K-means weightp
[x264-7mod.git] / encoder / macroblock.h
blob1c901a899b34c0a5e1d77d7104e5443a7d71d1d0
1 /*****************************************************************************
2 * macroblock.h: macroblock encoding
3 *****************************************************************************
4 * Copyright (C) 2003-2017 x264 project
6 * Authors: Loren Merritt <lorenm@u.washington.edu>
7 * Laurent Aimar <fenrir@via.ecp.fr>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
23 * This program is also available under a commercial proprietary license.
24 * For more information, contact us at licensing@x264.com.
25 *****************************************************************************/
27 #ifndef X264_ENCODER_MACROBLOCK_H
28 #define X264_ENCODER_MACROBLOCK_H
30 #include "common/macroblock.h"
32 extern const int x264_lambda2_tab[QP_MAX_MAX+1];
33 extern const uint16_t x264_lambda_tab[QP_MAX_MAX+1];
35 void x264_rdo_init( void );
37 int x264_macroblock_probe_skip( x264_t *h, int b_bidir );
39 #define x264_macroblock_probe_pskip( h )\
40 x264_macroblock_probe_skip( h, 0 )
41 #define x264_macroblock_probe_bskip( h )\
42 x264_macroblock_probe_skip( h, 1 )
44 void x264_predict_lossless_4x4( x264_t *h, pixel *p_dst, int p, int idx, int i_mode );
45 void x264_predict_lossless_8x8( x264_t *h, pixel *p_dst, int p, int idx, int i_mode, pixel edge[36] );
46 void x264_predict_lossless_16x16( x264_t *h, int p, int i_mode );
47 void x264_predict_lossless_chroma( x264_t *h, int i_mode );
49 void x264_macroblock_encode ( x264_t *h );
50 void x264_macroblock_write_cabac ( x264_t *h, x264_cabac_t *cb );
51 void x264_macroblock_write_cavlc ( x264_t *h );
53 void x264_macroblock_encode_p8x8( x264_t *h, int i8 );
54 void x264_macroblock_encode_p4x4( x264_t *h, int i4 );
55 void x264_mb_encode_chroma( x264_t *h, int b_inter, int i_qp );
57 void x264_cabac_mb_skip( x264_t *h, int b_skip );
58 void x264_cabac_block_residual_c( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l );
59 void x264_cabac_block_residual_8x8_rd_c( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l );
60 void x264_cabac_block_residual_rd_c( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l );
62 int x264_quant_luma_dc_trellis( x264_t *h, dctcoef *dct, int i_quant_cat, int i_qp,
63 int ctx_block_cat, int b_intra, int idx );
64 int x264_quant_chroma_dc_trellis( x264_t *h, dctcoef *dct, int i_qp, int b_intra, int idx );
65 int x264_quant_4x4_trellis( x264_t *h, dctcoef *dct, int i_quant_cat,
66 int i_qp, int ctx_block_cat, int b_intra, int b_chroma, int idx );
67 int x264_quant_8x8_trellis( x264_t *h, dctcoef *dct, int i_quant_cat,
68 int i_qp, int ctx_block_cat, int b_intra, int b_chroma, int idx );
70 void x264_noise_reduction_update( x264_t *h );
72 static ALWAYS_INLINE int x264_quant_4x4( x264_t *h, dctcoef dct[16], int i_qp, int ctx_block_cat, int b_intra, int p, int idx )
74 int i_quant_cat = b_intra ? (p?CQM_4IC:CQM_4IY) : (p?CQM_4PC:CQM_4PY);
75 if( h->mb.b_noise_reduction )
76 h->quantf.denoise_dct( dct, h->nr_residual_sum[0+!!p*2], h->nr_offset[0+!!p*2], 16 );
77 if( h->mb.b_trellis )
78 return x264_quant_4x4_trellis( h, dct, i_quant_cat, i_qp, ctx_block_cat, b_intra, !!p, idx+p*16 );
79 else
80 return h->quantf.quant_4x4( dct, h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias[i_quant_cat][i_qp] );
83 static ALWAYS_INLINE int x264_quant_8x8( x264_t *h, dctcoef dct[64], int i_qp, int ctx_block_cat, int b_intra, int p, int idx )
85 int i_quant_cat = b_intra ? (p?CQM_8IC:CQM_8IY) : (p?CQM_8PC:CQM_8PY);
86 if( h->mb.b_noise_reduction )
87 h->quantf.denoise_dct( dct, h->nr_residual_sum[1+!!p*2], h->nr_offset[1+!!p*2], 64 );
88 if( h->mb.b_trellis )
89 return x264_quant_8x8_trellis( h, dct, i_quant_cat, i_qp, ctx_block_cat, b_intra, !!p, idx+p*4 );
90 else
91 return h->quantf.quant_8x8( dct, h->quant8_mf[i_quant_cat][i_qp], h->quant8_bias[i_quant_cat][i_qp] );
94 #define STORE_8x8_NNZ( p, idx, nz )\
95 do\
97 M16( &h->mb.cache.non_zero_count[x264_scan8[p*16+idx*4]+0] ) = (nz) * 0x0101;\
98 M16( &h->mb.cache.non_zero_count[x264_scan8[p*16+idx*4]+8] ) = (nz) * 0x0101;\
99 } while( 0 )
101 #define CLEAR_16x16_NNZ( p ) \
104 M32( &h->mb.cache.non_zero_count[x264_scan8[16*p] + 0*8] ) = 0;\
105 M32( &h->mb.cache.non_zero_count[x264_scan8[16*p] + 1*8] ) = 0;\
106 M32( &h->mb.cache.non_zero_count[x264_scan8[16*p] + 2*8] ) = 0;\
107 M32( &h->mb.cache.non_zero_count[x264_scan8[16*p] + 3*8] ) = 0;\
108 } while( 0 )
110 /* A special for loop that iterates branchlessly over each set
111 * bit in a 4-bit input. */
112 #define FOREACH_BIT(idx,start,mask) for( int idx = start, msk = mask, skip; msk && (skip = x264_ctz_4bit(msk), idx += skip, msk >>= skip+1, 1); idx++ )
114 static ALWAYS_INLINE void x264_mb_encode_i4x4( x264_t *h, int p, int idx, int i_qp, int i_mode, int b_predict )
116 int nz;
117 pixel *p_src = &h->mb.pic.p_fenc[p][block_idx_xy_fenc[idx]];
118 pixel *p_dst = &h->mb.pic.p_fdec[p][block_idx_xy_fdec[idx]];
119 ALIGNED_ARRAY_64( dctcoef, dct4x4,[16] );
121 if( b_predict )
123 if( h->mb.b_lossless )
124 x264_predict_lossless_4x4( h, p_dst, p, idx, i_mode );
125 else
126 h->predict_4x4[i_mode]( p_dst );
129 if( h->mb.b_lossless )
131 nz = h->zigzagf.sub_4x4( h->dct.luma4x4[p*16+idx], p_src, p_dst );
132 h->mb.cache.non_zero_count[x264_scan8[p*16+idx]] = nz;
133 h->mb.i_cbp_luma |= nz<<(idx>>2);
134 return;
137 h->dctf.sub4x4_dct( dct4x4, p_src, p_dst );
139 nz = x264_quant_4x4( h, dct4x4, i_qp, ctx_cat_plane[DCT_LUMA_4x4][p], 1, p, idx );
140 h->mb.cache.non_zero_count[x264_scan8[p*16+idx]] = nz;
141 if( nz )
143 h->mb.i_cbp_luma |= 1<<(idx>>2);
144 h->zigzagf.scan_4x4( h->dct.luma4x4[p*16+idx], dct4x4 );
145 h->quantf.dequant_4x4( dct4x4, h->dequant4_mf[p?CQM_4IC:CQM_4IY], i_qp );
146 h->dctf.add4x4_idct( p_dst, dct4x4 );
150 static ALWAYS_INLINE void x264_mb_encode_i8x8( x264_t *h, int p, int idx, int i_qp, int i_mode, pixel *edge, int b_predict )
152 int x = idx&1;
153 int y = idx>>1;
154 int nz;
155 pixel *p_src = &h->mb.pic.p_fenc[p][8*x + 8*y*FENC_STRIDE];
156 pixel *p_dst = &h->mb.pic.p_fdec[p][8*x + 8*y*FDEC_STRIDE];
157 ALIGNED_ARRAY_64( dctcoef, dct8x8,[64] );
158 ALIGNED_ARRAY_32( pixel, edge_buf,[36] );
160 if( b_predict )
162 if( !edge )
164 h->predict_8x8_filter( p_dst, edge_buf, h->mb.i_neighbour8[idx], x264_pred_i4x4_neighbors[i_mode] );
165 edge = edge_buf;
168 if( h->mb.b_lossless )
169 x264_predict_lossless_8x8( h, p_dst, p, idx, i_mode, edge );
170 else
171 h->predict_8x8[i_mode]( p_dst, edge );
174 if( h->mb.b_lossless )
176 nz = h->zigzagf.sub_8x8( h->dct.luma8x8[p*4+idx], p_src, p_dst );
177 STORE_8x8_NNZ( p, idx, nz );
178 h->mb.i_cbp_luma |= nz<<idx;
179 return;
182 h->dctf.sub8x8_dct8( dct8x8, p_src, p_dst );
184 nz = x264_quant_8x8( h, dct8x8, i_qp, ctx_cat_plane[DCT_LUMA_8x8][p], 1, p, idx );
185 if( nz )
187 h->mb.i_cbp_luma |= 1<<idx;
188 h->zigzagf.scan_8x8( h->dct.luma8x8[p*4+idx], dct8x8 );
189 h->quantf.dequant_8x8( dct8x8, h->dequant8_mf[p?CQM_8IC:CQM_8IY], i_qp );
190 h->dctf.add8x8_idct8( p_dst, dct8x8 );
191 STORE_8x8_NNZ( p, idx, 1 );
193 else
194 STORE_8x8_NNZ( p, idx, 0 );
197 #endif