IPMI: add polled interface
[wrt350n-kernel.git] / fs / ecryptfs / crypto.c
blob1ae90ef2c74d7b267e4250e2235c095e74469c30
1 /**
2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include "ecryptfs_kernel.h"
38 static int
39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40 struct page *dst_page, int dst_offset,
41 struct page *src_page, int src_offset, int size,
42 unsigned char *iv);
43 static int
44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45 struct page *dst_page, int dst_offset,
46 struct page *src_page, int src_offset, int size,
47 unsigned char *iv);
49 /**
50 * ecryptfs_to_hex
51 * @dst: Buffer to take hex character representation of contents of
52 * src; must be at least of size (src_size * 2)
53 * @src: Buffer to be converted to a hex string respresentation
54 * @src_size: number of bytes to convert
56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
58 int x;
60 for (x = 0; x < src_size; x++)
61 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64 /**
65 * ecryptfs_from_hex
66 * @dst: Buffer to take the bytes from src hex; must be at least of
67 * size (src_size / 2)
68 * @src: Buffer to be converted from a hex string respresentation to raw value
69 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
73 int x;
74 char tmp[3] = { 0, };
76 for (x = 0; x < dst_size; x++) {
77 tmp[0] = src[x * 2];
78 tmp[1] = src[x * 2 + 1];
79 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
83 /**
84 * ecryptfs_calculate_md5 - calculates the md5 of @src
85 * @dst: Pointer to 16 bytes of allocated memory
86 * @crypt_stat: Pointer to crypt_stat struct for the current inode
87 * @src: Data to be md5'd
88 * @len: Length of @src
90 * Uses the allocated crypto context that crypt_stat references to
91 * generate the MD5 sum of the contents of src.
93 static int ecryptfs_calculate_md5(char *dst,
94 struct ecryptfs_crypt_stat *crypt_stat,
95 char *src, int len)
97 struct scatterlist sg;
98 struct hash_desc desc = {
99 .tfm = crypt_stat->hash_tfm,
100 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
102 int rc = 0;
104 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105 sg_init_one(&sg, (u8 *)src, len);
106 if (!desc.tfm) {
107 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108 CRYPTO_ALG_ASYNC);
109 if (IS_ERR(desc.tfm)) {
110 rc = PTR_ERR(desc.tfm);
111 ecryptfs_printk(KERN_ERR, "Error attempting to "
112 "allocate crypto context; rc = [%d]\n",
113 rc);
114 goto out;
116 crypt_stat->hash_tfm = desc.tfm;
118 crypto_hash_init(&desc);
119 crypto_hash_update(&desc, &sg, len);
120 crypto_hash_final(&desc, dst);
121 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
122 out:
123 return rc;
126 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
127 char *cipher_name,
128 char *chaining_modifier)
130 int cipher_name_len = strlen(cipher_name);
131 int chaining_modifier_len = strlen(chaining_modifier);
132 int algified_name_len;
133 int rc;
135 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
136 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
137 if (!(*algified_name)) {
138 rc = -ENOMEM;
139 goto out;
141 snprintf((*algified_name), algified_name_len, "%s(%s)",
142 chaining_modifier, cipher_name);
143 rc = 0;
144 out:
145 return rc;
149 * ecryptfs_derive_iv
150 * @iv: destination for the derived iv vale
151 * @crypt_stat: Pointer to crypt_stat struct for the current inode
152 * @offset: Offset of the extent whose IV we are to derive
154 * Generate the initialization vector from the given root IV and page
155 * offset.
157 * Returns zero on success; non-zero on error.
159 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
160 loff_t offset)
162 int rc = 0;
163 char dst[MD5_DIGEST_SIZE];
164 char src[ECRYPTFS_MAX_IV_BYTES + 16];
166 if (unlikely(ecryptfs_verbosity > 0)) {
167 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
168 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
170 /* TODO: It is probably secure to just cast the least
171 * significant bits of the root IV into an unsigned long and
172 * add the offset to that rather than go through all this
173 * hashing business. -Halcrow */
174 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
175 memset((src + crypt_stat->iv_bytes), 0, 16);
176 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
177 if (unlikely(ecryptfs_verbosity > 0)) {
178 ecryptfs_printk(KERN_DEBUG, "source:\n");
179 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
181 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
182 (crypt_stat->iv_bytes + 16));
183 if (rc) {
184 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
185 "MD5 while generating IV for a page\n");
186 goto out;
188 memcpy(iv, dst, crypt_stat->iv_bytes);
189 if (unlikely(ecryptfs_verbosity > 0)) {
190 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
191 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
193 out:
194 return rc;
198 * ecryptfs_init_crypt_stat
199 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
201 * Initialize the crypt_stat structure.
203 void
204 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
206 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
207 INIT_LIST_HEAD(&crypt_stat->keysig_list);
208 mutex_init(&crypt_stat->keysig_list_mutex);
209 mutex_init(&crypt_stat->cs_mutex);
210 mutex_init(&crypt_stat->cs_tfm_mutex);
211 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
212 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
216 * ecryptfs_destroy_crypt_stat
217 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
219 * Releases all memory associated with a crypt_stat struct.
221 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
223 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
225 if (crypt_stat->tfm)
226 crypto_free_blkcipher(crypt_stat->tfm);
227 if (crypt_stat->hash_tfm)
228 crypto_free_hash(crypt_stat->hash_tfm);
229 mutex_lock(&crypt_stat->keysig_list_mutex);
230 list_for_each_entry_safe(key_sig, key_sig_tmp,
231 &crypt_stat->keysig_list, crypt_stat_list) {
232 list_del(&key_sig->crypt_stat_list);
233 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
235 mutex_unlock(&crypt_stat->keysig_list_mutex);
236 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
239 void ecryptfs_destroy_mount_crypt_stat(
240 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
242 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
244 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
245 return;
246 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
247 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
248 &mount_crypt_stat->global_auth_tok_list,
249 mount_crypt_stat_list) {
250 list_del(&auth_tok->mount_crypt_stat_list);
251 mount_crypt_stat->num_global_auth_toks--;
252 if (auth_tok->global_auth_tok_key
253 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
254 key_put(auth_tok->global_auth_tok_key);
255 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
257 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
258 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
262 * virt_to_scatterlist
263 * @addr: Virtual address
264 * @size: Size of data; should be an even multiple of the block size
265 * @sg: Pointer to scatterlist array; set to NULL to obtain only
266 * the number of scatterlist structs required in array
267 * @sg_size: Max array size
269 * Fills in a scatterlist array with page references for a passed
270 * virtual address.
272 * Returns the number of scatterlist structs in array used
274 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
275 int sg_size)
277 int i = 0;
278 struct page *pg;
279 int offset;
280 int remainder_of_page;
282 while (size > 0 && i < sg_size) {
283 pg = virt_to_page(addr);
284 offset = offset_in_page(addr);
285 if (sg) {
286 sg[i].page = pg;
287 sg[i].offset = offset;
289 remainder_of_page = PAGE_CACHE_SIZE - offset;
290 if (size >= remainder_of_page) {
291 if (sg)
292 sg[i].length = remainder_of_page;
293 addr += remainder_of_page;
294 size -= remainder_of_page;
295 } else {
296 if (sg)
297 sg[i].length = size;
298 addr += size;
299 size = 0;
301 i++;
303 if (size > 0)
304 return -ENOMEM;
305 return i;
309 * encrypt_scatterlist
310 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
311 * @dest_sg: Destination of encrypted data
312 * @src_sg: Data to be encrypted
313 * @size: Length of data to be encrypted
314 * @iv: iv to use during encryption
316 * Returns the number of bytes encrypted; negative value on error
318 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
319 struct scatterlist *dest_sg,
320 struct scatterlist *src_sg, int size,
321 unsigned char *iv)
323 struct blkcipher_desc desc = {
324 .tfm = crypt_stat->tfm,
325 .info = iv,
326 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
328 int rc = 0;
330 BUG_ON(!crypt_stat || !crypt_stat->tfm
331 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
332 if (unlikely(ecryptfs_verbosity > 0)) {
333 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
334 crypt_stat->key_size);
335 ecryptfs_dump_hex(crypt_stat->key,
336 crypt_stat->key_size);
338 /* Consider doing this once, when the file is opened */
339 mutex_lock(&crypt_stat->cs_tfm_mutex);
340 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
341 crypt_stat->key_size);
342 if (rc) {
343 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
344 rc);
345 mutex_unlock(&crypt_stat->cs_tfm_mutex);
346 rc = -EINVAL;
347 goto out;
349 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
350 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
351 mutex_unlock(&crypt_stat->cs_tfm_mutex);
352 out:
353 return rc;
357 * ecryptfs_lower_offset_for_extent
359 * Convert an eCryptfs page index into a lower byte offset
361 void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
362 struct ecryptfs_crypt_stat *crypt_stat)
364 (*offset) = ((crypt_stat->extent_size
365 * crypt_stat->num_header_extents_at_front)
366 + (crypt_stat->extent_size * extent_num));
370 * ecryptfs_encrypt_extent
371 * @enc_extent_page: Allocated page into which to encrypt the data in
372 * @page
373 * @crypt_stat: crypt_stat containing cryptographic context for the
374 * encryption operation
375 * @page: Page containing plaintext data extent to encrypt
376 * @extent_offset: Page extent offset for use in generating IV
378 * Encrypts one extent of data.
380 * Return zero on success; non-zero otherwise
382 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
383 struct ecryptfs_crypt_stat *crypt_stat,
384 struct page *page,
385 unsigned long extent_offset)
387 loff_t extent_base;
388 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
389 int rc;
391 extent_base = (((loff_t)page->index)
392 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
393 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
394 (extent_base + extent_offset));
395 if (rc) {
396 ecryptfs_printk(KERN_ERR, "Error attempting to "
397 "derive IV for extent [0x%.16x]; "
398 "rc = [%d]\n", (extent_base + extent_offset),
399 rc);
400 goto out;
402 if (unlikely(ecryptfs_verbosity > 0)) {
403 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
404 "with iv:\n");
405 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
406 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
407 "encryption:\n");
408 ecryptfs_dump_hex((char *)
409 (page_address(page)
410 + (extent_offset * crypt_stat->extent_size)),
413 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
414 page, (extent_offset
415 * crypt_stat->extent_size),
416 crypt_stat->extent_size, extent_iv);
417 if (rc < 0) {
418 printk(KERN_ERR "%s: Error attempting to encrypt page with "
419 "page->index = [%ld], extent_offset = [%ld]; "
420 "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
421 rc);
422 goto out;
424 rc = 0;
425 if (unlikely(ecryptfs_verbosity > 0)) {
426 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
427 "rc = [%d]\n", (extent_base + extent_offset),
428 rc);
429 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
430 "encryption:\n");
431 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
433 out:
434 return rc;
438 * ecryptfs_encrypt_page
439 * @page: Page mapped from the eCryptfs inode for the file; contains
440 * decrypted content that needs to be encrypted (to a temporary
441 * page; not in place) and written out to the lower file
443 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
444 * that eCryptfs pages may straddle the lower pages -- for instance,
445 * if the file was created on a machine with an 8K page size
446 * (resulting in an 8K header), and then the file is copied onto a
447 * host with a 32K page size, then when reading page 0 of the eCryptfs
448 * file, 24K of page 0 of the lower file will be read and decrypted,
449 * and then 8K of page 1 of the lower file will be read and decrypted.
451 * Returns zero on success; negative on error
453 int ecryptfs_encrypt_page(struct page *page)
455 struct inode *ecryptfs_inode;
456 struct ecryptfs_crypt_stat *crypt_stat;
457 char *enc_extent_virt = NULL;
458 struct page *enc_extent_page;
459 loff_t extent_offset;
460 int rc = 0;
462 ecryptfs_inode = page->mapping->host;
463 crypt_stat =
464 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
465 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
466 rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
467 0, PAGE_CACHE_SIZE);
468 if (rc)
469 printk(KERN_ERR "%s: Error attempting to copy "
470 "page at index [%ld]\n", __FUNCTION__,
471 page->index);
472 goto out;
474 enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
475 if (!enc_extent_virt) {
476 rc = -ENOMEM;
477 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
478 "encrypted extent\n");
479 goto out;
481 enc_extent_page = virt_to_page(enc_extent_virt);
482 for (extent_offset = 0;
483 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
484 extent_offset++) {
485 loff_t offset;
487 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
488 extent_offset);
489 if (rc) {
490 printk(KERN_ERR "%s: Error encrypting extent; "
491 "rc = [%d]\n", __FUNCTION__, rc);
492 goto out;
494 ecryptfs_lower_offset_for_extent(
495 &offset, ((((loff_t)page->index)
496 * (PAGE_CACHE_SIZE
497 / crypt_stat->extent_size))
498 + extent_offset), crypt_stat);
499 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
500 offset, crypt_stat->extent_size);
501 if (rc) {
502 ecryptfs_printk(KERN_ERR, "Error attempting "
503 "to write lower page; rc = [%d]"
504 "\n", rc);
505 goto out;
507 extent_offset++;
509 out:
510 kfree(enc_extent_virt);
511 return rc;
514 static int ecryptfs_decrypt_extent(struct page *page,
515 struct ecryptfs_crypt_stat *crypt_stat,
516 struct page *enc_extent_page,
517 unsigned long extent_offset)
519 loff_t extent_base;
520 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
521 int rc;
523 extent_base = (((loff_t)page->index)
524 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
525 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
526 (extent_base + extent_offset));
527 if (rc) {
528 ecryptfs_printk(KERN_ERR, "Error attempting to "
529 "derive IV for extent [0x%.16x]; "
530 "rc = [%d]\n", (extent_base + extent_offset),
531 rc);
532 goto out;
534 if (unlikely(ecryptfs_verbosity > 0)) {
535 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
536 "with iv:\n");
537 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
538 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
539 "decryption:\n");
540 ecryptfs_dump_hex((char *)
541 (page_address(enc_extent_page)
542 + (extent_offset * crypt_stat->extent_size)),
545 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
546 (extent_offset
547 * crypt_stat->extent_size),
548 enc_extent_page, 0,
549 crypt_stat->extent_size, extent_iv);
550 if (rc < 0) {
551 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
552 "page->index = [%ld], extent_offset = [%ld]; "
553 "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
554 rc);
555 goto out;
557 rc = 0;
558 if (unlikely(ecryptfs_verbosity > 0)) {
559 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
560 "rc = [%d]\n", (extent_base + extent_offset),
561 rc);
562 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
563 "decryption:\n");
564 ecryptfs_dump_hex((char *)(page_address(page)
565 + (extent_offset
566 * crypt_stat->extent_size)), 8);
568 out:
569 return rc;
573 * ecryptfs_decrypt_page
574 * @page: Page mapped from the eCryptfs inode for the file; data read
575 * and decrypted from the lower file will be written into this
576 * page
578 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
579 * that eCryptfs pages may straddle the lower pages -- for instance,
580 * if the file was created on a machine with an 8K page size
581 * (resulting in an 8K header), and then the file is copied onto a
582 * host with a 32K page size, then when reading page 0 of the eCryptfs
583 * file, 24K of page 0 of the lower file will be read and decrypted,
584 * and then 8K of page 1 of the lower file will be read and decrypted.
586 * Returns zero on success; negative on error
588 int ecryptfs_decrypt_page(struct page *page)
590 struct inode *ecryptfs_inode;
591 struct ecryptfs_crypt_stat *crypt_stat;
592 char *enc_extent_virt = NULL;
593 struct page *enc_extent_page;
594 unsigned long extent_offset;
595 int rc = 0;
597 ecryptfs_inode = page->mapping->host;
598 crypt_stat =
599 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
600 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
601 rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
602 PAGE_CACHE_SIZE,
603 ecryptfs_inode);
604 if (rc)
605 printk(KERN_ERR "%s: Error attempting to copy "
606 "page at index [%ld]\n", __FUNCTION__,
607 page->index);
608 goto out;
610 enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
611 if (!enc_extent_virt) {
612 rc = -ENOMEM;
613 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
614 "encrypted extent\n");
615 goto out;
617 enc_extent_page = virt_to_page(enc_extent_virt);
618 for (extent_offset = 0;
619 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
620 extent_offset++) {
621 loff_t offset;
623 ecryptfs_lower_offset_for_extent(
624 &offset, ((page->index * (PAGE_CACHE_SIZE
625 / crypt_stat->extent_size))
626 + extent_offset), crypt_stat);
627 rc = ecryptfs_read_lower(enc_extent_virt, offset,
628 crypt_stat->extent_size,
629 ecryptfs_inode);
630 if (rc) {
631 ecryptfs_printk(KERN_ERR, "Error attempting "
632 "to read lower page; rc = [%d]"
633 "\n", rc);
634 goto out;
636 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
637 extent_offset);
638 if (rc) {
639 printk(KERN_ERR "%s: Error encrypting extent; "
640 "rc = [%d]\n", __FUNCTION__, rc);
641 goto out;
643 extent_offset++;
645 out:
646 kfree(enc_extent_virt);
647 return rc;
651 * decrypt_scatterlist
652 * @crypt_stat: Cryptographic context
653 * @dest_sg: The destination scatterlist to decrypt into
654 * @src_sg: The source scatterlist to decrypt from
655 * @size: The number of bytes to decrypt
656 * @iv: The initialization vector to use for the decryption
658 * Returns the number of bytes decrypted; negative value on error
660 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
661 struct scatterlist *dest_sg,
662 struct scatterlist *src_sg, int size,
663 unsigned char *iv)
665 struct blkcipher_desc desc = {
666 .tfm = crypt_stat->tfm,
667 .info = iv,
668 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
670 int rc = 0;
672 /* Consider doing this once, when the file is opened */
673 mutex_lock(&crypt_stat->cs_tfm_mutex);
674 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
675 crypt_stat->key_size);
676 if (rc) {
677 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
678 rc);
679 mutex_unlock(&crypt_stat->cs_tfm_mutex);
680 rc = -EINVAL;
681 goto out;
683 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
684 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
685 mutex_unlock(&crypt_stat->cs_tfm_mutex);
686 if (rc) {
687 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
688 rc);
689 goto out;
691 rc = size;
692 out:
693 return rc;
697 * ecryptfs_encrypt_page_offset
698 * @crypt_stat: The cryptographic context
699 * @dst_page: The page to encrypt into
700 * @dst_offset: The offset in the page to encrypt into
701 * @src_page: The page to encrypt from
702 * @src_offset: The offset in the page to encrypt from
703 * @size: The number of bytes to encrypt
704 * @iv: The initialization vector to use for the encryption
706 * Returns the number of bytes encrypted
708 static int
709 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
710 struct page *dst_page, int dst_offset,
711 struct page *src_page, int src_offset, int size,
712 unsigned char *iv)
714 struct scatterlist src_sg, dst_sg;
716 src_sg.page = src_page;
717 src_sg.offset = src_offset;
718 src_sg.length = size;
719 dst_sg.page = dst_page;
720 dst_sg.offset = dst_offset;
721 dst_sg.length = size;
722 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
726 * ecryptfs_decrypt_page_offset
727 * @crypt_stat: The cryptographic context
728 * @dst_page: The page to decrypt into
729 * @dst_offset: The offset in the page to decrypt into
730 * @src_page: The page to decrypt from
731 * @src_offset: The offset in the page to decrypt from
732 * @size: The number of bytes to decrypt
733 * @iv: The initialization vector to use for the decryption
735 * Returns the number of bytes decrypted
737 static int
738 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
739 struct page *dst_page, int dst_offset,
740 struct page *src_page, int src_offset, int size,
741 unsigned char *iv)
743 struct scatterlist src_sg, dst_sg;
745 src_sg.page = src_page;
746 src_sg.offset = src_offset;
747 src_sg.length = size;
748 dst_sg.page = dst_page;
749 dst_sg.offset = dst_offset;
750 dst_sg.length = size;
751 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
754 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
757 * ecryptfs_init_crypt_ctx
758 * @crypt_stat: Uninitilized crypt stats structure
760 * Initialize the crypto context.
762 * TODO: Performance: Keep a cache of initialized cipher contexts;
763 * only init if needed
765 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
767 char *full_alg_name;
768 int rc = -EINVAL;
770 if (!crypt_stat->cipher) {
771 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
772 goto out;
774 ecryptfs_printk(KERN_DEBUG,
775 "Initializing cipher [%s]; strlen = [%d]; "
776 "key_size_bits = [%d]\n",
777 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
778 crypt_stat->key_size << 3);
779 if (crypt_stat->tfm) {
780 rc = 0;
781 goto out;
783 mutex_lock(&crypt_stat->cs_tfm_mutex);
784 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
785 crypt_stat->cipher, "cbc");
786 if (rc)
787 goto out;
788 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
789 CRYPTO_ALG_ASYNC);
790 kfree(full_alg_name);
791 if (IS_ERR(crypt_stat->tfm)) {
792 rc = PTR_ERR(crypt_stat->tfm);
793 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
794 "Error initializing cipher [%s]\n",
795 crypt_stat->cipher);
796 mutex_unlock(&crypt_stat->cs_tfm_mutex);
797 goto out;
799 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
800 mutex_unlock(&crypt_stat->cs_tfm_mutex);
801 rc = 0;
802 out:
803 return rc;
806 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
808 int extent_size_tmp;
810 crypt_stat->extent_mask = 0xFFFFFFFF;
811 crypt_stat->extent_shift = 0;
812 if (crypt_stat->extent_size == 0)
813 return;
814 extent_size_tmp = crypt_stat->extent_size;
815 while ((extent_size_tmp & 0x01) == 0) {
816 extent_size_tmp >>= 1;
817 crypt_stat->extent_mask <<= 1;
818 crypt_stat->extent_shift++;
822 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
824 /* Default values; may be overwritten as we are parsing the
825 * packets. */
826 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
827 set_extent_mask_and_shift(crypt_stat);
828 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
829 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
830 crypt_stat->num_header_extents_at_front = 0;
831 else {
832 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
833 crypt_stat->num_header_extents_at_front =
834 (ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
835 / crypt_stat->extent_size);
836 else
837 crypt_stat->num_header_extents_at_front =
838 (PAGE_CACHE_SIZE / crypt_stat->extent_size);
843 * ecryptfs_compute_root_iv
844 * @crypt_stats
846 * On error, sets the root IV to all 0's.
848 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
850 int rc = 0;
851 char dst[MD5_DIGEST_SIZE];
853 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
854 BUG_ON(crypt_stat->iv_bytes <= 0);
855 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
856 rc = -EINVAL;
857 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
858 "cannot generate root IV\n");
859 goto out;
861 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
862 crypt_stat->key_size);
863 if (rc) {
864 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
865 "MD5 while generating root IV\n");
866 goto out;
868 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
869 out:
870 if (rc) {
871 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
872 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
874 return rc;
877 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
879 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
880 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
881 ecryptfs_compute_root_iv(crypt_stat);
882 if (unlikely(ecryptfs_verbosity > 0)) {
883 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
884 ecryptfs_dump_hex(crypt_stat->key,
885 crypt_stat->key_size);
890 * ecryptfs_copy_mount_wide_flags_to_inode_flags
891 * @crypt_stat: The inode's cryptographic context
892 * @mount_crypt_stat: The mount point's cryptographic context
894 * This function propagates the mount-wide flags to individual inode
895 * flags.
897 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
898 struct ecryptfs_crypt_stat *crypt_stat,
899 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
901 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
902 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
903 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
904 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
907 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
908 struct ecryptfs_crypt_stat *crypt_stat,
909 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
911 struct ecryptfs_global_auth_tok *global_auth_tok;
912 int rc = 0;
914 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
915 list_for_each_entry(global_auth_tok,
916 &mount_crypt_stat->global_auth_tok_list,
917 mount_crypt_stat_list) {
918 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
919 if (rc) {
920 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
921 mutex_unlock(
922 &mount_crypt_stat->global_auth_tok_list_mutex);
923 goto out;
926 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
927 out:
928 return rc;
932 * ecryptfs_set_default_crypt_stat_vals
933 * @crypt_stat: The inode's cryptographic context
934 * @mount_crypt_stat: The mount point's cryptographic context
936 * Default values in the event that policy does not override them.
938 static void ecryptfs_set_default_crypt_stat_vals(
939 struct ecryptfs_crypt_stat *crypt_stat,
940 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
942 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
943 mount_crypt_stat);
944 ecryptfs_set_default_sizes(crypt_stat);
945 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
946 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
947 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
948 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
949 crypt_stat->mount_crypt_stat = mount_crypt_stat;
953 * ecryptfs_new_file_context
954 * @ecryptfs_dentry: The eCryptfs dentry
956 * If the crypto context for the file has not yet been established,
957 * this is where we do that. Establishing a new crypto context
958 * involves the following decisions:
959 * - What cipher to use?
960 * - What set of authentication tokens to use?
961 * Here we just worry about getting enough information into the
962 * authentication tokens so that we know that they are available.
963 * We associate the available authentication tokens with the new file
964 * via the set of signatures in the crypt_stat struct. Later, when
965 * the headers are actually written out, we may again defer to
966 * userspace to perform the encryption of the session key; for the
967 * foreseeable future, this will be the case with public key packets.
969 * Returns zero on success; non-zero otherwise
971 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
973 struct ecryptfs_crypt_stat *crypt_stat =
974 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
975 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
976 &ecryptfs_superblock_to_private(
977 ecryptfs_dentry->d_sb)->mount_crypt_stat;
978 int cipher_name_len;
979 int rc = 0;
981 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
982 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
983 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
984 mount_crypt_stat);
985 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
986 mount_crypt_stat);
987 if (rc) {
988 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
989 "to the inode key sigs; rc = [%d]\n", rc);
990 goto out;
992 cipher_name_len =
993 strlen(mount_crypt_stat->global_default_cipher_name);
994 memcpy(crypt_stat->cipher,
995 mount_crypt_stat->global_default_cipher_name,
996 cipher_name_len);
997 crypt_stat->cipher[cipher_name_len] = '\0';
998 crypt_stat->key_size =
999 mount_crypt_stat->global_default_cipher_key_size;
1000 ecryptfs_generate_new_key(crypt_stat);
1001 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1002 if (rc)
1003 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1004 "context for cipher [%s]: rc = [%d]\n",
1005 crypt_stat->cipher, rc);
1006 out:
1007 return rc;
1011 * contains_ecryptfs_marker - check for the ecryptfs marker
1012 * @data: The data block in which to check
1014 * Returns one if marker found; zero if not found
1016 static int contains_ecryptfs_marker(char *data)
1018 u32 m_1, m_2;
1020 memcpy(&m_1, data, 4);
1021 m_1 = be32_to_cpu(m_1);
1022 memcpy(&m_2, (data + 4), 4);
1023 m_2 = be32_to_cpu(m_2);
1024 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1025 return 1;
1026 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1027 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1028 MAGIC_ECRYPTFS_MARKER);
1029 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1030 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1031 return 0;
1034 struct ecryptfs_flag_map_elem {
1035 u32 file_flag;
1036 u32 local_flag;
1039 /* Add support for additional flags by adding elements here. */
1040 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1041 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1042 {0x00000002, ECRYPTFS_ENCRYPTED},
1043 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}
1047 * ecryptfs_process_flags
1048 * @crypt_stat: The cryptographic context
1049 * @page_virt: Source data to be parsed
1050 * @bytes_read: Updated with the number of bytes read
1052 * Returns zero on success; non-zero if the flag set is invalid
1054 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1055 char *page_virt, int *bytes_read)
1057 int rc = 0;
1058 int i;
1059 u32 flags;
1061 memcpy(&flags, page_virt, 4);
1062 flags = be32_to_cpu(flags);
1063 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1064 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1065 if (flags & ecryptfs_flag_map[i].file_flag) {
1066 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1067 } else
1068 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1069 /* Version is in top 8 bits of the 32-bit flag vector */
1070 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1071 (*bytes_read) = 4;
1072 return rc;
1076 * write_ecryptfs_marker
1077 * @page_virt: The pointer to in a page to begin writing the marker
1078 * @written: Number of bytes written
1080 * Marker = 0x3c81b7f5
1082 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1084 u32 m_1, m_2;
1086 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1087 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1088 m_1 = cpu_to_be32(m_1);
1089 memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1090 m_2 = cpu_to_be32(m_2);
1091 memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1092 (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1093 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1096 static void
1097 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1098 size_t *written)
1100 u32 flags = 0;
1101 int i;
1103 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1104 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1105 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1106 flags |= ecryptfs_flag_map[i].file_flag;
1107 /* Version is in top 8 bits of the 32-bit flag vector */
1108 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1109 flags = cpu_to_be32(flags);
1110 memcpy(page_virt, &flags, 4);
1111 (*written) = 4;
1114 struct ecryptfs_cipher_code_str_map_elem {
1115 char cipher_str[16];
1116 u16 cipher_code;
1119 /* Add support for additional ciphers by adding elements here. The
1120 * cipher_code is whatever OpenPGP applicatoins use to identify the
1121 * ciphers. List in order of probability. */
1122 static struct ecryptfs_cipher_code_str_map_elem
1123 ecryptfs_cipher_code_str_map[] = {
1124 {"aes",RFC2440_CIPHER_AES_128 },
1125 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1126 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1127 {"cast5", RFC2440_CIPHER_CAST_5},
1128 {"twofish", RFC2440_CIPHER_TWOFISH},
1129 {"cast6", RFC2440_CIPHER_CAST_6},
1130 {"aes", RFC2440_CIPHER_AES_192},
1131 {"aes", RFC2440_CIPHER_AES_256}
1135 * ecryptfs_code_for_cipher_string
1136 * @crypt_stat: The cryptographic context
1138 * Returns zero on no match, or the cipher code on match
1140 u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1142 int i;
1143 u16 code = 0;
1144 struct ecryptfs_cipher_code_str_map_elem *map =
1145 ecryptfs_cipher_code_str_map;
1147 if (strcmp(crypt_stat->cipher, "aes") == 0) {
1148 switch (crypt_stat->key_size) {
1149 case 16:
1150 code = RFC2440_CIPHER_AES_128;
1151 break;
1152 case 24:
1153 code = RFC2440_CIPHER_AES_192;
1154 break;
1155 case 32:
1156 code = RFC2440_CIPHER_AES_256;
1158 } else {
1159 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1160 if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1161 code = map[i].cipher_code;
1162 break;
1165 return code;
1169 * ecryptfs_cipher_code_to_string
1170 * @str: Destination to write out the cipher name
1171 * @cipher_code: The code to convert to cipher name string
1173 * Returns zero on success
1175 int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
1177 int rc = 0;
1178 int i;
1180 str[0] = '\0';
1181 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1182 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1183 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1184 if (str[0] == '\0') {
1185 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1186 "[%d]\n", cipher_code);
1187 rc = -EINVAL;
1189 return rc;
1192 int ecryptfs_read_and_validate_header_region(char *data,
1193 struct inode *ecryptfs_inode)
1195 struct ecryptfs_crypt_stat *crypt_stat =
1196 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1197 int rc;
1199 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1200 ecryptfs_inode);
1201 if (rc) {
1202 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1203 __FUNCTION__, rc);
1204 goto out;
1206 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1207 rc = -EINVAL;
1208 ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n");
1210 out:
1211 return rc;
1214 void
1215 ecryptfs_write_header_metadata(char *virt,
1216 struct ecryptfs_crypt_stat *crypt_stat,
1217 size_t *written)
1219 u32 header_extent_size;
1220 u16 num_header_extents_at_front;
1222 header_extent_size = (u32)crypt_stat->extent_size;
1223 num_header_extents_at_front =
1224 (u16)crypt_stat->num_header_extents_at_front;
1225 header_extent_size = cpu_to_be32(header_extent_size);
1226 memcpy(virt, &header_extent_size, 4);
1227 virt += 4;
1228 num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1229 memcpy(virt, &num_header_extents_at_front, 2);
1230 (*written) = 6;
1233 struct kmem_cache *ecryptfs_header_cache_0;
1234 struct kmem_cache *ecryptfs_header_cache_1;
1235 struct kmem_cache *ecryptfs_header_cache_2;
1238 * ecryptfs_write_headers_virt
1239 * @page_virt: The virtual address to write the headers to
1240 * @size: Set to the number of bytes written by this function
1241 * @crypt_stat: The cryptographic context
1242 * @ecryptfs_dentry: The eCryptfs dentry
1244 * Format version: 1
1246 * Header Extent:
1247 * Octets 0-7: Unencrypted file size (big-endian)
1248 * Octets 8-15: eCryptfs special marker
1249 * Octets 16-19: Flags
1250 * Octet 16: File format version number (between 0 and 255)
1251 * Octets 17-18: Reserved
1252 * Octet 19: Bit 1 (lsb): Reserved
1253 * Bit 2: Encrypted?
1254 * Bits 3-8: Reserved
1255 * Octets 20-23: Header extent size (big-endian)
1256 * Octets 24-25: Number of header extents at front of file
1257 * (big-endian)
1258 * Octet 26: Begin RFC 2440 authentication token packet set
1259 * Data Extent 0:
1260 * Lower data (CBC encrypted)
1261 * Data Extent 1:
1262 * Lower data (CBC encrypted)
1263 * ...
1265 * Returns zero on success
1267 static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
1268 struct ecryptfs_crypt_stat *crypt_stat,
1269 struct dentry *ecryptfs_dentry)
1271 int rc;
1272 size_t written;
1273 size_t offset;
1275 offset = ECRYPTFS_FILE_SIZE_BYTES;
1276 write_ecryptfs_marker((page_virt + offset), &written);
1277 offset += written;
1278 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1279 offset += written;
1280 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1281 &written);
1282 offset += written;
1283 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1284 ecryptfs_dentry, &written,
1285 PAGE_CACHE_SIZE - offset);
1286 if (rc)
1287 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1288 "set; rc = [%d]\n", rc);
1289 if (size) {
1290 offset += written;
1291 *size = offset;
1293 return rc;
1296 static int
1297 ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1298 struct dentry *ecryptfs_dentry,
1299 char *page_virt)
1301 int current_header_page;
1302 int header_pages;
1303 int rc;
1305 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, page_virt,
1306 0, PAGE_CACHE_SIZE);
1307 if (rc) {
1308 printk(KERN_ERR "%s: Error attempting to write header "
1309 "information to lower file; rc = [%d]\n", __FUNCTION__,
1310 rc);
1311 goto out;
1313 header_pages = ((crypt_stat->extent_size
1314 * crypt_stat->num_header_extents_at_front)
1315 / PAGE_CACHE_SIZE);
1316 memset(page_virt, 0, PAGE_CACHE_SIZE);
1317 current_header_page = 1;
1318 while (current_header_page < header_pages) {
1319 loff_t offset;
1321 offset = (((loff_t)current_header_page) << PAGE_CACHE_SHIFT);
1322 if ((rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode,
1323 page_virt, offset,
1324 PAGE_CACHE_SIZE))) {
1325 printk(KERN_ERR "%s: Error attempting to write header "
1326 "information to lower file; rc = [%d]\n",
1327 __FUNCTION__, rc);
1328 goto out;
1330 current_header_page++;
1332 out:
1333 return rc;
1336 static int
1337 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1338 struct ecryptfs_crypt_stat *crypt_stat,
1339 char *page_virt, size_t size)
1341 int rc;
1343 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1344 size, 0);
1345 return rc;
1349 * ecryptfs_write_metadata
1350 * @ecryptfs_dentry: The eCryptfs dentry
1352 * Write the file headers out. This will likely involve a userspace
1353 * callout, in which the session key is encrypted with one or more
1354 * public keys and/or the passphrase necessary to do the encryption is
1355 * retrieved via a prompt. Exactly what happens at this point should
1356 * be policy-dependent.
1358 * TODO: Support header information spanning multiple pages
1360 * Returns zero on success; non-zero on error
1362 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1364 struct ecryptfs_crypt_stat *crypt_stat =
1365 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1366 char *page_virt;
1367 size_t size = 0;
1368 int rc = 0;
1370 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1371 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1372 printk(KERN_ERR "Key is invalid; bailing out\n");
1373 rc = -EINVAL;
1374 goto out;
1376 } else {
1377 rc = -EINVAL;
1378 ecryptfs_printk(KERN_WARNING,
1379 "Called with crypt_stat->encrypted == 0\n");
1380 goto out;
1382 /* Released in this function */
1383 page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
1384 if (!page_virt) {
1385 ecryptfs_printk(KERN_ERR, "Out of memory\n");
1386 rc = -ENOMEM;
1387 goto out;
1389 rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat,
1390 ecryptfs_dentry);
1391 if (unlikely(rc)) {
1392 ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
1393 memset(page_virt, 0, PAGE_CACHE_SIZE);
1394 goto out_free;
1396 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1397 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1398 crypt_stat, page_virt,
1399 size);
1400 else
1401 rc = ecryptfs_write_metadata_to_contents(crypt_stat,
1402 ecryptfs_dentry,
1403 page_virt);
1404 if (rc) {
1405 printk(KERN_ERR "Error writing metadata out to lower file; "
1406 "rc = [%d]\n", rc);
1407 goto out_free;
1409 out_free:
1410 kmem_cache_free(ecryptfs_header_cache_0, page_virt);
1411 out:
1412 return rc;
1415 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1416 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1417 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1418 char *virt, int *bytes_read,
1419 int validate_header_size)
1421 int rc = 0;
1422 u32 header_extent_size;
1423 u16 num_header_extents_at_front;
1425 memcpy(&header_extent_size, virt, sizeof(u32));
1426 header_extent_size = be32_to_cpu(header_extent_size);
1427 virt += sizeof(u32);
1428 memcpy(&num_header_extents_at_front, virt, sizeof(u16));
1429 num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
1430 crypt_stat->num_header_extents_at_front =
1431 (int)num_header_extents_at_front;
1432 (*bytes_read) = (sizeof(u32) + sizeof(u16));
1433 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1434 && ((crypt_stat->extent_size
1435 * crypt_stat->num_header_extents_at_front)
1436 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1437 rc = -EINVAL;
1438 printk(KERN_WARNING "Invalid number of header extents: [%zd]\n",
1439 crypt_stat->num_header_extents_at_front);
1441 return rc;
1445 * set_default_header_data
1446 * @crypt_stat: The cryptographic context
1448 * For version 0 file format; this function is only for backwards
1449 * compatibility for files created with the prior versions of
1450 * eCryptfs.
1452 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1454 crypt_stat->num_header_extents_at_front = 2;
1458 * ecryptfs_read_headers_virt
1459 * @page_virt: The virtual address into which to read the headers
1460 * @crypt_stat: The cryptographic context
1461 * @ecryptfs_dentry: The eCryptfs dentry
1462 * @validate_header_size: Whether to validate the header size while reading
1464 * Read/parse the header data. The header format is detailed in the
1465 * comment block for the ecryptfs_write_headers_virt() function.
1467 * Returns zero on success
1469 static int ecryptfs_read_headers_virt(char *page_virt,
1470 struct ecryptfs_crypt_stat *crypt_stat,
1471 struct dentry *ecryptfs_dentry,
1472 int validate_header_size)
1474 int rc = 0;
1475 int offset;
1476 int bytes_read;
1478 ecryptfs_set_default_sizes(crypt_stat);
1479 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1480 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1481 offset = ECRYPTFS_FILE_SIZE_BYTES;
1482 rc = contains_ecryptfs_marker(page_virt + offset);
1483 if (rc == 0) {
1484 rc = -EINVAL;
1485 goto out;
1487 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1488 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1489 &bytes_read);
1490 if (rc) {
1491 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1492 goto out;
1494 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1495 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1496 "file version [%d] is supported by this "
1497 "version of eCryptfs\n",
1498 crypt_stat->file_version,
1499 ECRYPTFS_SUPPORTED_FILE_VERSION);
1500 rc = -EINVAL;
1501 goto out;
1503 offset += bytes_read;
1504 if (crypt_stat->file_version >= 1) {
1505 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1506 &bytes_read, validate_header_size);
1507 if (rc) {
1508 ecryptfs_printk(KERN_WARNING, "Error reading header "
1509 "metadata; rc = [%d]\n", rc);
1511 offset += bytes_read;
1512 } else
1513 set_default_header_data(crypt_stat);
1514 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1515 ecryptfs_dentry);
1516 out:
1517 return rc;
1521 * ecryptfs_read_xattr_region
1522 * @page_virt: The vitual address into which to read the xattr data
1523 * @ecryptfs_inode: The eCryptfs inode
1525 * Attempts to read the crypto metadata from the extended attribute
1526 * region of the lower file.
1528 * Returns zero on success; non-zero on error
1530 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1532 struct dentry *lower_dentry =
1533 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1534 ssize_t size;
1535 int rc = 0;
1537 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1538 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1539 if (size < 0) {
1540 printk(KERN_ERR "Error attempting to read the [%s] "
1541 "xattr from the lower file; return value = [%zd]\n",
1542 ECRYPTFS_XATTR_NAME, size);
1543 rc = -EINVAL;
1544 goto out;
1546 out:
1547 return rc;
1550 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1551 struct dentry *ecryptfs_dentry)
1553 int rc;
1555 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1556 if (rc)
1557 goto out;
1558 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1559 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1560 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1561 rc = -EINVAL;
1563 out:
1564 return rc;
1568 * ecryptfs_read_metadata
1570 * Common entry point for reading file metadata. From here, we could
1571 * retrieve the header information from the header region of the file,
1572 * the xattr region of the file, or some other repostory that is
1573 * stored separately from the file itself. The current implementation
1574 * supports retrieving the metadata information from the file contents
1575 * and from the xattr region.
1577 * Returns zero if valid headers found and parsed; non-zero otherwise
1579 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1581 int rc = 0;
1582 char *page_virt = NULL;
1583 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1584 struct ecryptfs_crypt_stat *crypt_stat =
1585 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1586 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1587 &ecryptfs_superblock_to_private(
1588 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1590 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1591 mount_crypt_stat);
1592 /* Read the first page from the underlying file */
1593 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1594 if (!page_virt) {
1595 rc = -ENOMEM;
1596 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1597 __FUNCTION__);
1598 goto out;
1600 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1601 ecryptfs_inode);
1602 if (!rc)
1603 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1604 ecryptfs_dentry,
1605 ECRYPTFS_VALIDATE_HEADER_SIZE);
1606 if (rc) {
1607 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1608 if (rc) {
1609 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1610 "file header region or xattr region\n");
1611 rc = -EINVAL;
1612 goto out;
1614 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1615 ecryptfs_dentry,
1616 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1617 if (rc) {
1618 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1619 "file xattr region either\n");
1620 rc = -EINVAL;
1622 if (crypt_stat->mount_crypt_stat->flags
1623 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1624 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1625 } else {
1626 printk(KERN_WARNING "Attempt to access file with "
1627 "crypto metadata only in the extended attribute "
1628 "region, but eCryptfs was mounted without "
1629 "xattr support enabled. eCryptfs will not treat "
1630 "this like an encrypted file.\n");
1631 rc = -EINVAL;
1634 out:
1635 if (page_virt) {
1636 memset(page_virt, 0, PAGE_CACHE_SIZE);
1637 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1639 return rc;
1643 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1644 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1645 * @name: The plaintext name
1646 * @length: The length of the plaintext
1647 * @encoded_name: The encypted name
1649 * Encrypts and encodes a filename into something that constitutes a
1650 * valid filename for a filesystem, with printable characters.
1652 * We assume that we have a properly initialized crypto context,
1653 * pointed to by crypt_stat->tfm.
1655 * TODO: Implement filename decoding and decryption here, in place of
1656 * memcpy. We are keeping the framework around for now to (1)
1657 * facilitate testing of the components needed to implement filename
1658 * encryption and (2) to provide a code base from which other
1659 * developers in the community can easily implement this feature.
1661 * Returns the length of encoded filename; negative if error
1664 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1665 const char *name, int length, char **encoded_name)
1667 int error = 0;
1669 (*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1670 if (!(*encoded_name)) {
1671 error = -ENOMEM;
1672 goto out;
1674 /* TODO: Filename encryption is a scheduled feature for a
1675 * future version of eCryptfs. This function is here only for
1676 * the purpose of providing a framework for other developers
1677 * to easily implement filename encryption. Hint: Replace this
1678 * memcpy() with a call to encrypt and encode the
1679 * filename, the set the length accordingly. */
1680 memcpy((void *)(*encoded_name), (void *)name, length);
1681 (*encoded_name)[length] = '\0';
1682 error = length + 1;
1683 out:
1684 return error;
1688 * ecryptfs_decode_filename - converts the cipher text name to plaintext
1689 * @crypt_stat: The crypt_stat struct associated with the file
1690 * @name: The filename in cipher text
1691 * @length: The length of the cipher text name
1692 * @decrypted_name: The plaintext name
1694 * Decodes and decrypts the filename.
1696 * We assume that we have a properly initialized crypto context,
1697 * pointed to by crypt_stat->tfm.
1699 * TODO: Implement filename decoding and decryption here, in place of
1700 * memcpy. We are keeping the framework around for now to (1)
1701 * facilitate testing of the components needed to implement filename
1702 * encryption and (2) to provide a code base from which other
1703 * developers in the community can easily implement this feature.
1705 * Returns the length of decoded filename; negative if error
1708 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1709 const char *name, int length, char **decrypted_name)
1711 int error = 0;
1713 (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1714 if (!(*decrypted_name)) {
1715 error = -ENOMEM;
1716 goto out;
1718 /* TODO: Filename encryption is a scheduled feature for a
1719 * future version of eCryptfs. This function is here only for
1720 * the purpose of providing a framework for other developers
1721 * to easily implement filename encryption. Hint: Replace this
1722 * memcpy() with a call to decode and decrypt the
1723 * filename, the set the length accordingly. */
1724 memcpy((void *)(*decrypted_name), (void *)name, length);
1725 (*decrypted_name)[length + 1] = '\0'; /* Only for convenience
1726 * in printing out the
1727 * string in debug
1728 * messages */
1729 error = length;
1730 out:
1731 return error;
1735 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1736 * @key_tfm: Crypto context for key material, set by this function
1737 * @cipher_name: Name of the cipher
1738 * @key_size: Size of the key in bytes
1740 * Returns zero on success. Any crypto_tfm structs allocated here
1741 * should be released by other functions, such as on a superblock put
1742 * event, regardless of whether this function succeeds for fails.
1744 static int
1745 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1746 char *cipher_name, size_t *key_size)
1748 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1749 char *full_alg_name;
1750 int rc;
1752 *key_tfm = NULL;
1753 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1754 rc = -EINVAL;
1755 printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1756 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1757 goto out;
1759 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1760 "ecb");
1761 if (rc)
1762 goto out;
1763 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1764 kfree(full_alg_name);
1765 if (IS_ERR(*key_tfm)) {
1766 rc = PTR_ERR(*key_tfm);
1767 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1768 "[%s]; rc = [%d]\n", cipher_name, rc);
1769 goto out;
1771 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1772 if (*key_size == 0) {
1773 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1775 *key_size = alg->max_keysize;
1777 get_random_bytes(dummy_key, *key_size);
1778 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1779 if (rc) {
1780 printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1781 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1782 rc = -EINVAL;
1783 goto out;
1785 out:
1786 return rc;
1789 struct kmem_cache *ecryptfs_key_tfm_cache;
1790 struct list_head key_tfm_list;
1791 struct mutex key_tfm_list_mutex;
1793 int ecryptfs_init_crypto(void)
1795 mutex_init(&key_tfm_list_mutex);
1796 INIT_LIST_HEAD(&key_tfm_list);
1797 return 0;
1800 int ecryptfs_destroy_crypto(void)
1802 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1804 mutex_lock(&key_tfm_list_mutex);
1805 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1806 key_tfm_list) {
1807 list_del(&key_tfm->key_tfm_list);
1808 if (key_tfm->key_tfm)
1809 crypto_free_blkcipher(key_tfm->key_tfm);
1810 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1812 mutex_unlock(&key_tfm_list_mutex);
1813 return 0;
1817 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1818 size_t key_size)
1820 struct ecryptfs_key_tfm *tmp_tfm;
1821 int rc = 0;
1823 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1824 if (key_tfm != NULL)
1825 (*key_tfm) = tmp_tfm;
1826 if (!tmp_tfm) {
1827 rc = -ENOMEM;
1828 printk(KERN_ERR "Error attempting to allocate from "
1829 "ecryptfs_key_tfm_cache\n");
1830 goto out;
1832 mutex_init(&tmp_tfm->key_tfm_mutex);
1833 strncpy(tmp_tfm->cipher_name, cipher_name,
1834 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1835 tmp_tfm->key_size = key_size;
1836 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1837 tmp_tfm->cipher_name,
1838 &tmp_tfm->key_size);
1839 if (rc) {
1840 printk(KERN_ERR "Error attempting to initialize key TFM "
1841 "cipher with name = [%s]; rc = [%d]\n",
1842 tmp_tfm->cipher_name, rc);
1843 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1844 if (key_tfm != NULL)
1845 (*key_tfm) = NULL;
1846 goto out;
1848 mutex_lock(&key_tfm_list_mutex);
1849 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1850 mutex_unlock(&key_tfm_list_mutex);
1851 out:
1852 return rc;
1855 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1856 struct mutex **tfm_mutex,
1857 char *cipher_name)
1859 struct ecryptfs_key_tfm *key_tfm;
1860 int rc = 0;
1862 (*tfm) = NULL;
1863 (*tfm_mutex) = NULL;
1864 mutex_lock(&key_tfm_list_mutex);
1865 list_for_each_entry(key_tfm, &key_tfm_list, key_tfm_list) {
1866 if (strcmp(key_tfm->cipher_name, cipher_name) == 0) {
1867 (*tfm) = key_tfm->key_tfm;
1868 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1869 mutex_unlock(&key_tfm_list_mutex);
1870 goto out;
1873 mutex_unlock(&key_tfm_list_mutex);
1874 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1875 if (rc) {
1876 printk(KERN_ERR "Error adding new key_tfm to list; rc = [%d]\n",
1877 rc);
1878 goto out;
1880 (*tfm) = key_tfm->key_tfm;
1881 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1882 out:
1883 return rc;