1 /*****************************************************************************
2 * me.c: motion estimation
3 *****************************************************************************
4 * Copyright (C) 2003-2017 x264 project
6 * Authors: Loren Merritt <lorenm@u.washington.edu>
7 * Laurent Aimar <fenrir@via.ecp.fr>
8 * Fiona Glaser <fiona@x264.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
24 * This program is also available under a commercial proprietary license.
25 * For more information, contact us at licensing@x264.com.
26 *****************************************************************************/
28 #include "common/common.h"
29 #include "macroblock.h"
32 /* presets selected from good points on the speed-vs-quality curve of several test videos
33 * subpel_iters[i_subpel_refine] = { refine_hpel, refine_qpel, me_hpel, me_qpel }
34 * where me_* are the number of EPZS iterations run on all candidate block types,
35 * and refine_* are run only on the winner.
36 * the subme=8,9 values are much higher because any amount of satd search makes
37 * up its time by reducing the number of qpel-rd iterations. */
38 static const uint8_t subpel_iterations
[][4] =
53 static const uint8_t mod6m1
[8] = {5,0,1,2,3,4,5,0};
54 /* radius 2 hexagon. repeated entries are to avoid having to compute mod6 every time. */
55 static const int8_t hex2
[8][2] = {{-1,-2}, {-2,0}, {-1,2}, {1,2}, {2,0}, {1,-2}, {-1,-2}, {-2,0}};
56 static const int8_t square1
[9][2] = {{0,0}, {0,-1}, {0,1}, {-1,0}, {1,0}, {-1,-1}, {-1,1}, {1,-1}, {1,1}};
58 static void refine_subpel( x264_t
*h
, x264_me_t
*m
, int hpel_iters
, int qpel_iters
, int *p_halfpel_thresh
, int b_refine_qpel
);
60 #define BITS_MVD( mx, my )\
61 (p_cost_mvx[(mx)<<2] + p_cost_mvy[(my)<<2])
63 #define COST_MV( mx, my )\
66 int cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE,\
67 &p_fref_w[(my)*stride+(mx)], stride )\
69 COPY3_IF_LT( bcost, cost, bmx, mx, bmy, my );\
72 #define COST_MV_HPEL( mx, my, cost )\
75 intptr_t stride2 = 16;\
76 pixel *src = h->mc.get_ref( pix, &stride2, m->p_fref, stride, mx, my, bw, bh, &m->weight[0] );\
77 cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, src, stride2 )\
78 + p_cost_mvx[ mx ] + p_cost_mvy[ my ];\
81 #define COST_MV_X3_DIR( m0x, m0y, m1x, m1y, m2x, m2y, costs )\
83 pixel *pix_base = p_fref_w + bmx + bmy*stride;\
84 h->pixf.fpelcmp_x3[i_pixel]( p_fenc,\
85 pix_base + (m0x) + (m0y)*stride,\
86 pix_base + (m1x) + (m1y)*stride,\
87 pix_base + (m2x) + (m2y)*stride,\
89 (costs)[0] += BITS_MVD( bmx+(m0x), bmy+(m0y) );\
90 (costs)[1] += BITS_MVD( bmx+(m1x), bmy+(m1y) );\
91 (costs)[2] += BITS_MVD( bmx+(m2x), bmy+(m2y) );\
94 #define COST_MV_X4_DIR( m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y, costs )\
96 pixel *pix_base = p_fref_w + bmx + bmy*stride;\
97 h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
98 pix_base + (m0x) + (m0y)*stride,\
99 pix_base + (m1x) + (m1y)*stride,\
100 pix_base + (m2x) + (m2y)*stride,\
101 pix_base + (m3x) + (m3y)*stride,\
103 (costs)[0] += BITS_MVD( bmx+(m0x), bmy+(m0y) );\
104 (costs)[1] += BITS_MVD( bmx+(m1x), bmy+(m1y) );\
105 (costs)[2] += BITS_MVD( bmx+(m2x), bmy+(m2y) );\
106 (costs)[3] += BITS_MVD( bmx+(m3x), bmy+(m3y) );\
109 #define COST_MV_X4( m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y )\
111 pixel *pix_base = p_fref_w + omx + omy*stride;\
112 h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
113 pix_base + (m0x) + (m0y)*stride,\
114 pix_base + (m1x) + (m1y)*stride,\
115 pix_base + (m2x) + (m2y)*stride,\
116 pix_base + (m3x) + (m3y)*stride,\
118 costs[0] += BITS_MVD( omx+(m0x), omy+(m0y) );\
119 costs[1] += BITS_MVD( omx+(m1x), omy+(m1y) );\
120 costs[2] += BITS_MVD( omx+(m2x), omy+(m2y) );\
121 costs[3] += BITS_MVD( omx+(m3x), omy+(m3y) );\
122 COPY3_IF_LT( bcost, costs[0], bmx, omx+(m0x), bmy, omy+(m0y) );\
123 COPY3_IF_LT( bcost, costs[1], bmx, omx+(m1x), bmy, omy+(m1y) );\
124 COPY3_IF_LT( bcost, costs[2], bmx, omx+(m2x), bmy, omy+(m2y) );\
125 COPY3_IF_LT( bcost, costs[3], bmx, omx+(m3x), bmy, omy+(m3y) );\
128 #define COST_MV_X3_ABS( m0x, m0y, m1x, m1y, m2x, m2y )\
130 h->pixf.fpelcmp_x3[i_pixel]( p_fenc,\
131 p_fref_w + (m0x) + (m0y)*stride,\
132 p_fref_w + (m1x) + (m1y)*stride,\
133 p_fref_w + (m2x) + (m2y)*stride,\
135 costs[0] += p_cost_mvx[(m0x)<<2]; /* no cost_mvy */\
136 costs[1] += p_cost_mvx[(m1x)<<2];\
137 costs[2] += p_cost_mvx[(m2x)<<2];\
138 COPY3_IF_LT( bcost, costs[0], bmx, m0x, bmy, m0y );\
139 COPY3_IF_LT( bcost, costs[1], bmx, m1x, bmy, m1y );\
140 COPY3_IF_LT( bcost, costs[2], bmx, m2x, bmy, m2y );\
146 #define DIA1_ITER( mx, my )\
149 COST_MV_X4( 0,-1, 0,1, -1,0, 1,0 );\
152 #define CROSS( start, x_max, y_max )\
155 if( (x_max) <= X264_MIN(mv_x_max-omx, omx-mv_x_min) )\
156 for( ; i < (x_max)-2; i+=4 )\
157 COST_MV_X4( i,0, -i,0, i+2,0, -i-2,0 );\
158 for( ; i < (x_max); i+=2 )\
160 if( omx+i <= mv_x_max )\
161 COST_MV( omx+i, omy );\
162 if( omx-i >= mv_x_min )\
163 COST_MV( omx-i, omy );\
166 if( (y_max) <= X264_MIN(mv_y_max-omy, omy-mv_y_min) )\
167 for( ; i < (y_max)-2; i+=4 )\
168 COST_MV_X4( 0,i, 0,-i, 0,i+2, 0,-i-2 );\
169 for( ; i < (y_max); i+=2 )\
171 if( omy+i <= mv_y_max )\
172 COST_MV( omx, omy+i );\
173 if( omy-i >= mv_y_min )\
174 COST_MV( omx, omy-i );\
178 #define FPEL(mv) (((mv)+2)>>2) /* Convert subpel MV to fullpel with rounding... */
179 #define SPEL(mv) ((mv)<<2) /* ... and the reverse. */
180 #define SPELx2(mv) (SPEL(mv)&0xFFFCFFFC) /* for two packed MVs */
182 void x264_me_search_ref( x264_t
*h
, x264_me_t
*m
, int16_t (*mvc
)[2], int i_mvc
, int *p_halfpel_thresh
)
184 const int bw
= x264_pixel_size
[m
->i_pixel
].w
;
185 const int bh
= x264_pixel_size
[m
->i_pixel
].h
;
186 const int i_pixel
= m
->i_pixel
;
187 const int stride
= m
->i_stride
[0];
188 int i_me_range
= h
->param
.analyse
.i_me_range
;
189 int bmx
, bmy
, bcost
= COST_MAX
;
190 int bpred_cost
= COST_MAX
;
191 int omx
, omy
, pmx
, pmy
;
192 pixel
*p_fenc
= m
->p_fenc
[0];
193 pixel
*p_fref_w
= m
->p_fref_w
;
194 ALIGNED_ARRAY_32( pixel
, pix
,[16*16] );
195 ALIGNED_ARRAY_8( int16_t, mvc_temp
,[16],[2] );
197 ALIGNED_ARRAY_16( int, costs
,[16] );
199 int mv_x_min
= h
->mb
.mv_limit_fpel
[0][0];
200 int mv_y_min
= h
->mb
.mv_limit_fpel
[0][1];
201 int mv_x_max
= h
->mb
.mv_limit_fpel
[1][0];
202 int mv_y_max
= h
->mb
.mv_limit_fpel
[1][1];
203 /* Special version of pack to allow shortcuts in CHECK_MVRANGE */
204 #define pack16to32_mask2(mx,my) ((mx<<16)|(my&0x7FFF))
205 uint32_t mv_min
= pack16to32_mask2( -mv_x_min
, -mv_y_min
);
206 uint32_t mv_max
= pack16to32_mask2( mv_x_max
, mv_y_max
)|0x8000;
207 uint32_t pmv
, bpred_mv
= 0;
209 #define CHECK_MVRANGE(mx,my) (!(((pack16to32_mask2(mx,my) + mv_min) | (mv_max - pack16to32_mask2(mx,my))) & 0x80004000))
211 const uint16_t *p_cost_mvx
= m
->p_cost_mv
- m
->mvp
[0];
212 const uint16_t *p_cost_mvy
= m
->p_cost_mv
- m
->mvp
[1];
214 /* Try extra predictors if provided. If subme >= 3, check subpel predictors,
215 * otherwise round them to fullpel. */
216 if( h
->mb
.i_subpel_refine
>= 3 )
218 /* Calculate and check the MVP first */
219 int bpred_mx
= x264_clip3( m
->mvp
[0], SPEL(mv_x_min
), SPEL(mv_x_max
) );
220 int bpred_my
= x264_clip3( m
->mvp
[1], SPEL(mv_y_min
), SPEL(mv_y_max
) );
221 pmv
= pack16to32_mask( bpred_mx
, bpred_my
);
222 pmx
= FPEL( bpred_mx
);
223 pmy
= FPEL( bpred_my
);
225 COST_MV_HPEL( bpred_mx
, bpred_my
, bpred_cost
);
226 int pmv_cost
= bpred_cost
;
230 /* Clip MV candidates and eliminate those equal to zero and pmv. */
231 int valid_mvcs
= x264_predictor_clip( mvc_temp
+2, mvc
, i_mvc
, h
->mb
.mv_limit_fpel
, pmv
);
235 /* We stuff pmv here to branchlessly pick between pmv and the various
236 * MV candidates. [0] gets skipped in order to maintain alignment for
237 * x264_predictor_clip. */
238 M32( mvc_temp
[1] ) = pmv
;
242 int mx
= mvc_temp
[i
+1][0];
243 int my
= mvc_temp
[i
+1][1];
244 COST_MV_HPEL( mx
, my
, cost
);
245 COPY1_IF_LT( bpred_cost
, (cost
<< 4) + i
);
246 } while( ++i
<= valid_mvcs
);
247 bpred_mx
= mvc_temp
[(bpred_cost
&15)+1][0];
248 bpred_my
= mvc_temp
[(bpred_cost
&15)+1][1];
253 /* Round the best predictor back to fullpel and get the cost, since this is where
254 * we'll be starting the fullpel motion search. */
255 bmx
= FPEL( bpred_mx
);
256 bmy
= FPEL( bpred_my
);
257 bpred_mv
= pack16to32_mask(bpred_mx
, bpred_my
);
258 if( bpred_mv
&0x00030003 ) /* Only test if the tested predictor is actually subpel... */
260 else /* Otherwise just copy the cost (we already know it) */
263 /* Test the zero vector if it hasn't been tested yet. */
266 if( bmx
|bmy
) COST_MV( 0, 0 );
268 /* If a subpel mv candidate was better than the zero vector, the previous
269 * fullpel check won't have gotten it even if the pmv was zero. So handle
270 * that possibility here. */
273 COPY3_IF_LT( bcost
, pmv_cost
, bmx
, 0, bmy
, 0 );
278 /* Calculate and check the fullpel MVP first */
279 bmx
= pmx
= x264_clip3( FPEL(m
->mvp
[0]), mv_x_min
, mv_x_max
);
280 bmy
= pmy
= x264_clip3( FPEL(m
->mvp
[1]), mv_y_min
, mv_y_max
);
281 pmv
= pack16to32_mask( bmx
, bmy
);
283 /* Because we are rounding the predicted motion vector to fullpel, there will be
284 * an extra MV cost in 15 out of 16 cases. However, when the predicted MV is
285 * chosen as the best predictor, it is often the case that the subpel search will
286 * result in a vector at or next to the predicted motion vector. Therefore, we omit
287 * the cost of the MV from the rounded MVP to avoid unfairly biasing against use of
288 * the predicted motion vector.
290 * Disclaimer: this is a post-hoc rationalization for why this hack works. */
291 bcost
= h
->pixf
.fpelcmp
[i_pixel
]( p_fenc
, FENC_STRIDE
, &p_fref_w
[bmy
*stride
+bmx
], stride
);
295 /* Like in subme>=3, except we also round the candidates to fullpel. */
296 int valid_mvcs
= x264_predictor_roundclip( mvc_temp
+2, mvc
, i_mvc
, h
->mb
.mv_limit_fpel
, pmv
);
300 M32( mvc_temp
[1] ) = pmv
;
304 int mx
= mvc_temp
[i
+1][0];
305 int my
= mvc_temp
[i
+1][1];
306 cost
= h
->pixf
.fpelcmp
[i_pixel
]( p_fenc
, FENC_STRIDE
, &p_fref_w
[my
*stride
+mx
], stride
) + BITS_MVD( mx
, my
);
307 COPY1_IF_LT( bcost
, (cost
<< 4) + i
);
308 } while( ++i
<= valid_mvcs
);
309 bmx
= mvc_temp
[(bcost
&15)+1][0];
310 bmy
= mvc_temp
[(bcost
&15)+1][1];
315 /* Same as above, except the condition is simpler. */
320 switch( h
->mb
.i_me_method
)
324 /* diamond search, radius 1 */
329 COST_MV_X4_DIR( 0,-1, 0,1, -1,0, 1,0, costs
);
330 COPY1_IF_LT( bcost
, (costs
[0]<<4)+1 );
331 COPY1_IF_LT( bcost
, (costs
[1]<<4)+3 );
332 COPY1_IF_LT( bcost
, (costs
[2]<<4)+4 );
333 COPY1_IF_LT( bcost
, (costs
[3]<<4)+12 );
336 bmx
-= (bcost
<<28)>>30;
337 bmy
-= (bcost
<<30)>>30;
339 } while( --i
&& CHECK_MVRANGE(bmx
, bmy
) );
347 /* hexagon search, radius 2 */
349 for( int i
= 0; i
< i_me_range
/2; i
++ )
351 omx
= bmx
; omy
= bmy
;
352 COST_MV( omx
-2, omy
);
353 COST_MV( omx
-1, omy
+2 );
354 COST_MV( omx
+1, omy
+2 );
355 COST_MV( omx
+2, omy
);
356 COST_MV( omx
+1, omy
-2 );
357 COST_MV( omx
-1, omy
-2 );
358 if( bmx
== omx
&& bmy
== omy
)
360 if( !CHECK_MVRANGE(bmx
, bmy
) )
364 /* equivalent to the above, but eliminates duplicate candidates */
367 COST_MV_X3_DIR( -2,0, -1, 2, 1, 2, costs
);
368 COST_MV_X3_DIR( 2,0, 1,-2, -1,-2, costs
+4 ); /* +4 for 16-byte alignment */
370 COPY1_IF_LT( bcost
, (costs
[0]<<3)+2 );
371 COPY1_IF_LT( bcost
, (costs
[1]<<3)+3 );
372 COPY1_IF_LT( bcost
, (costs
[2]<<3)+4 );
373 COPY1_IF_LT( bcost
, (costs
[4]<<3)+5 );
374 COPY1_IF_LT( bcost
, (costs
[5]<<3)+6 );
375 COPY1_IF_LT( bcost
, (costs
[6]<<3)+7 );
379 int dir
= (bcost
&7)-2;
380 bmx
+= hex2
[dir
+1][0];
381 bmy
+= hex2
[dir
+1][1];
383 /* half hexagon, not overlapping the previous iteration */
384 for( int i
= (i_me_range
>>1) - 1; i
> 0 && CHECK_MVRANGE(bmx
, bmy
); i
-- )
386 COST_MV_X3_DIR( hex2
[dir
+0][0], hex2
[dir
+0][1],
387 hex2
[dir
+1][0], hex2
[dir
+1][1],
388 hex2
[dir
+2][0], hex2
[dir
+2][1],
391 COPY1_IF_LT( bcost
, (costs
[0]<<3)+1 );
392 COPY1_IF_LT( bcost
, (costs
[1]<<3)+2 );
393 COPY1_IF_LT( bcost
, (costs
[2]<<3)+3 );
398 bmx
+= hex2
[dir
+1][0];
399 bmy
+= hex2
[dir
+1][1];
406 COST_MV_X4_DIR( 0,-1, 0,1, -1,0, 1,0, costs
);
407 COPY1_IF_LT( bcost
, (costs
[0]<<4)+1 );
408 COPY1_IF_LT( bcost
, (costs
[1]<<4)+2 );
409 COPY1_IF_LT( bcost
, (costs
[2]<<4)+3 );
410 COPY1_IF_LT( bcost
, (costs
[3]<<4)+4 );
411 COST_MV_X4_DIR( -1,-1, -1,1, 1,-1, 1,1, costs
);
412 COPY1_IF_LT( bcost
, (costs
[0]<<4)+5 );
413 COPY1_IF_LT( bcost
, (costs
[1]<<4)+6 );
414 COPY1_IF_LT( bcost
, (costs
[2]<<4)+7 );
415 COPY1_IF_LT( bcost
, (costs
[3]<<4)+8 );
416 bmx
+= square1
[bcost
&15][0];
417 bmy
+= square1
[bcost
&15][1];
424 /* Uneven-cross Multi-Hexagon-grid Search
425 * as in JM, except with different early termination */
427 static const uint8_t x264_pixel_size_shift
[7] = { 0, 1, 1, 2, 3, 3, 4 };
432 /* refine predictors */
434 DIA1_ITER( pmx
, pmy
);
438 if( i_pixel
== PIXEL_4x4
)
442 if( (bmx
| bmy
) && ((bmx
-pmx
) | (bmy
-pmy
)) )
443 DIA1_ITER( bmx
, bmy
);
444 if( bcost
== ucost2
)
446 omx
= bmx
; omy
= bmy
;
448 /* early termination */
449 #define SAD_THRESH(v) ( bcost < ( v >> x264_pixel_size_shift[i_pixel] ) )
450 if( bcost
== ucost2
&& SAD_THRESH(2000) )
452 COST_MV_X4( 0,-2, -1,-1, 1,-1, -2,0 );
453 COST_MV_X4( 2, 0, -1, 1, 1, 1, 0,2 );
454 if( bcost
== ucost1
&& SAD_THRESH(500) )
456 if( bcost
== ucost2
)
458 int range
= (i_me_range
>>1) | 1;
459 CROSS( 3, range
, range
);
460 COST_MV_X4( -1,-2, 1,-2, -2,-1, 2,-1 );
461 COST_MV_X4( -2, 1, 2, 1, -1, 2, 1, 2 );
462 if( bcost
== ucost2
)
464 cross_start
= range
+ 2;
468 /* adaptive search range */
471 /* range multipliers based on casual inspection of some statistics of
472 * average distance between current predictor and final mv found by ESA.
473 * these have not been tuned much by actual encoding. */
474 static const uint8_t range_mul
[4][4] =
482 int sad_ctx
, mvd_ctx
;
487 if( i_pixel
== PIXEL_16x16
)
488 /* mvc is probably the same as mvp, so the difference isn't meaningful.
489 * but prediction usually isn't too bad, so just use medium range */
492 mvd
= abs( m
->mvp
[0] - mvc
[0][0] )
493 + abs( m
->mvp
[1] - mvc
[0][1] );
497 /* calculate the degree of agreement between predictors. */
498 /* in 16x16, mvc includes all the neighbors used to make mvp,
499 * so don't count mvp separately. */
502 if( i_pixel
!= PIXEL_16x16
)
504 mvd
= abs( m
->mvp
[0] - mvc
[0][0] )
505 + abs( m
->mvp
[1] - mvc
[0][1] );
508 mvd
+= x264_predictor_difference( mvc
, i_mvc
);
511 sad_ctx
= SAD_THRESH(1000) ? 0
512 : SAD_THRESH(2000) ? 1
513 : SAD_THRESH(4000) ? 2 : 3;
514 mvd_ctx
= mvd
< 10*denom
? 0
516 : mvd
< 40*denom
? 2 : 3;
518 i_me_range
= i_me_range
* range_mul
[mvd_ctx
][sad_ctx
] >> 2;
521 /* FIXME if the above DIA2/OCT2/CROSS found a new mv, it has not updated omx/omy.
522 * we are still centered on the same place as the DIA2. is this desirable? */
523 CROSS( cross_start
, i_me_range
, i_me_range
>>1 );
525 COST_MV_X4( -2,-2, -2,2, 2,-2, 2,2 );
528 omx
= bmx
; omy
= bmy
;
529 const uint16_t *p_cost_omvx
= p_cost_mvx
+ omx
*4;
530 const uint16_t *p_cost_omvy
= p_cost_mvy
+ omy
*4;
534 static const int8_t hex4
[16][2] = {
535 { 0,-4}, { 0, 4}, {-2,-3}, { 2,-3},
536 {-4,-2}, { 4,-2}, {-4,-1}, { 4,-1},
537 {-4, 0}, { 4, 0}, {-4, 1}, { 4, 1},
538 {-4, 2}, { 4, 2}, {-2, 3}, { 2, 3},
541 if( 4*i
> X264_MIN4( mv_x_max
-omx
, omx
-mv_x_min
,
542 mv_y_max
-omy
, omy
-mv_y_min
) )
544 for( int j
= 0; j
< 16; j
++ )
546 int mx
= omx
+ hex4
[j
][0]*i
;
547 int my
= omy
+ hex4
[j
][1]*i
;
548 if( CHECK_MVRANGE(mx
, my
) )
555 pixel
*pix_base
= p_fref_w
+ omx
+ (omy
-4*i
)*stride
;
557 #define SADS(k,x0,y0,x1,y1,x2,y2,x3,y3)\
558 h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
559 pix_base x0*i+(y0-2*k+4)*dy,\
560 pix_base x1*i+(y1-2*k+4)*dy,\
561 pix_base x2*i+(y2-2*k+4)*dy,\
562 pix_base x3*i+(y3-2*k+4)*dy,\
563 stride, costs+4*k );\
565 #define ADD_MVCOST(k,x,y) costs[k] += p_cost_omvx[x*4*i] + p_cost_omvy[y*4*i]
566 #define MIN_MV(k,x,y) COPY2_IF_LT( bcost, costs[k], dir, x*16+(y&15) )
567 SADS( 0, +0,-4, +0,+4, -2,-3, +2,-3 );
568 SADS( 1, -4,-2, +4,-2, -4,-1, +4,-1 );
569 SADS( 2, -4,+0, +4,+0, -4,+1, +4,+1 );
570 SADS( 3, -4,+2, +4,+2, -2,+3, +2,+3 );
571 ADD_MVCOST( 0, 0,-4 );
572 ADD_MVCOST( 1, 0, 4 );
573 ADD_MVCOST( 2,-2,-3 );
574 ADD_MVCOST( 3, 2,-3 );
575 ADD_MVCOST( 4,-4,-2 );
576 ADD_MVCOST( 5, 4,-2 );
577 ADD_MVCOST( 6,-4,-1 );
578 ADD_MVCOST( 7, 4,-1 );
579 ADD_MVCOST( 8,-4, 0 );
580 ADD_MVCOST( 9, 4, 0 );
581 ADD_MVCOST( 10,-4, 1 );
582 ADD_MVCOST( 11, 4, 1 );
583 ADD_MVCOST( 12,-4, 2 );
584 ADD_MVCOST( 13, 4, 2 );
585 ADD_MVCOST( 14,-2, 3 );
586 ADD_MVCOST( 15, 2, 3 );
608 bmx
= omx
+ i
*(dir
>>4);
609 bmy
= omy
+ i
*((dir
<<28)>>28);
612 } while( ++i
<= i_me_range
>>2 );
613 if( bmy
<= mv_y_max
&& bmy
>= mv_y_min
&& bmx
<= mv_x_max
&& bmx
>= mv_x_min
)
621 const int min_x
= X264_MAX( bmx
- i_me_range
, mv_x_min
);
622 const int min_y
= X264_MAX( bmy
- i_me_range
, mv_y_min
);
623 const int max_x
= X264_MIN( bmx
+ i_me_range
, mv_x_max
);
624 const int max_y
= X264_MIN( bmy
+ i_me_range
, mv_y_max
);
625 /* SEA is fastest in multiples of 4 */
626 const int width
= (max_x
- min_x
+ 3) & ~3;
628 /* plain old exhaustive search */
629 for( int my
= min_y
; my
<= max_y
; my
++ )
630 for( int mx
= min_x
; mx
< min_x
+ width
; mx
++ )
633 /* successive elimination by comparing DC before a full SAD,
634 * because sum(abs(diff)) >= abs(diff(sum)). */
635 uint16_t *sums_base
= m
->integral
;
636 ALIGNED_16( static pixel zero
[8*FENC_STRIDE
] ) = {0};
637 ALIGNED_ARRAY_16( int, enc_dc
,[4] );
638 int sad_size
= i_pixel
<= PIXEL_8x8
? PIXEL_8x8
: PIXEL_4x4
;
639 int delta
= x264_pixel_size
[sad_size
].w
;
640 int16_t *xs
= h
->scratch_buffer
;
642 uint16_t *cost_fpel_mvx
= h
->cost_mv_fpel
[h
->mb
.i_qp
][-m
->mvp
[0]&3] + (-m
->mvp
[0]>>2);
644 h
->pixf
.sad_x4
[sad_size
]( zero
, p_fenc
, p_fenc
+delta
,
645 p_fenc
+delta
*FENC_STRIDE
, p_fenc
+delta
+delta
*FENC_STRIDE
,
646 FENC_STRIDE
, enc_dc
);
648 sums_base
+= stride
* (h
->fenc
->i_lines
[0] + PADV
*2);
649 if( i_pixel
== PIXEL_16x16
|| i_pixel
== PIXEL_8x16
|| i_pixel
== PIXEL_4x8
)
651 if( i_pixel
== PIXEL_8x16
|| i_pixel
== PIXEL_4x8
)
652 enc_dc
[1] = enc_dc
[2];
654 if( h
->mb
.i_me_method
== X264_ME_TESA
)
656 // ADS threshold, then SAD threshold, then keep the best few SADs, then SATD
657 mvsad_t
*mvsads
= (mvsad_t
*)(xs
+ ((width
+31)&~31) + 4);
658 int nmvsad
= 0, limit
;
659 int sad_thresh
= i_me_range
<= 16 ? 10 : i_me_range
<= 24 ? 11 : 12;
660 int bsad
= h
->pixf
.sad
[i_pixel
]( p_fenc
, FENC_STRIDE
, p_fref_w
+bmy
*stride
+bmx
, stride
)
661 + BITS_MVD( bmx
, bmy
);
662 for( int my
= min_y
; my
<= max_y
; my
++ )
665 int ycost
= p_cost_mvy
[my
<<2];
669 xn
= h
->pixf
.ads
[i_pixel
]( enc_dc
, sums_base
+ min_x
+ my
* stride
, delta
,
670 cost_fpel_mvx
+min_x
, xs
, width
, bsad
* 17 >> 4 );
671 for( i
= 0; i
< xn
-2; i
+= 3 )
673 pixel
*ref
= p_fref_w
+min_x
+my
*stride
;
674 ALIGNED_ARRAY_16( int, sads
,[4] ); /* padded to [4] for asm */
675 h
->pixf
.sad_x3
[i_pixel
]( p_fenc
, ref
+xs
[i
], ref
+xs
[i
+1], ref
+xs
[i
+2], stride
, sads
);
676 for( int j
= 0; j
< 3; j
++ )
678 int sad
= sads
[j
] + cost_fpel_mvx
[xs
[i
+j
]];
679 if( sad
< bsad
*sad_thresh
>>3 )
681 COPY1_IF_LT( bsad
, sad
);
682 mvsads
[nmvsad
].sad
= sad
+ ycost
;
683 mvsads
[nmvsad
].mv
[0] = min_x
+xs
[i
+j
];
684 mvsads
[nmvsad
].mv
[1] = my
;
691 int mx
= min_x
+xs
[i
];
692 int sad
= h
->pixf
.sad
[i_pixel
]( p_fenc
, FENC_STRIDE
, p_fref_w
+mx
+my
*stride
, stride
)
693 + cost_fpel_mvx
[xs
[i
]];
694 if( sad
< bsad
*sad_thresh
>>3 )
696 COPY1_IF_LT( bsad
, sad
);
697 mvsads
[nmvsad
].sad
= sad
+ ycost
;
698 mvsads
[nmvsad
].mv
[0] = mx
;
699 mvsads
[nmvsad
].mv
[1] = my
;
706 limit
= i_me_range
>> 1;
707 sad_thresh
= bsad
*sad_thresh
>>3;
708 while( nmvsad
> limit
*2 && sad_thresh
> bsad
)
711 // halve the range if the domain is too large... eh, close enough
712 sad_thresh
= (sad_thresh
+ bsad
) >> 1;
713 while( i
< nmvsad
&& mvsads
[i
].sad
<= sad_thresh
)
715 for( int j
= i
; j
< nmvsad
; j
++ )
718 if( WORD_SIZE
== 8 && sizeof(mvsad_t
) == 8 )
720 uint64_t mvsad
= M64( &mvsads
[i
] ) = M64( &mvsads
[j
] );
729 CP32( mvsads
[i
].mv
, mvsads
[j
].mv
);
732 i
+= (sad
- (sad_thresh
+1)) >> 31;
736 while( nmvsad
> limit
)
739 for( int i
= 1; i
< nmvsad
; i
++ )
740 if( mvsads
[i
].sad
> mvsads
[bi
].sad
)
743 if( sizeof( mvsad_t
) == sizeof( uint64_t ) )
744 CP64( &mvsads
[bi
], &mvsads
[nmvsad
] );
746 mvsads
[bi
] = mvsads
[nmvsad
];
748 for( int i
= 0; i
< nmvsad
; i
++ )
749 COST_MV( mvsads
[i
].mv
[0], mvsads
[i
].mv
[1] );
754 for( int my
= min_y
; my
<= max_y
; my
++ )
757 int ycost
= p_cost_mvy
[my
<<2];
761 xn
= h
->pixf
.ads
[i_pixel
]( enc_dc
, sums_base
+ min_x
+ my
* stride
, delta
,
762 cost_fpel_mvx
+min_x
, xs
, width
, bcost
);
763 for( i
= 0; i
< xn
-2; i
+= 3 )
764 COST_MV_X3_ABS( min_x
+xs
[i
],my
, min_x
+xs
[i
+1],my
, min_x
+xs
[i
+2],my
);
767 COST_MV( min_x
+xs
[i
], my
);
776 uint32_t bmv
= pack16to32_mask(bmx
,bmy
);
777 uint32_t bmv_spel
= SPELx2(bmv
);
778 if( h
->mb
.i_subpel_refine
< 3 )
780 m
->cost_mv
= p_cost_mvx
[bmx
<<2] + p_cost_mvy
[bmy
<<2];
782 /* compute the real cost */
783 if( bmv
== pmv
) m
->cost
+= m
->cost_mv
;
784 M32( m
->mv
) = bmv_spel
;
788 M32(m
->mv
) = bpred_cost
< bcost
? bpred_mv
: bmv_spel
;
789 m
->cost
= X264_MIN( bpred_cost
, bcost
);
793 if( h
->mb
.i_subpel_refine
>= 2 )
795 int hpel
= subpel_iterations
[h
->mb
.i_subpel_refine
][2];
796 int qpel
= subpel_iterations
[h
->mb
.i_subpel_refine
][3];
797 refine_subpel( h
, m
, hpel
, qpel
, p_halfpel_thresh
, 0 );
802 void x264_me_refine_qpel( x264_t
*h
, x264_me_t
*m
)
804 int hpel
= subpel_iterations
[h
->mb
.i_subpel_refine
][0];
805 int qpel
= subpel_iterations
[h
->mb
.i_subpel_refine
][1];
807 if( m
->i_pixel
<= PIXEL_8x8
)
808 m
->cost
-= m
->i_ref_cost
;
810 refine_subpel( h
, m
, hpel
, qpel
, NULL
, 1 );
813 void x264_me_refine_qpel_refdupe( x264_t
*h
, x264_me_t
*m
, int *p_halfpel_thresh
)
815 refine_subpel( h
, m
, 0, X264_MIN( 2, subpel_iterations
[h
->mb
.i_subpel_refine
][3] ), p_halfpel_thresh
, 0 );
818 #define COST_MV_SAD( mx, my ) \
820 intptr_t stride = 16; \
821 pixel *src = h->mc.get_ref( pix, &stride, m->p_fref, m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
822 int cost = h->pixf.fpelcmp[i_pixel]( m->p_fenc[0], FENC_STRIDE, src, stride ) \
823 + p_cost_mvx[ mx ] + p_cost_mvy[ my ]; \
824 COPY3_IF_LT( bcost, cost, bmx, mx, bmy, my ); \
827 #define COST_MV_SATD( mx, my, dir ) \
828 if( b_refine_qpel || (dir^1) != odir ) \
830 intptr_t stride = 16; \
831 pixel *src = h->mc.get_ref( pix, &stride, &m->p_fref[0], m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
832 int cost = h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[0], FENC_STRIDE, src, stride ) \
833 + p_cost_mvx[ mx ] + p_cost_mvy[ my ]; \
834 if( b_chroma_me && cost < bcost ) \
839 src = h->mc.get_ref( pix, &stride, &m->p_fref[4], m->i_stride[1], mx, my, bw, bh, &m->weight[1] ); \
840 cost += h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[1], FENC_STRIDE, src, stride ); \
844 src = h->mc.get_ref( pix, &stride, &m->p_fref[8], m->i_stride[2], mx, my, bw, bh, &m->weight[2] ); \
845 cost += h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[2], FENC_STRIDE, src, stride ); \
850 h->mc.mc_chroma( pix, pix+8, 16, m->p_fref[4], m->i_stride[1], \
851 mx, 2*(my+mvy_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift ); \
852 if( m->weight[1].weightfn ) \
853 m->weight[1].weightfn[bw>>3]( pix, 16, pix, 16, &m->weight[1], bh>>chroma_v_shift ); \
854 cost += h->pixf.mbcmp[chromapix]( m->p_fenc[1], FENC_STRIDE, pix, 16 ); \
857 if( m->weight[2].weightfn ) \
858 m->weight[2].weightfn[bw>>3]( pix+8, 16, pix+8, 16, &m->weight[2], bh>>chroma_v_shift ); \
859 cost += h->pixf.mbcmp[chromapix]( m->p_fenc[2], FENC_STRIDE, pix+8, 16 ); \
863 COPY4_IF_LT( bcost, cost, bmx, mx, bmy, my, bdir, dir ); \
866 static void refine_subpel( x264_t
*h
, x264_me_t
*m
, int hpel_iters
, int qpel_iters
, int *p_halfpel_thresh
, int b_refine_qpel
)
868 const int bw
= x264_pixel_size
[m
->i_pixel
].w
;
869 const int bh
= x264_pixel_size
[m
->i_pixel
].h
;
870 const uint16_t *p_cost_mvx
= m
->p_cost_mv
- m
->mvp
[0];
871 const uint16_t *p_cost_mvy
= m
->p_cost_mv
- m
->mvp
[1];
872 const int i_pixel
= m
->i_pixel
;
873 const int b_chroma_me
= h
->mb
.b_chroma_me
&& (i_pixel
<= PIXEL_8x8
|| CHROMA444
);
874 int chromapix
= h
->luma2chroma_pixel
[i_pixel
];
875 int chroma_v_shift
= CHROMA_V_SHIFT
;
876 int mvy_offset
= chroma_v_shift
& MB_INTERLACED
& m
->i_ref
? (h
->mb
.i_mb_y
& 1)*4 - 2 : 0;
878 ALIGNED_ARRAY_32( pixel
, pix
,[64*18] ); // really 17x17x2, but round up for alignment
879 ALIGNED_ARRAY_16( int, costs
,[4] );
886 /* halfpel diamond search */
889 /* try the subpel component of the predicted mv */
890 if( h
->mb
.i_subpel_refine
< 3 )
892 int mx
= x264_clip3( m
->mvp
[0], h
->mb
.mv_min_spel
[0]+2, h
->mb
.mv_max_spel
[0]-2 );
893 int my
= x264_clip3( m
->mvp
[1], h
->mb
.mv_min_spel
[1]+2, h
->mb
.mv_max_spel
[1]-2 );
894 if( (mx
-bmx
)|(my
-bmy
) )
895 COST_MV_SAD( mx
, my
);
899 for( int i
= hpel_iters
; i
> 0; i
-- )
901 int omx
= bmx
, omy
= bmy
;
902 intptr_t stride
= 64; // candidates are either all hpel or all qpel, so one stride is enough
903 pixel
*src0
, *src1
, *src2
, *src3
;
904 src0
= h
->mc
.get_ref( pix
, &stride
, m
->p_fref
, m
->i_stride
[0], omx
, omy
-2, bw
, bh
+1, &m
->weight
[0] );
905 src2
= h
->mc
.get_ref( pix
+32, &stride
, m
->p_fref
, m
->i_stride
[0], omx
-2, omy
, bw
+4, bh
, &m
->weight
[0] );
906 src1
= src0
+ stride
;
908 h
->pixf
.fpelcmp_x4
[i_pixel
]( m
->p_fenc
[0], src0
, src1
, src2
, src3
, stride
, costs
);
909 costs
[0] += p_cost_mvx
[omx
] + p_cost_mvy
[omy
-2];
910 costs
[1] += p_cost_mvx
[omx
] + p_cost_mvy
[omy
+2];
911 costs
[2] += p_cost_mvx
[omx
-2] + p_cost_mvy
[omy
];
912 costs
[3] += p_cost_mvx
[omx
+2] + p_cost_mvy
[omy
];
913 COPY1_IF_LT( bcost
, (costs
[0]<<6)+2 );
914 COPY1_IF_LT( bcost
, (costs
[1]<<6)+6 );
915 COPY1_IF_LT( bcost
, (costs
[2]<<6)+16 );
916 COPY1_IF_LT( bcost
, (costs
[3]<<6)+48 );
919 bmx
-= (bcost
<<26)>>29;
920 bmy
-= (bcost
<<29)>>29;
926 if( !b_refine_qpel
&& (h
->pixf
.mbcmp_unaligned
[0] != h
->pixf
.fpelcmp
[0] || b_chroma_me
) )
929 COST_MV_SATD( bmx
, bmy
, -1 );
932 /* early termination when examining multiple reference frames */
933 if( p_halfpel_thresh
)
935 if( (bcost
*7)>>3 > *p_halfpel_thresh
)
940 // don't need cost_mv
943 else if( bcost
< *p_halfpel_thresh
)
944 *p_halfpel_thresh
= bcost
;
947 /* quarterpel diamond search */
948 if( h
->mb
.i_subpel_refine
!= 1 )
951 for( int i
= qpel_iters
; i
> 0; i
-- )
953 if( bmy
<= h
->mb
.mv_min_spel
[1] || bmy
>= h
->mb
.mv_max_spel
[1] || bmx
<= h
->mb
.mv_min_spel
[0] || bmx
>= h
->mb
.mv_max_spel
[0] )
956 int omx
= bmx
, omy
= bmy
;
957 COST_MV_SATD( omx
, omy
- 1, 0 );
958 COST_MV_SATD( omx
, omy
+ 1, 1 );
959 COST_MV_SATD( omx
- 1, omy
, 2 );
960 COST_MV_SATD( omx
+ 1, omy
, 3 );
961 if( (bmx
== omx
) & (bmy
== omy
) )
965 /* Special simplified case for subme=1 */
966 else if( bmy
> h
->mb
.mv_min_spel
[1] && bmy
< h
->mb
.mv_max_spel
[1] && bmx
> h
->mb
.mv_min_spel
[0] && bmx
< h
->mb
.mv_max_spel
[0] )
968 int omx
= bmx
, omy
= bmy
;
969 /* We have to use mc_luma because all strides must be the same to use fpelcmp_x4 */
970 h
->mc
.mc_luma( pix
, 64, m
->p_fref
, m
->i_stride
[0], omx
, omy
-1, bw
, bh
, &m
->weight
[0] );
971 h
->mc
.mc_luma( pix
+16, 64, m
->p_fref
, m
->i_stride
[0], omx
, omy
+1, bw
, bh
, &m
->weight
[0] );
972 h
->mc
.mc_luma( pix
+32, 64, m
->p_fref
, m
->i_stride
[0], omx
-1, omy
, bw
, bh
, &m
->weight
[0] );
973 h
->mc
.mc_luma( pix
+48, 64, m
->p_fref
, m
->i_stride
[0], omx
+1, omy
, bw
, bh
, &m
->weight
[0] );
974 h
->pixf
.fpelcmp_x4
[i_pixel
]( m
->p_fenc
[0], pix
, pix
+16, pix
+32, pix
+48, 64, costs
);
975 costs
[0] += p_cost_mvx
[omx
] + p_cost_mvy
[omy
-1];
976 costs
[1] += p_cost_mvx
[omx
] + p_cost_mvy
[omy
+1];
977 costs
[2] += p_cost_mvx
[omx
-1] + p_cost_mvy
[omy
];
978 costs
[3] += p_cost_mvx
[omx
+1] + p_cost_mvy
[omy
];
980 COPY1_IF_LT( bcost
, (costs
[0]<<4)+1 );
981 COPY1_IF_LT( bcost
, (costs
[1]<<4)+3 );
982 COPY1_IF_LT( bcost
, (costs
[2]<<4)+4 );
983 COPY1_IF_LT( bcost
, (costs
[3]<<4)+12 );
984 bmx
-= (bcost
<<28)>>30;
985 bmy
-= (bcost
<<30)>>30;
992 m
->cost_mv
= p_cost_mvx
[bmx
] + p_cost_mvy
[bmy
];
995 #define BIME_CACHE( dx, dy, list )\
997 x264_me_t *m = m##list;\
998 int i = 4 + 3*dx + dy;\
999 int mvx = bm##list##x+dx;\
1000 int mvy = bm##list##y+dy;\
1001 stride[0][list][i] = bw;\
1002 src[0][list][i] = h->mc.get_ref( pixy_buf[list][i], &stride[0][list][i], &m->p_fref[0],\
1003 m->i_stride[0], mvx, mvy, bw, bh, x264_weight_none );\
1008 stride[1][list][i] = bw;\
1009 src[1][list][i] = h->mc.get_ref( pixu_buf[list][i], &stride[1][list][i], &m->p_fref[4],\
1010 m->i_stride[1], mvx, mvy, bw, bh, x264_weight_none );\
1011 stride[2][list][i] = bw;\
1012 src[2][list][i] = h->mc.get_ref( pixv_buf[list][i], &stride[2][list][i], &m->p_fref[8],\
1013 m->i_stride[2], mvx, mvy, bw, bh, x264_weight_none );\
1016 h->mc.mc_chroma( pixu_buf[list][i], pixv_buf[list][i], 8, m->p_fref[4], m->i_stride[1],\
1017 mvx, 2*(mvy+mv##list##y_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift );\
1021 #define SATD_THRESH(cost) (cost+(cost>>4))
1023 /* Don't unroll the BIME_CACHE loop. I couldn't find any way to force this
1024 * other than making its iteration count not a compile-time constant. */
1025 int x264_iter_kludge
= 0;
1027 static void ALWAYS_INLINE
x264_me_refine_bidir( x264_t
*h
, x264_me_t
*m0
, x264_me_t
*m1
, int i_weight
, int i8
, int i_lambda2
, int rd
)
1031 int s8
= X264_SCAN8_0
+ 2*x
+ 16*y
;
1032 int16_t *cache0_mv
= h
->mb
.cache
.mv
[0][s8
];
1033 int16_t *cache1_mv
= h
->mb
.cache
.mv
[1][s8
];
1034 const int i_pixel
= m0
->i_pixel
;
1035 const int bw
= x264_pixel_size
[i_pixel
].w
;
1036 const int bh
= x264_pixel_size
[i_pixel
].h
;
1037 ALIGNED_ARRAY_32( pixel
, pixy_buf
,[2],[9][16*16] );
1038 ALIGNED_ARRAY_32( pixel
, pixu_buf
,[2],[9][16*16] );
1039 ALIGNED_ARRAY_32( pixel
, pixv_buf
,[2],[9][16*16] );
1040 pixel
*src
[3][2][9];
1041 int chromapix
= h
->luma2chroma_pixel
[i_pixel
];
1042 int chroma_v_shift
= CHROMA_V_SHIFT
;
1043 int chroma_x
= (8 >> CHROMA_H_SHIFT
) * x
;
1044 int chroma_y
= (8 >> chroma_v_shift
) * y
;
1045 pixel
*pix
= &h
->mb
.pic
.p_fdec
[0][8*x
+ 8*y
*FDEC_STRIDE
];
1046 pixel
*pixu
= &h
->mb
.pic
.p_fdec
[1][chroma_x
+ chroma_y
*FDEC_STRIDE
];
1047 pixel
*pixv
= &h
->mb
.pic
.p_fdec
[2][chroma_x
+ chroma_y
*FDEC_STRIDE
];
1048 int ref0
= h
->mb
.cache
.ref
[0][s8
];
1049 int ref1
= h
->mb
.cache
.ref
[1][s8
];
1050 const int mv0y_offset
= chroma_v_shift
& MB_INTERLACED
& ref0
? (h
->mb
.i_mb_y
& 1)*4 - 2 : 0;
1051 const int mv1y_offset
= chroma_v_shift
& MB_INTERLACED
& ref1
? (h
->mb
.i_mb_y
& 1)*4 - 2 : 0;
1052 intptr_t stride
[3][2][9];
1053 int bm0x
= m0
->mv
[0];
1054 int bm0y
= m0
->mv
[1];
1055 int bm1x
= m1
->mv
[0];
1056 int bm1y
= m1
->mv
[1];
1057 int bcost
= COST_MAX
;
1058 int mc_list0
= 1, mc_list1
= 1;
1059 uint64_t bcostrd
= COST_MAX64
;
1061 /* each byte of visited represents 8 possible m1y positions, so a 4D array isn't needed */
1062 ALIGNED_ARRAY_64( uint8_t, visited
,[8],[8][8] );
1063 /* all permutations of an offset in up to 2 of the dimensions */
1064 ALIGNED_4( static const int8_t dia4d
[33][4] ) =
1067 {0,0,0,1}, {0,0,0,-1}, {0,0,1,0}, {0,0,-1,0},
1068 {0,1,0,0}, {0,-1,0,0}, {1,0,0,0}, {-1,0,0,0},
1069 {0,0,1,1}, {0,0,-1,-1},{0,1,1,0}, {0,-1,-1,0},
1070 {1,1,0,0}, {-1,-1,0,0},{1,0,0,1}, {-1,0,0,-1},
1071 {0,1,0,1}, {0,-1,0,-1},{1,0,1,0}, {-1,0,-1,0},
1072 {0,0,-1,1},{0,0,1,-1}, {0,-1,1,0},{0,1,-1,0},
1073 {-1,1,0,0},{1,-1,0,0}, {1,0,0,-1},{-1,0,0,1},
1074 {0,-1,0,1},{0,1,0,-1}, {-1,0,1,0},{1,0,-1,0},
1077 if( bm0y
< h
->mb
.mv_min_spel
[1] + 8 || bm1y
< h
->mb
.mv_min_spel
[1] + 8 ||
1078 bm0y
> h
->mb
.mv_max_spel
[1] - 8 || bm1y
> h
->mb
.mv_max_spel
[1] - 8 ||
1079 bm0x
< h
->mb
.mv_min_spel
[0] + 8 || bm1x
< h
->mb
.mv_min_spel
[0] + 8 ||
1080 bm0x
> h
->mb
.mv_max_spel
[0] - 8 || bm1x
> h
->mb
.mv_max_spel
[0] - 8 )
1083 if( rd
&& m0
->i_pixel
!= PIXEL_16x16
&& i8
!= 0 )
1085 x264_mb_predict_mv( h
, 0, i8
<<2, bw
>>2, m0
->mvp
);
1086 x264_mb_predict_mv( h
, 1, i8
<<2, bw
>>2, m1
->mvp
);
1089 const uint16_t *p_cost_m0x
= m0
->p_cost_mv
- m0
->mvp
[0];
1090 const uint16_t *p_cost_m0y
= m0
->p_cost_mv
- m0
->mvp
[1];
1091 const uint16_t *p_cost_m1x
= m1
->p_cost_mv
- m1
->mvp
[0];
1092 const uint16_t *p_cost_m1y
= m1
->p_cost_mv
- m1
->mvp
[1];
1094 h
->mc
.memzero_aligned( visited
, sizeof(uint8_t[8][8][8]) );
1096 for( int pass
= 0; pass
< 8; pass
++ )
1099 /* check all mv pairs that differ in at most 2 components from the current mvs. */
1100 /* doesn't do chroma ME. this probably doesn't matter, as the gains
1101 * from bidir ME are the same with and without chroma ME. */
1104 for( int j
= x264_iter_kludge
; j
< 9; j
++ )
1105 BIME_CACHE( square1
[j
][0], square1
[j
][1], 0 );
1108 for( int j
= x264_iter_kludge
; j
< 9; j
++ )
1109 BIME_CACHE( square1
[j
][0], square1
[j
][1], 1 );
1111 for( int j
= !!pass
; j
< 33; j
++ )
1113 int m0x
= dia4d
[j
][0] + bm0x
;
1114 int m0y
= dia4d
[j
][1] + bm0y
;
1115 int m1x
= dia4d
[j
][2] + bm1x
;
1116 int m1y
= dia4d
[j
][3] + bm1y
;
1117 if( !pass
|| !((visited
[(m0x
)&7][(m0y
)&7][(m1x
)&7] & (1<<((m1y
)&7)))) )
1119 int i0
= 4 + 3*dia4d
[j
][0] + dia4d
[j
][1];
1120 int i1
= 4 + 3*dia4d
[j
][2] + dia4d
[j
][3];
1121 visited
[(m0x
)&7][(m0y
)&7][(m1x
)&7] |= (1<<((m1y
)&7));
1122 h
->mc
.avg
[i_pixel
]( pix
, FDEC_STRIDE
, src
[0][0][i0
], stride
[0][0][i0
], src
[0][1][i1
], stride
[0][1][i1
], i_weight
);
1123 int cost
= h
->pixf
.mbcmp
[i_pixel
]( m0
->p_fenc
[0], FENC_STRIDE
, pix
, FDEC_STRIDE
)
1124 + p_cost_m0x
[m0x
] + p_cost_m0y
[m0y
] + p_cost_m1x
[m1x
] + p_cost_m1y
[m1y
];
1127 if( cost
< SATD_THRESH(bcost
) )
1129 bcost
= X264_MIN( cost
, bcost
);
1130 M32( cache0_mv
) = pack16to32_mask(m0x
,m0y
);
1131 M32( cache1_mv
) = pack16to32_mask(m1x
,m1y
);
1134 h
->mc
.avg
[i_pixel
]( pixu
, FDEC_STRIDE
, src
[1][0][i0
], stride
[1][0][i0
], src
[1][1][i1
], stride
[1][1][i1
], i_weight
);
1135 h
->mc
.avg
[i_pixel
]( pixv
, FDEC_STRIDE
, src
[2][0][i0
], stride
[2][0][i0
], src
[2][1][i1
], stride
[2][1][i1
], i_weight
);
1139 h
->mc
.avg
[chromapix
]( pixu
, FDEC_STRIDE
, pixu_buf
[0][i0
], 8, pixu_buf
[1][i1
], 8, i_weight
);
1140 h
->mc
.avg
[chromapix
]( pixv
, FDEC_STRIDE
, pixv_buf
[0][i0
], 8, pixv_buf
[1][i1
], 8, i_weight
);
1142 uint64_t costrd
= x264_rd_cost_part( h
, i_lambda2
, i8
*4, m0
->i_pixel
);
1143 COPY2_IF_LT( bcostrd
, costrd
, bestj
, j
);
1147 COPY2_IF_LT( bcost
, cost
, bestj
, j
);
1154 bm0x
+= dia4d
[bestj
][0];
1155 bm0y
+= dia4d
[bestj
][1];
1156 bm1x
+= dia4d
[bestj
][2];
1157 bm1y
+= dia4d
[bestj
][3];
1159 mc_list0
= M16( &dia4d
[bestj
][0] );
1160 mc_list1
= M16( &dia4d
[bestj
][2] );
1165 x264_macroblock_cache_mv ( h
, 2*x
, 2*y
, bw
>>2, bh
>>2, 0, pack16to32_mask(bm0x
, bm0y
) );
1166 amvd
= pack8to16( X264_MIN(abs(bm0x
- m0
->mvp
[0]),33), X264_MIN(abs(bm0y
- m0
->mvp
[1]),33) );
1167 x264_macroblock_cache_mvd( h
, 2*x
, 2*y
, bw
>>2, bh
>>2, 0, amvd
);
1169 x264_macroblock_cache_mv ( h
, 2*x
, 2*y
, bw
>>2, bh
>>2, 1, pack16to32_mask(bm1x
, bm1y
) );
1170 amvd
= pack8to16( X264_MIN(abs(bm1x
- m1
->mvp
[0]),33), X264_MIN(abs(bm1y
- m1
->mvp
[1]),33) );
1171 x264_macroblock_cache_mvd( h
, 2*x
, 2*y
, bw
>>2, bh
>>2, 1, amvd
);
1180 void x264_me_refine_bidir_satd( x264_t
*h
, x264_me_t
*m0
, x264_me_t
*m1
, int i_weight
)
1182 x264_me_refine_bidir( h
, m0
, m1
, i_weight
, 0, 0, 0 );
1185 void x264_me_refine_bidir_rd( x264_t
*h
, x264_me_t
*m0
, x264_me_t
*m1
, int i_weight
, int i8
, int i_lambda2
)
1187 /* Motion compensation is done as part of bidir_rd; don't repeat
1188 * it in encoding. */
1189 h
->mb
.b_skip_mc
= 1;
1190 x264_me_refine_bidir( h
, m0
, m1
, i_weight
, i8
, i_lambda2
, 1 );
1191 h
->mb
.b_skip_mc
= 0;
1195 #define COST_MV_SATD( mx, my, dst, avoid_mvp ) \
1197 if( !avoid_mvp || !(mx == pmx && my == pmy) ) \
1199 h->mc.mc_luma( pix, FDEC_STRIDE, m->p_fref, m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
1200 dst = h->pixf.mbcmp[i_pixel]( m->p_fenc[0], FENC_STRIDE, pix, FDEC_STRIDE ) \
1201 + p_cost_mvx[mx] + p_cost_mvy[my]; \
1202 COPY1_IF_LT( bsatd, dst ); \
1208 #define COST_MV_RD( mx, my, satd, do_dir, mdir ) \
1210 if( satd <= SATD_THRESH(bsatd) ) \
1213 M32( cache_mv ) = pack16to32_mask(mx,my); \
1216 h->mc.mc_luma( pixu, FDEC_STRIDE, &m->p_fref[4], m->i_stride[1], mx, my, bw, bh, &m->weight[1] ); \
1217 h->mc.mc_luma( pixv, FDEC_STRIDE, &m->p_fref[8], m->i_stride[2], mx, my, bw, bh, &m->weight[2] ); \
1219 else if( m->i_pixel <= PIXEL_8x8 ) \
1221 h->mc.mc_chroma( pixu, pixv, FDEC_STRIDE, m->p_fref[4], m->i_stride[1], \
1222 mx, 2*(my+mvy_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift ); \
1223 if( m->weight[1].weightfn ) \
1224 m->weight[1].weightfn[bw>>3]( pixu, FDEC_STRIDE, pixu, FDEC_STRIDE, &m->weight[1], bh>>chroma_v_shift ); \
1225 if( m->weight[2].weightfn ) \
1226 m->weight[2].weightfn[bw>>3]( pixv, FDEC_STRIDE, pixv, FDEC_STRIDE, &m->weight[2], bh>>chroma_v_shift ); \
1228 cost = x264_rd_cost_part( h, i_lambda2, i4, m->i_pixel ); \
1229 COPY4_IF_LT( bcost, cost, bmx, mx, bmy, my, dir, do_dir?mdir:dir ); \
1233 void x264_me_refine_qpel_rd( x264_t
*h
, x264_me_t
*m
, int i_lambda2
, int i4
, int i_list
)
1235 int16_t *cache_mv
= h
->mb
.cache
.mv
[i_list
][x264_scan8
[i4
]];
1236 const uint16_t *p_cost_mvx
, *p_cost_mvy
;
1237 const int bw
= x264_pixel_size
[m
->i_pixel
].w
;
1238 const int bh
= x264_pixel_size
[m
->i_pixel
].h
;
1239 const int i_pixel
= m
->i_pixel
;
1240 int chroma_v_shift
= CHROMA_V_SHIFT
;
1241 int mvy_offset
= chroma_v_shift
& MB_INTERLACED
& m
->i_ref
? (h
->mb
.i_mb_y
& 1)*4 - 2 : 0;
1243 uint64_t bcost
= COST_MAX64
;
1246 int omx
, omy
, pmx
, pmy
;
1252 pixel
*pix
= &h
->mb
.pic
.p_fdec
[0][block_idx_xy_fdec
[i4
]];
1256 pixu
= &h
->mb
.pic
.p_fdec
[1][block_idx_xy_fdec
[i4
]];
1257 pixv
= &h
->mb
.pic
.p_fdec
[2][block_idx_xy_fdec
[i4
]];
1261 pixu
= &h
->mb
.pic
.p_fdec
[1][(i8
>>1)*(8*FDEC_STRIDE
>>chroma_v_shift
)+(i8
&1)*4];
1262 pixv
= &h
->mb
.pic
.p_fdec
[2][(i8
>>1)*(8*FDEC_STRIDE
>>chroma_v_shift
)+(i8
&1)*4];
1265 h
->mb
.b_skip_mc
= 1;
1267 if( m
->i_pixel
!= PIXEL_16x16
&& i4
!= 0 )
1268 x264_mb_predict_mv( h
, i_list
, i4
, bw
>>2, m
->mvp
);
1271 p_cost_mvx
= m
->p_cost_mv
- pmx
;
1272 p_cost_mvy
= m
->p_cost_mv
- pmy
;
1273 COST_MV_SATD( bmx
, bmy
, bsatd
, 0 );
1274 if( m
->i_pixel
!= PIXEL_16x16
)
1275 COST_MV_RD( bmx
, bmy
, 0, 0, 0 )
1279 /* check the predicted mv */
1280 if( (bmx
!= pmx
|| bmy
!= pmy
)
1281 && pmx
>= h
->mb
.mv_min_spel
[0] && pmx
<= h
->mb
.mv_max_spel
[0]
1282 && pmy
>= h
->mb
.mv_min_spel
[1] && pmy
<= h
->mb
.mv_max_spel
[1] )
1284 COST_MV_SATD( pmx
, pmy
, satd
, 0 );
1285 COST_MV_RD ( pmx
, pmy
, satd
, 0, 0 );
1286 /* The hex motion search is guaranteed to not repeat the center candidate,
1287 * so if pmv is chosen, set the "MV to avoid checking" to bmv instead. */
1288 if( bmx
== pmx
&& bmy
== pmy
)
1295 if( bmy
< h
->mb
.mv_min_spel
[1] + 3 || bmy
> h
->mb
.mv_max_spel
[1] - 3 ||
1296 bmx
< h
->mb
.mv_min_spel
[0] + 3 || bmx
> h
->mb
.mv_max_spel
[0] - 3 )
1298 h
->mb
.b_skip_mc
= 0;
1302 /* subpel hex search, same pattern as ME HEX. */
1306 for( int j
= 0; j
< 6; j
++ )
1308 COST_MV_SATD( omx
+ hex2
[j
+1][0], omy
+ hex2
[j
+1][1], satd
, 1 );
1309 COST_MV_RD ( omx
+ hex2
[j
+1][0], omy
+ hex2
[j
+1][1], satd
, 1, j
);
1314 /* half hexagon, not overlapping the previous iteration */
1315 for( int i
= 1; i
< 10; i
++ )
1317 const int odir
= mod6m1
[dir
+1];
1318 if( bmy
< h
->mb
.mv_min_spel
[1] + 3 ||
1319 bmy
> h
->mb
.mv_max_spel
[1] - 3 )
1324 for( int j
= 0; j
< 3; j
++ )
1326 COST_MV_SATD( omx
+ hex2
[odir
+j
][0], omy
+ hex2
[odir
+j
][1], satd
, 1 );
1327 COST_MV_RD ( omx
+ hex2
[odir
+j
][0], omy
+ hex2
[odir
+j
][1], satd
, 1, odir
-1+j
);
1334 /* square refine, same pattern as ME HEX. */
1337 for( int i
= 0; i
< 8; i
++ )
1339 COST_MV_SATD( omx
+ square1
[i
+1][0], omy
+ square1
[i
+1][1], satd
, 1 );
1340 COST_MV_RD ( omx
+ square1
[i
+1][0], omy
+ square1
[i
+1][1], satd
, 0, 0 );
1346 x264_macroblock_cache_mv ( h
, block_idx_x
[i4
], block_idx_y
[i4
], bw
>>2, bh
>>2, i_list
, pack16to32_mask(bmx
, bmy
) );
1347 amvd
= pack8to16( X264_MIN(abs(bmx
- m
->mvp
[0]),66), X264_MIN(abs(bmy
- m
->mvp
[1]),66) );
1348 x264_macroblock_cache_mvd( h
, block_idx_x
[i4
], block_idx_y
[i4
], bw
>>2, bh
>>2, i_list
, amvd
);
1349 h
->mb
.b_skip_mc
= 0;