 mtspr(SPRN_TBWU, 0);
749 /* Clear any pending timer interrupts */
750 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
752 /* Enable decrementer interrupt */
753 mtspr(SPRN_TCR, TCR_DIE);
754 #endif
757 int update_persistent_clock(struct timespec now)
759 struct rtc_time tm;
761 if (!ppc_md.set_rtc_time)
762 return 0;
764 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
765 tm.tm_year -= 1900;
766 tm.tm_mon -= 1;
768 return ppc_md.set_rtc_time(&tm);
771 unsigned long read_persistent_clock(void)
773 struct rtc_time tm;
774 static int first = 1;
776 /* XXX this is a litle fragile but will work okay in the short term */
777 if (first) {
778 first = 0;
779 if (ppc_md.time_init)
780 timezone_offset = ppc_md.time_init();
782 /* get_boot_time() isn't guaranteed to be safe to call late */
783 if (ppc_md.get_boot_time)
784 return ppc_md.get_boot_time() -timezone_offset;
786 if (!ppc_md.get_rtc_time)
787 return 0;
788 ppc_md.get_rtc_time(&tm);
789 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
790 tm.tm_hour, tm.tm_min, tm.tm_sec);
793 /* clocksource code */
794 static cycle_t rtc_read(void)
796 return (cycle_t)get_rtc();
799 static cycle_t timebase_read(void)
801 return (cycle_t)get_tb();
804 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
806 u64 t2x, stamp_xsec;
808 if (clock != &clocksource_timebase)
809 return;
811 /* Make userspace gettimeofday spin until we're done. */
812 ++vdso_data->tb_update_count;
813 smp_mb();
815 /* XXX this assumes clock->shift == 22 */
816 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
817 t2x = (u64) clock->mult * 4611686018ULL;
818 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
819 do_div(stamp_xsec, 1000000000);
820 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
821 update_gtod(clock->cycle_last, stamp_xsec, t2x);
824 void update_vsyscall_tz(void)
826 /* Make userspace gettimeofday spin until we're done. */
827 ++vdso_data->tb_update_count;
828 smp_mb();
829 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
830 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
831 smp_mb();
832 ++vdso_data->tb_update_count;
835 void __init clocksource_init(void)
837 struct clocksource *clock;
839 if (__USE_RTC())
840 clock = &clocksource_rtc;
841 else
842 clock = &clocksource_timebase;
844 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
846 if (clocksource_register(clock)) {
847 printk(KERN_ERR "clocksource: %s is already registered\n",
848 clock->name);
849 return;
852 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
853 clock->name, clock->mult, clock->shift);
856 static int decrementer_set_next_event(unsigned long evt,
857 struct clock_event_device *dev)
859 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
860 set_dec(evt);
861 return 0;
864 static void decrementer_set_mode(enum clock_event_mode mode,
865 struct clock_event_device *dev)
867 if (mode != CLOCK_EVT_MODE_ONESHOT)
868 decrementer_set_next_event(DECREMENTER_MAX, dev);
871 static void register_decrementer_clockevent(int cpu)
873 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
875 *dec = decrementer_clockevent;
876 dec->cpumask = cpumask_of_cpu(cpu);
878 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
879 dec->name, dec->mult, dec->shift, cpu);
881 clockevents_register_device(dec);
884 static void __init init_decrementer_clockevent(void)
886 int cpu = smp_processor_id();
888 decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
889 decrementer_clockevent.shift);
890 decrementer_clockevent.max_delta_ns =
891 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
892 decrementer_clockevent.min_delta_ns =
893 clockevent_delta2ns(2, &decrementer_clockevent);
895 register_decrementer_clockevent(cpu);
898 void secondary_cpu_time_init(void)
900 /* FIME: Should make unrelatred change to move snapshot_timebase
901 * call here ! */
902 register_decrementer_clockevent(smp_processor_id());
905 /* This function is only called on the boot processor */
906 void __init time_init(void)
908 unsigned long flags;
909 struct div_result res;
910 u64 scale, x;
911 unsigned shift;
913 if (__USE_RTC()) {
914 /* 601 processor: dec counts down by 128 every 128ns */
915 ppc_tb_freq = 1000000000;
916 tb_last_jiffy = get_rtcl();
917 } else {
918 /* Normal PowerPC with timebase register */
919 ppc_md.calibrate_decr();
920 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
921 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
922 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
923 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
924 tb_last_jiffy = get_tb();
927 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
928 tb_ticks_per_sec = ppc_tb_freq;
929 tb_ticks_per_usec = ppc_tb_freq / 1000000;
930 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
931 calc_cputime_factors();
934 * Calculate the length of each tick in ns. It will not be
935 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
936 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
937 * rounded up.
939 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
940 do_div(x, ppc_tb_freq);
941 tick_nsec = x;
942 last_tick_len = x << TICKLEN_SCALE;
945 * Compute ticklen_to_xs, which is a factor which gets multiplied
946 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
947 * It is computed as:
948 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
949 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
950 * which turns out to be N = 51 - SHIFT_HZ.
951 * This gives the result as a 0.64 fixed-point fraction.
952 * That value is reduced by an offset amounting to 1 xsec per
953 * 2^31 timebase ticks to avoid problems with time going backwards
954 * by 1 xsec when we do timer_recalc_offset due to losing the
955 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
956 * since there are 2^20 xsec in a second.
958 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
959 tb_ticks_per_jiffy << SHIFT_HZ, &res);
960 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
961 ticklen_to_xs = res.result_low;
963 /* Compute tb_to_xs from tick_nsec */
964 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
967 * Compute scale factor for sched_clock.
968 * The calibrate_decr() function has set tb_ticks_per_sec,
969 * which is the timebase frequency.
970 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
971 * the 128-bit result as a 64.64 fixed-point number.
972 * We then shift that number right until it is less than 1.0,
973 * giving us the scale factor and shift count to use in
974 * sched_clock().
976 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
977 scale = res.result_low;
978 for (shift = 0; res.result_high != 0; ++shift) {
979 scale = (scale >> 1) | (res.result_high << 63);
980 res.result_high >>= 1;
982 tb_to_ns_scale = scale;
983 tb_to_ns_shift = shift;
984 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
985 boot_tb = get_tb_or_rtc();
987 write_seqlock_irqsave(&xtime_lock, flags);
989 /* If platform provided a timezone (pmac), we correct the time */
990 if (timezone_offset) {
991 sys_tz.tz_minuteswest = -timezone_offset / 60;
992 sys_tz.tz_dsttime = 0;
995 do_gtod.varp = &do_gtod.vars[0];
996 do_gtod.var_idx = 0;
997 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
998 __get_cpu_var(last_jiffy) = tb_last_jiffy;
999 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1000 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1001 do_gtod.varp->tb_to_xs = tb_to_xs;
1002 do_gtod.tb_to_us = tb_to_us;
1004 vdso_data->tb_orig_stamp = tb_last_jiffy;
1005 vdso_data->tb_update_count = 0;
1006 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1007 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1008 vdso_data->tb_to_xs = tb_to_xs;
1010 time_freq = 0;
1012 write_sequnlock_irqrestore(&xtime_lock, flags);
1014 /* Register the clocksource, if we're not running on iSeries */
1015 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1016 clocksource_init();
1018 init_decrementer_clockevent();
1022 #define FEBRUARY 2
1023 #define STARTOFTIME 1970
1024 #define SECDAY 86400L
1025 #define SECYR (SECDAY * 365)
1026 #define leapyear(year) ((year) % 4 == 0 && \
1027 ((year) % 100 != 0 || (year) % 400 == 0))
1028 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1029 #define days_in_month(a) (month_days[(a) - 1])
1031 static int month_days[12] = {
1032 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1036 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1038 void GregorianDay(struct rtc_time * tm)
1040 int leapsToDate;
1041 int lastYear;
1042 int day;
1043 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1045 lastYear = tm->tm_year - 1;
1048 * Number of leap corrections to apply up to end of last year
1050 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1053 * This year is a leap year if it is divisible by 4 except when it is
1054 * divisible by 100 unless it is divisible by 400
1056 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1058 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1060 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1061 tm->tm_mday;
1063 tm->tm_wday = day % 7;
1066 void to_tm(int tim, struct rtc_time * tm)
1068 register int i;
1069 register long hms, day;
1071 day = tim / SECDAY;
1072 hms = tim % SECDAY;
1074 /* Hours, minutes, seconds are easy */
1075 tm->tm_hour = hms / 3600;
1076 tm->tm_min = (hms % 3600) / 60;
1077 tm->tm_sec = (hms % 3600) % 60;
1079 /* Number of years in days */
1080 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1081 day -= days_in_year(i);
1082 tm->tm_year = i;
1084 /* Number of months in days left */
1085 if (leapyear(tm->tm_year))
1086 days_in_month(FEBRUARY) = 29;
1087 for (i = 1; day >= days_in_month(i); i++)
1088 day -= days_in_month(i);
1089 days_in_month(FEBRUARY) = 28;
1090 tm->tm_mon = i;
1092 /* Days are what is left over (+1) from all that. */
1093 tm->tm_mday = day + 1;
1096 * Determine the day of week
1098 GregorianDay(tm);
1101 /* Auxiliary function to compute scaling factors */
1102 /* Actually the choice of a timebase running at 1/4 the of the bus
1103 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1104 * It makes this computation very precise (27-28 bits typically) which
1105 * is optimistic considering the stability of most processor clock
1106 * oscillators and the precision with which the timebase frequency
1107 * is measured but does not harm.
1109 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1111 unsigned mlt=0, tmp, err;
1112 /* No concern for performance, it's done once: use a stupid
1113 * but safe and compact method to find the multiplier.
1116 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1117 if (mulhwu(inscale, mlt|tmp) < outscale)
1118 mlt |= tmp;
1121 /* We might still be off by 1 for the best approximation.
1122 * A side effect of this is that if outscale is too large
1123 * the returned value will be zero.
1124 * Many corner cases have been checked and seem to work,
1125 * some might have been forgotten in the test however.
1128 err = inscale * (mlt+1);
1129 if (err <= inscale/2)
1130 mlt++;
1131 return mlt;
1135 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1136 * result.
1138 void div128_by_32(u64 dividend_high, u64 dividend_low,
1139 unsigned divisor, struct div_result *dr)
1141 unsigned long a, b, c, d;
1142 unsigned long w, x, y, z;
1143 u64 ra, rb, rc;
1145 a = dividend_high >> 32;
1146 b = dividend_high & 0xffffffff;
1147 c = dividend_low >> 32;
1148 d = dividend_low & 0xffffffff;
1150 w = a / divisor;
1151 ra = ((u64)(a - (w * divisor)) << 32) + b;
1153 rb = ((u64) do_div(ra, divisor) << 32) + c;
1154 x = ra;
1156 rc = ((u64) do_div(rb, divisor) << 32) + d;
1157 y = rb;
1159 do_div(rc, divisor);
1160 z = rc;
1162 dr->result_high = ((u64)w << 32) + x;
1163 dr->result_low = ((u64)y << 32) + z;