1 /*****************************************************************************
2 * checkasm.c: assembly check tool
3 *****************************************************************************
4 * Copyright (C) 2003-2019 x264 project
6 * Authors: Loren Merritt <lorenm@u.washington.edu>
7 * Laurent Aimar <fenrir@via.ecp.fr>
8 * Fiona Glaser <fiona@x264.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
24 * This program is also available under a commercial proprietary license.
25 * For more information, contact us at licensing@x264.com.
26 *****************************************************************************/
29 #include "common/common.h"
30 #include "encoder/macroblock.h"
36 // GCC doesn't align stack variables on ARM, so use .bss
39 #define ALIGNED_16( var ) DECLARE_ALIGNED( static var, 16 )
42 /* buf1, buf2: initialised to random data and shouldn't write into them */
43 static uint8_t *buf1
, *buf2
;
44 /* buf3, buf4: used to store output */
45 static uint8_t *buf3
, *buf4
;
46 /* pbuf1, pbuf2: initialised to random pixel data and shouldn't write into them. */
47 static pixel
*pbuf1
, *pbuf2
;
48 /* pbuf3, pbuf4: point to buf3, buf4, just for type convenience */
49 static pixel
*pbuf3
, *pbuf4
;
53 #define report( name ) { \
54 if( used_asm && !quiet ) \
55 fprintf( stderr, " - %-21s [%s]\n", name, ok ? "OK" : "FAILED" ); \
59 #define BENCH_RUNS 2000 // tradeoff between accuracy and speed
60 #define MAX_FUNCS 1000 // just has to be big enough to hold all the existing functions
61 #define MAX_CPUS 30 // number of different combinations of cpu flags
65 void *pointer
; // just for detecting duplicates
74 bench_t vers
[MAX_CPUS
];
77 static int do_bench
= 0;
78 static int bench_pattern_len
= 0;
79 static const char *bench_pattern
= "";
80 static char func_name
[100];
81 static bench_func_t benchs
[MAX_FUNCS
];
83 static const char *pixel_names
[12] = { "16x16", "16x8", "8x16", "8x8", "8x4", "4x8", "4x4", "4x16", "4x2", "2x8", "2x4", "2x2" };
84 static const char *intra_predict_16x16_names
[7] = { "v", "h", "dc", "p", "dcl", "dct", "dc8" };
85 static const char *intra_predict_8x8c_names
[7] = { "dc", "h", "v", "p", "dcl", "dct", "dc8" };
86 static const char *intra_predict_4x4_names
[12] = { "v", "h", "dc", "ddl", "ddr", "vr", "hd", "vl", "hu", "dcl", "dct", "dc8" };
87 static const char **intra_predict_8x8_names
= intra_predict_4x4_names
;
88 static const char **intra_predict_8x16c_names
= intra_predict_8x8c_names
;
90 #define set_func_name(...) snprintf( func_name, sizeof(func_name), __VA_ARGS__ )
92 static inline uint32_t read_time(void)
95 #if HAVE_X86_INLINE_ASM
96 asm volatile( "lfence \n"
98 : "=a"(a
) :: "edx", "memory" );
100 asm volatile( "mftb %0" : "=r"(a
) :: "memory" );
101 #elif HAVE_ARM_INLINE_ASM // ARMv7 only
102 asm volatile( "mrc p15, 0, %0, c9, c13, 0" : "=r"(a
) :: "memory" );
105 asm volatile( "mrs %0, pmccntr_el0" : "=r"(b
) :: "memory" );
108 asm volatile( "rdhwr %0, $2" : "=r"(a
) :: "memory" );
113 static bench_t
* get_bench( const char *name
, int cpu
)
116 for( i
= 0; benchs
[i
].name
&& strcmp(name
, benchs
[i
].name
); i
++ )
117 assert( i
< MAX_FUNCS
);
118 if( !benchs
[i
].name
)
119 benchs
[i
].name
= strdup( name
);
121 return &benchs
[i
].vers
[0];
122 for( j
= 1; benchs
[i
].vers
[j
].cpu
&& benchs
[i
].vers
[j
].cpu
!= cpu
; j
++ )
123 assert( j
< MAX_CPUS
);
124 benchs
[i
].vers
[j
].cpu
= cpu
;
125 return &benchs
[i
].vers
[j
];
128 static int cmp_nop( const void *a
, const void *b
)
130 return *(uint16_t*)a
- *(uint16_t*)b
;
133 static int cmp_bench( const void *a
, const void *b
)
135 // asciibetical sort except preserving numbers
136 const char *sa
= ((bench_func_t
*)a
)->name
;
137 const char *sb
= ((bench_func_t
*)b
)->name
;
142 if( isdigit( *sa
) && isdigit( *sb
) && isdigit( sa
[1] ) != isdigit( sb
[1] ) )
143 return isdigit( sa
[1] ) - isdigit( sb
[1] );
149 static void print_bench(void)
151 uint16_t nops
[10000];
152 int nfuncs
, nop_time
=0;
154 for( int i
= 0; i
< 10000; i
++ )
156 uint32_t t
= read_time();
157 nops
[i
] = read_time() - t
;
159 qsort( nops
, 10000, sizeof(uint16_t), cmp_nop
);
160 for( int i
= 500; i
< 9500; i
++ )
163 printf( "nop: %d\n", nop_time
);
165 for( nfuncs
= 0; nfuncs
< MAX_FUNCS
&& benchs
[nfuncs
].name
; nfuncs
++ );
166 qsort( benchs
, nfuncs
, sizeof(bench_func_t
), cmp_bench
);
167 for( int i
= 0; i
< nfuncs
; i
++ )
168 for( int j
= 0; j
< MAX_CPUS
&& (!j
|| benchs
[i
].vers
[j
].cpu
); j
++ )
171 bench_t
*b
= &benchs
[i
].vers
[j
];
174 for( k
= 0; k
< j
&& benchs
[i
].vers
[k
].pointer
!= b
->pointer
; k
++ );
177 printf( "%s_%s%s: %"PRId64
"\n", benchs
[i
].name
,
179 b
->cpu
&X264_CPU_AVX512
? "avx512" :
180 b
->cpu
&X264_CPU_AVX2
? "avx2" :
181 b
->cpu
&X264_CPU_BMI2
? "bmi2" :
182 b
->cpu
&X264_CPU_BMI1
? "bmi1" :
183 b
->cpu
&X264_CPU_FMA3
? "fma3" :
184 b
->cpu
&X264_CPU_FMA4
? "fma4" :
185 b
->cpu
&X264_CPU_XOP
? "xop" :
186 b
->cpu
&X264_CPU_AVX
? "avx" :
187 b
->cpu
&X264_CPU_SSE42
? "sse42" :
188 b
->cpu
&X264_CPU_SSE4
? "sse4" :
189 b
->cpu
&X264_CPU_SSSE3
? "ssse3" :
190 b
->cpu
&X264_CPU_SSE3
? "sse3" :
191 b
->cpu
&X264_CPU_LZCNT
? "lzcnt" :
192 /* print sse2slow only if there's also a sse2fast version of the same func */
193 b
->cpu
&X264_CPU_SSE2_IS_SLOW
&& j
<MAX_CPUS
-1 && b
[1].cpu
&X264_CPU_SSE2_IS_FAST
&& !(b
[1].cpu
&X264_CPU_SSE3
) ? "sse2slow" :
194 b
->cpu
&X264_CPU_SSE2
? "sse2" :
195 b
->cpu
&X264_CPU_SSE
? "sse" :
196 b
->cpu
&X264_CPU_MMX
? "mmx" :
198 b
->cpu
&X264_CPU_ALTIVEC
? "altivec" :
200 b
->cpu
&X264_CPU_NEON
? "neon" :
201 b
->cpu
&X264_CPU_ARMV6
? "armv6" :
203 b
->cpu
&X264_CPU_NEON
? "neon" :
204 b
->cpu
&X264_CPU_ARMV8
? "armv8" :
206 b
->cpu
&X264_CPU_MSA
? "msa" :
210 b
->cpu
&X264_CPU_CACHELINE_32
? "_c32" :
211 b
->cpu
&X264_CPU_SLOW_ATOM
&& b
->cpu
&X264_CPU_CACHELINE_64
? "_c64_atom" :
212 b
->cpu
&X264_CPU_CACHELINE_64
? "_c64" :
213 b
->cpu
&X264_CPU_SLOW_SHUFFLE
? "_slowshuffle" :
214 b
->cpu
&X264_CPU_LZCNT
&& b
->cpu
&X264_CPU_SSE3
&& !(b
->cpu
&X264_CPU_BMI1
) ? "_lzcnt" :
215 b
->cpu
&X264_CPU_SLOW_ATOM
? "_atom" :
217 b
->cpu
&X264_CPU_FAST_NEON_MRC
? "_fast_mrc" :
220 (int64_t)(10*b
->cycles
/b
->den
- nop_time
)/4 );
224 /* YMM and ZMM registers on x86 are turned off to save power when they haven't been
225 * used for some period of time. When they are used there will be a "warmup" period
226 * during which performance will be reduced and inconsistent which is problematic when
227 * trying to benchmark individual functions. We can work around this by periodically
228 * issuing "dummy" instructions that uses those registers to keep them powered on. */
229 static void (*simd_warmup_func
)( void ) = NULL
;
230 #define simd_warmup() do { if( simd_warmup_func ) simd_warmup_func(); } while( 0 )
232 #if ARCH_X86 || ARCH_X86_64
233 int x264_stack_pagealign( int (*func
)(), int align
);
234 void x264_checkasm_warmup_avx( void );
235 void x264_checkasm_warmup_avx512( void );
237 /* detect when callee-saved regs aren't saved
238 * needs an explicit asm check because it only sometimes crashes in normal use. */
239 intptr_t x264_checkasm_call( intptr_t (*func
)(), int *ok
, ... );
241 #define x264_stack_pagealign( func, align ) func()
245 intptr_t x264_checkasm_call( intptr_t (*func
)(), int *ok
, ... );
249 intptr_t x264_checkasm_call_neon( intptr_t (*func
)(), int *ok
, ... );
250 intptr_t x264_checkasm_call_noneon( intptr_t (*func
)(), int *ok
, ... );
251 intptr_t (*x264_checkasm_call
)( intptr_t (*func
)(), int *ok
, ... ) = x264_checkasm_call_noneon
;
254 #define call_c1(func,...) func(__VA_ARGS__)
257 /* Evil hack: detect incorrect assumptions that 32-bit ints are zero-extended to 64-bit.
258 * This is done by clobbering the stack with junk around the stack pointer and calling the
259 * assembly function through x264_checkasm_call with added dummy arguments which forces all
260 * real arguments to be passed on the stack and not in registers. For 32-bit argument the
261 * upper half of the 64-bit register location on the stack will now contain junk. Note that
262 * this is dependant on compiler behaviour and that interrupts etc. at the wrong time may
263 * overwrite the junk written to the stack so there's no guarantee that it will always
264 * detect all functions that assumes zero-extension.
266 void x264_checkasm_stack_clobber( uint64_t clobber
, ... );
267 #define call_a1(func,...) ({ \
268 uint64_t r = (rand() & 0xffff) * 0x0001000100010001ULL; \
269 x264_checkasm_stack_clobber( r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r ); /* max_args+6 */ \
271 x264_checkasm_call(( intptr_t(*)())func, &ok, 0, 0, 0, 0, __VA_ARGS__ ); })
272 #elif ARCH_AARCH64 && !defined(__APPLE__)
273 void x264_checkasm_stack_clobber( uint64_t clobber
, ... );
274 #define call_a1(func,...) ({ \
275 uint64_t r = (rand() & 0xffff) * 0x0001000100010001ULL; \
276 x264_checkasm_stack_clobber( r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r ); /* max_args+8 */ \
277 x264_checkasm_call(( intptr_t(*)())func, &ok, 0, 0, 0, 0, 0, 0, __VA_ARGS__ ); })
278 #elif ARCH_X86 || ARCH_ARM
279 #define call_a1(func,...) x264_checkasm_call( (intptr_t(*)())func, &ok, __VA_ARGS__ )
281 #define call_a1 call_c1
285 #define call_a1_64(func,...) ((uint64_t (*)(intptr_t(*)(), int*, ...))x264_checkasm_call)( (intptr_t(*)())func, &ok, __VA_ARGS__ )
287 #define call_a1_64 call_a1
290 #define call_bench(func,cpu,...)\
291 if( do_bench && !strncmp(func_name, bench_pattern, bench_pattern_len) )\
295 call_a1(func, __VA_ARGS__);\
296 for( int ti = 0; ti < (cpu?BENCH_RUNS:BENCH_RUNS/4); ti++ )\
299 uint32_t t = read_time();\
304 t = read_time() - t;\
305 if( (uint64_t)t*tcount <= tsum*4 && ti > 0 )\
311 bench_t *b = get_bench( func_name, cpu );\
317 /* for most functions, run benchmark and correctness test at the same time.
318 * for those that modify their inputs, run the above macros separately */
319 #define call_a(func,...) ({ call_a2(func,__VA_ARGS__); call_a1(func,__VA_ARGS__); })
320 #define call_c(func,...) ({ call_c2(func,__VA_ARGS__); call_c1(func,__VA_ARGS__); })
321 #define call_a2(func,...) ({ call_bench(func,cpu_new,__VA_ARGS__); })
322 #define call_c2(func,...) ({ call_bench(func,0,__VA_ARGS__); })
323 #define call_a64(func,...) ({ call_a2(func,__VA_ARGS__); call_a1_64(func,__VA_ARGS__); })
326 static int check_pixel( int cpu_ref
, int cpu_new
)
328 x264_pixel_function_t pixel_c
;
329 x264_pixel_function_t pixel_ref
;
330 x264_pixel_function_t pixel_asm
;
331 x264_predict_t predict_4x4
[12];
332 x264_predict8x8_t predict_8x8
[12];
333 x264_predict_8x8_filter_t predict_8x8_filter
;
334 ALIGNED_16( pixel edge
[36] );
335 uint16_t cost_mv
[32];
336 int ret
= 0, ok
, used_asm
;
338 x264_pixel_init( 0, &pixel_c
);
339 x264_pixel_init( cpu_ref
, &pixel_ref
);
340 x264_pixel_init( cpu_new
, &pixel_asm
);
341 x264_predict_4x4_init( 0, predict_4x4
);
342 x264_predict_8x8_init( 0, predict_8x8
, &predict_8x8_filter
);
343 predict_8x8_filter( pbuf2
+40, edge
, ALL_NEIGHBORS
, ALL_NEIGHBORS
);
346 for( int i
= 0; i
< 256; i
++ )
351 pbuf4
[i
] = -(z
&1) & PIXEL_MAX
;
352 pbuf3
[i
] = ~pbuf4
[i
] & PIXEL_MAX
;
354 // random pattern made of maxed pixel differences, in case an intermediate value overflows
355 for( int i
= 256; i
< 0x1000; i
++ )
357 pbuf4
[i
] = -(pbuf1
[i
&~0x88]&1) & PIXEL_MAX
;
358 pbuf3
[i
] = ~(pbuf4
[i
]) & PIXEL_MAX
;
361 #define TEST_PIXEL( name, align ) \
362 ok = 1, used_asm = 0; \
363 for( int i = 0; i < ARRAY_ELEMS(pixel_c.name); i++ ) \
365 int res_c, res_asm; \
366 if( pixel_asm.name[i] != pixel_ref.name[i] ) \
368 set_func_name( "%s_%s", #name, pixel_names[i] ); \
370 for( int j = 0; j < 64; j++ ) \
372 intptr_t stride1 = (j&31) == 31 ? 32 : FENC_STRIDE; \
373 res_c = call_c( pixel_c.name[i], pbuf1, stride1, pbuf2+j*!align, (intptr_t)64 ); \
374 res_asm = call_a( pixel_asm.name[i], pbuf1, stride1, pbuf2+j*!align, (intptr_t)64 ); \
375 if( res_c != res_asm ) \
378 fprintf( stderr, #name "[%d]: %d != %d [FAILED]\n", i, res_c, res_asm ); \
382 for( int j = 0; j < 0x1000 && ok; j += 256 ) \
384 res_c = pixel_c .name[i]( pbuf3+j, 16, pbuf4+j, 16 ); \
385 res_asm = pixel_asm.name[i]( pbuf3+j, 16, pbuf4+j, 16 ); \
386 if( res_c != res_asm ) \
389 fprintf( stderr, #name "[%d]: overflow %d != %d\n", i, res_c, res_asm ); \
394 report( "pixel " #name " :" );
396 TEST_PIXEL( sad
, 0 );
397 TEST_PIXEL( sad_aligned
, 1 );
398 TEST_PIXEL( ssd
, 1 );
399 TEST_PIXEL( satd
, 0 );
400 TEST_PIXEL( sa8d
, 1 );
402 ok
= 1, used_asm
= 0;
403 if( pixel_asm
.sa8d_satd
[PIXEL_16x16
] != pixel_ref
.sa8d_satd
[PIXEL_16x16
] )
405 set_func_name( "sa8d_satd_%s", pixel_names
[PIXEL_16x16
] );
407 for( int j
= 0; j
< 64; j
++ )
409 uint32_t cost8_c
= pixel_c
.sa8d
[PIXEL_16x16
]( pbuf1
, 16, pbuf2
, 64 );
410 uint32_t cost4_c
= pixel_c
.satd
[PIXEL_16x16
]( pbuf1
, 16, pbuf2
, 64 );
411 uint64_t res_a
= call_a64( pixel_asm
.sa8d_satd
[PIXEL_16x16
], pbuf1
, (intptr_t)16, pbuf2
, (intptr_t)64 );
412 uint32_t cost8_a
= res_a
;
413 uint32_t cost4_a
= res_a
>> 32;
414 if( cost8_a
!= cost8_c
|| cost4_a
!= cost4_c
)
417 fprintf( stderr
, "sa8d_satd [%d]: (%d,%d) != (%d,%d) [FAILED]\n", PIXEL_16x16
,
418 cost8_c
, cost4_c
, cost8_a
, cost4_a
);
422 for( int j
= 0; j
< 0x1000 && ok
; j
+= 256 ) \
424 uint32_t cost8_c
= pixel_c
.sa8d
[PIXEL_16x16
]( pbuf3
+j
, 16, pbuf4
+j
, 16 );
425 uint32_t cost4_c
= pixel_c
.satd
[PIXEL_16x16
]( pbuf3
+j
, 16, pbuf4
+j
, 16 );
426 uint64_t res_a
= pixel_asm
.sa8d_satd
[PIXEL_16x16
]( pbuf3
+j
, 16, pbuf4
+j
, 16 );
427 uint32_t cost8_a
= res_a
;
428 uint32_t cost4_a
= res_a
>> 32;
429 if( cost8_a
!= cost8_c
|| cost4_a
!= cost4_c
)
432 fprintf( stderr
, "sa8d_satd [%d]: overflow (%d,%d) != (%d,%d) [FAILED]\n", PIXEL_16x16
,
433 cost8_c
, cost4_c
, cost8_a
, cost4_a
);
437 report( "pixel sa8d_satd :" );
439 #define TEST_PIXEL_X( N ) \
440 ok = 1; used_asm = 0; \
441 for( int i = 0; i < 7; i++ ) \
443 ALIGNED_16( int res_c[4] ) = {0}; \
444 ALIGNED_16( int res_asm[4] ) = {0}; \
445 if( pixel_asm.sad_x##N[i] && pixel_asm.sad_x##N[i] != pixel_ref.sad_x##N[i] ) \
447 set_func_name( "sad_x%d_%s", N, pixel_names[i] ); \
449 for( int j = 0; j < 64; j++ ) \
451 pixel *pix2 = pbuf2+j; \
452 res_c[0] = pixel_c.sad[i]( pbuf1, 16, pix2, 64 ); \
453 res_c[1] = pixel_c.sad[i]( pbuf1, 16, pix2+6, 64 ); \
454 res_c[2] = pixel_c.sad[i]( pbuf1, 16, pix2+1, 64 ); \
457 res_c[3] = pixel_c.sad[i]( pbuf1, 16, pix2+10, 64 ); \
458 call_a( pixel_asm.sad_x4[i], pbuf1, pix2, pix2+6, pix2+1, pix2+10, (intptr_t)64, res_asm ); \
461 call_a( pixel_asm.sad_x3[i], pbuf1, pix2, pix2+6, pix2+1, (intptr_t)64, res_asm ); \
462 if( memcmp(res_c, res_asm, N*sizeof(int)) ) \
465 fprintf( stderr, "sad_x"#N"[%d]: %d,%d,%d,%d != %d,%d,%d,%d [FAILED]\n", \
466 i, res_c[0], res_c[1], res_c[2], res_c[3], \
467 res_asm[0], res_asm[1], res_asm[2], res_asm[3] ); \
470 call_c2( pixel_c.sad_x4[i], pbuf1, pix2, pix2+6, pix2+1, pix2+10, (intptr_t)64, res_asm ); \
472 call_c2( pixel_c.sad_x3[i], pbuf1, pix2, pix2+6, pix2+1, (intptr_t)64, res_asm ); \
476 report( "pixel sad_x"#N" :" );
481 #define TEST_PIXEL_VAR( i ) \
482 if( pixel_asm.var[i] != pixel_ref.var[i] ) \
484 set_func_name( "%s_%s", "var", pixel_names[i] ); \
486 /* abi-check wrapper can't return uint64_t, so separate it from return value check */ \
487 call_c1( pixel_c.var[i], pbuf1, 16 ); \
488 call_a1( pixel_asm.var[i], pbuf1, (intptr_t)16 ); \
489 uint64_t res_c = pixel_c.var[i]( pbuf1, 16 ); \
490 uint64_t res_asm = pixel_asm.var[i]( pbuf1, 16 ); \
491 if( res_c != res_asm ) \
494 fprintf( stderr, "var[%d]: %d %d != %d %d [FAILED]\n", i, (int)res_c, (int)(res_c>>32), (int)res_asm, (int)(res_asm>>32) ); \
496 call_c2( pixel_c.var[i], pbuf1, (intptr_t)16 ); \
497 call_a2( pixel_asm.var[i], pbuf1, (intptr_t)16 ); \
500 ok
= 1; used_asm
= 0;
501 TEST_PIXEL_VAR( PIXEL_16x16
);
502 TEST_PIXEL_VAR( PIXEL_8x16
);
503 TEST_PIXEL_VAR( PIXEL_8x8
);
504 report( "pixel var :" );
506 #define TEST_PIXEL_VAR2( i ) \
507 if( pixel_asm.var2[i] != pixel_ref.var2[i] ) \
509 int res_c, res_asm; \
510 ALIGNED_ARRAY_8( int, ssd_c, [2] ); \
511 ALIGNED_ARRAY_8( int, ssd_asm,[2] ); \
512 set_func_name( "%s_%s", "var2", pixel_names[i] ); \
514 res_c = call_c( pixel_c.var2[i], pbuf1, pbuf2, ssd_c ); \
515 res_asm = call_a( pixel_asm.var2[i], pbuf1, pbuf2, ssd_asm ); \
516 if( res_c != res_asm || memcmp( ssd_c, ssd_asm, 2*sizeof(int) ) ) \
519 fprintf( stderr, "var2[%d]: {%d, %d, %d} != {%d, %d, %d} [FAILED]\n", i, res_c, ssd_c[0], ssd_c[1], res_asm, ssd_asm[0], ssd_asm[1] ); \
523 ok
= 1; used_asm
= 0;
524 TEST_PIXEL_VAR2( PIXEL_8x16
);
525 TEST_PIXEL_VAR2( PIXEL_8x8
);
526 report( "pixel var2 :" );
528 ok
= 1; used_asm
= 0;
529 for( int i
= 0; i
< 4; i
++ )
530 if( pixel_asm
.hadamard_ac
[i
] != pixel_ref
.hadamard_ac
[i
] )
532 set_func_name( "hadamard_ac_%s", pixel_names
[i
] );
534 for( int j
= 0; j
< 32; j
++ )
536 pixel
*pix
= (j
&16 ? pbuf1
: pbuf3
) + (j
&15)*256;
537 call_c1( pixel_c
.hadamard_ac
[i
], pbuf1
, (intptr_t)16 );
538 call_a1( pixel_asm
.hadamard_ac
[i
], pbuf1
, (intptr_t)16 );
539 uint64_t rc
= pixel_c
.hadamard_ac
[i
]( pix
, 16 );
540 uint64_t ra
= pixel_asm
.hadamard_ac
[i
]( pix
, 16 );
544 fprintf( stderr
, "hadamard_ac[%d]: %d,%d != %d,%d\n", i
, (int)rc
, (int)(rc
>>32), (int)ra
, (int)(ra
>>32) );
548 call_c2( pixel_c
.hadamard_ac
[i
], pbuf1
, (intptr_t)16 );
549 call_a2( pixel_asm
.hadamard_ac
[i
], pbuf1
, (intptr_t)16 );
551 report( "pixel hadamard_ac :" );
554 for( int i
= 0; i
< 32; i
++ )
555 for( int j
= 0; j
< 16; j
++ )
556 pbuf4
[16*i
+j
] = -((i
+j
)&1) & PIXEL_MAX
;
557 ok
= 1; used_asm
= 0;
558 if( pixel_asm
.vsad
!= pixel_ref
.vsad
)
560 for( int h
= 2; h
<= 32; h
+= 2 )
563 set_func_name( "vsad" );
565 for( int j
= 0; j
< 2 && ok
; j
++ )
567 pixel
*p
= j
? pbuf4
: pbuf1
;
568 res_c
= call_c( pixel_c
.vsad
, p
, (intptr_t)16, h
);
569 res_asm
= call_a( pixel_asm
.vsad
, p
, (intptr_t)16, h
);
570 if( res_c
!= res_asm
)
573 fprintf( stderr
, "vsad: height=%d, %d != %d\n", h
, res_c
, res_asm
);
579 report( "pixel vsad :" );
581 ok
= 1; used_asm
= 0;
582 if( pixel_asm
.asd8
!= pixel_ref
.asd8
)
584 set_func_name( "asd8" );
586 int res_c
= call_c( pixel_c
.asd8
, pbuf1
, (intptr_t)8, pbuf2
, (intptr_t)8, 16 );
587 int res_a
= call_a( pixel_asm
.asd8
, pbuf1
, (intptr_t)8, pbuf2
, (intptr_t)8, 16 );
591 fprintf( stderr
, "asd: %d != %d\n", res_c
, res_a
);
594 report( "pixel asd :" );
596 #define TEST_INTRA_X3( name, i8x8, ... ) \
597 if( pixel_asm.name && pixel_asm.name != pixel_ref.name ) \
599 ALIGNED_16( int res_c[4] ); \
600 ALIGNED_16( int res_asm[4] ); \
601 set_func_name( #name ); \
603 call_c( pixel_c.name, pbuf1+48, i8x8 ? edge : pbuf3+48, res_c ); \
604 call_a( pixel_asm.name, pbuf1+48, i8x8 ? edge : pbuf3+48, res_asm ); \
605 if( memcmp(res_c, res_asm, 3 * sizeof(*res_c)) ) \
608 fprintf( stderr, #name": %d,%d,%d != %d,%d,%d [FAILED]\n", \
609 res_c[0], res_c[1], res_c[2], \
610 res_asm[0], res_asm[1], res_asm[2] ); \
614 #define TEST_INTRA_X9( name, cmp ) \
615 if( pixel_asm.name && pixel_asm.name != pixel_ref.name ) \
617 set_func_name( #name ); \
619 ALIGNED_ARRAY_64( uint16_t, bitcosts,[17] ); \
620 for( int i=0; i<17; i++ ) \
621 bitcosts[i] = 9*(i!=8); \
622 memcpy( pbuf3, pbuf2, 20*FDEC_STRIDE*sizeof(pixel) ); \
623 memcpy( pbuf4, pbuf2, 20*FDEC_STRIDE*sizeof(pixel) ); \
624 for( int i=0; i<32; i++ ) \
626 pixel *fenc = pbuf1+48+i*12; \
627 pixel *fdec1 = pbuf3+48+i*12; \
628 pixel *fdec2 = pbuf4+48+i*12; \
629 int pred_mode = i%9; \
630 int res_c = INT_MAX; \
631 for( int j=0; j<9; j++ ) \
633 predict_4x4[j]( fdec1 ); \
634 int cost = pixel_c.cmp[PIXEL_4x4]( fenc, FENC_STRIDE, fdec1, FDEC_STRIDE ) + 9*(j!=pred_mode); \
635 if( cost < (uint16_t)res_c ) \
636 res_c = cost + (j<<16); \
638 predict_4x4[res_c>>16]( fdec1 ); \
639 int res_a = call_a( pixel_asm.name, fenc, fdec2, bitcosts+8-pred_mode ); \
640 if( res_c != res_a ) \
643 fprintf( stderr, #name": %d,%d != %d,%d [FAILED]\n", res_c>>16, res_c&0xffff, res_a>>16, res_a&0xffff ); \
646 if( memcmp(fdec1, fdec2, 4*FDEC_STRIDE*sizeof(pixel)) ) \
649 fprintf( stderr, #name" [FAILED]\n" ); \
650 for( int j=0; j<16; j++ ) \
651 fprintf( stderr, "%02x ", fdec1[(j&3)+(j>>2)*FDEC_STRIDE] ); \
652 fprintf( stderr, "\n" ); \
653 for( int j=0; j<16; j++ ) \
654 fprintf( stderr, "%02x ", fdec2[(j&3)+(j>>2)*FDEC_STRIDE] ); \
655 fprintf( stderr, "\n" ); \
661 #define TEST_INTRA8_X9( name, cmp ) \
662 if( pixel_asm.name && pixel_asm.name != pixel_ref.name ) \
664 set_func_name( #name ); \
666 ALIGNED_ARRAY_64( uint16_t, bitcosts,[17] ); \
667 ALIGNED_ARRAY_16( uint16_t, satds_c,[16] ); \
668 ALIGNED_ARRAY_16( uint16_t, satds_a,[16] ); \
669 memset( satds_c, 0, 16 * sizeof(*satds_c) ); \
670 memset( satds_a, 0, 16 * sizeof(*satds_a) ); \
671 for( int i=0; i<17; i++ ) \
672 bitcosts[i] = 9*(i!=8); \
673 for( int i=0; i<32; i++ ) \
675 pixel *fenc = pbuf1+48+i*12; \
676 pixel *fdec1 = pbuf3+48+i*12; \
677 pixel *fdec2 = pbuf4+48+i*12; \
678 int pred_mode = i%9; \
679 int res_c = INT_MAX; \
680 predict_8x8_filter( fdec1, edge, ALL_NEIGHBORS, ALL_NEIGHBORS ); \
681 for( int j=0; j<9; j++ ) \
683 predict_8x8[j]( fdec1, edge ); \
684 satds_c[j] = pixel_c.cmp[PIXEL_8x8]( fenc, FENC_STRIDE, fdec1, FDEC_STRIDE ) + 9*(j!=pred_mode); \
685 if( satds_c[j] < (uint16_t)res_c ) \
686 res_c = satds_c[j] + (j<<16); \
688 predict_8x8[res_c>>16]( fdec1, edge ); \
689 int res_a = call_a( pixel_asm.name, fenc, fdec2, edge, bitcosts+8-pred_mode, satds_a ); \
690 if( res_c != res_a || memcmp(satds_c, satds_a, 16 * sizeof(*satds_c)) ) \
693 fprintf( stderr, #name": %d,%d != %d,%d [FAILED]\n", res_c>>16, res_c&0xffff, res_a>>16, res_a&0xffff ); \
694 for( int j = 0; j < 9; j++ ) \
695 fprintf( stderr, "%5d ", satds_c[j]); \
696 fprintf( stderr, "\n" ); \
697 for( int j = 0; j < 9; j++ ) \
698 fprintf( stderr, "%5d ", satds_a[j]); \
699 fprintf( stderr, "\n" ); \
702 for( int j=0; j<8; j++ ) \
703 if( memcmp(fdec1+j*FDEC_STRIDE, fdec2+j*FDEC_STRIDE, 8*sizeof(pixel)) ) \
707 fprintf( stderr, #name" [FAILED]\n" ); \
708 for( int j=0; j<8; j++ ) \
710 for( int k=0; k<8; k++ ) \
711 fprintf( stderr, "%02x ", fdec1[k+j*FDEC_STRIDE] ); \
712 fprintf( stderr, "\n" ); \
714 fprintf( stderr, "\n" ); \
715 for( int j=0; j<8; j++ ) \
717 for( int k=0; k<8; k++ ) \
718 fprintf( stderr, "%02x ", fdec2[k+j*FDEC_STRIDE] ); \
719 fprintf( stderr, "\n" ); \
721 fprintf( stderr, "\n" ); \
727 memcpy( pbuf3
, pbuf2
, 20*FDEC_STRIDE
*sizeof(pixel
) );
728 ok
= 1; used_asm
= 0;
729 TEST_INTRA_X3( intra_satd_x3_16x16
, 0 );
730 TEST_INTRA_X3( intra_satd_x3_8x16c
, 0 );
731 TEST_INTRA_X3( intra_satd_x3_8x8c
, 0 );
732 TEST_INTRA_X3( intra_sa8d_x3_8x8
, 1, edge
);
733 TEST_INTRA_X3( intra_satd_x3_4x4
, 0 );
734 report( "intra satd_x3 :" );
735 ok
= 1; used_asm
= 0;
736 TEST_INTRA_X3( intra_sad_x3_16x16
, 0 );
737 TEST_INTRA_X3( intra_sad_x3_8x16c
, 0 );
738 TEST_INTRA_X3( intra_sad_x3_8x8c
, 0 );
739 TEST_INTRA_X3( intra_sad_x3_8x8
, 1, edge
);
740 TEST_INTRA_X3( intra_sad_x3_4x4
, 0 );
741 report( "intra sad_x3 :" );
742 ok
= 1; used_asm
= 0;
743 TEST_INTRA_X9( intra_satd_x9_4x4
, satd
);
744 TEST_INTRA8_X9( intra_sa8d_x9_8x8
, sa8d
);
745 report( "intra satd_x9 :" );
746 ok
= 1; used_asm
= 0;
747 TEST_INTRA_X9( intra_sad_x9_4x4
, sad
);
748 TEST_INTRA8_X9( intra_sad_x9_8x8
, sad
);
749 report( "intra sad_x9 :" );
751 ok
= 1; used_asm
= 0;
752 if( pixel_asm
.ssd_nv12_core
!= pixel_ref
.ssd_nv12_core
)
755 set_func_name( "ssd_nv12" );
756 uint64_t res_u_c
, res_v_c
, res_u_a
, res_v_a
;
757 for( int w
= 8; w
<= 360; w
+= 8 )
759 pixel_c
.ssd_nv12_core( pbuf1
, 368, pbuf2
, 368, w
, 8, &res_u_c
, &res_v_c
);
760 pixel_asm
.ssd_nv12_core( pbuf1
, 368, pbuf2
, 368, w
, 8, &res_u_a
, &res_v_a
);
761 if( res_u_c
!= res_u_a
|| res_v_c
!= res_v_a
)
764 fprintf( stderr
, "ssd_nv12: %"PRIu64
",%"PRIu64
" != %"PRIu64
",%"PRIu64
"\n",
765 res_u_c
, res_v_c
, res_u_a
, res_v_a
);
768 call_c( pixel_c
.ssd_nv12_core
, pbuf1
, (intptr_t)368, pbuf2
, (intptr_t)368, 360, 8, &res_u_c
, &res_v_c
);
769 call_a( pixel_asm
.ssd_nv12_core
, pbuf1
, (intptr_t)368, pbuf2
, (intptr_t)368, 360, 8, &res_u_a
, &res_v_a
);
771 report( "ssd_nv12 :" );
773 if( pixel_asm
.ssim_4x4x2_core
!= pixel_ref
.ssim_4x4x2_core
||
774 pixel_asm
.ssim_end4
!= pixel_ref
.ssim_end4
)
778 ALIGNED_16( int sums
[5][4] ) = {{0}};
781 res_c
= x264_pixel_ssim_wxh( &pixel_c
, pbuf1
+2, 32, pbuf2
+2, 32, 32, 28, pbuf3
, &cnt
);
782 res_a
= x264_pixel_ssim_wxh( &pixel_asm
, pbuf1
+2, 32, pbuf2
+2, 32, 32, 28, pbuf3
, &cnt
);
783 if( fabs( res_c
- res_a
) > 1e-6 )
786 fprintf( stderr
, "ssim: %.7f != %.7f [FAILED]\n", res_c
, res_a
);
788 set_func_name( "ssim_core" );
789 call_c( pixel_c
.ssim_4x4x2_core
, pbuf1
+2, (intptr_t)32, pbuf2
+2, (intptr_t)32, sums
);
790 call_a( pixel_asm
.ssim_4x4x2_core
, pbuf1
+2, (intptr_t)32, pbuf2
+2, (intptr_t)32, sums
);
791 set_func_name( "ssim_end" );
792 call_c2( pixel_c
.ssim_end4
, sums
, sums
, 4 );
793 call_a2( pixel_asm
.ssim_end4
, sums
, sums
, 4 );
794 /* check incorrect assumptions that 32-bit ints are zero-extended to 64-bit */
795 call_c1( pixel_c
.ssim_end4
, sums
, sums
, 3 );
796 call_a1( pixel_asm
.ssim_end4
, sums
, sums
, 3 );
800 ok
= 1; used_asm
= 0;
801 for( int i
= 0; i
< 32; i
++ )
803 for( int i
= 0; i
< 100 && ok
; i
++ )
804 if( pixel_asm
.ads
[i
&3] != pixel_ref
.ads
[i
&3] )
806 ALIGNED_16( uint16_t sums
[72] );
807 ALIGNED_16( int dc
[4] );
808 ALIGNED_16( int16_t mvs_a
[48] );
809 ALIGNED_16( int16_t mvs_c
[48] );
811 int thresh
= rand() & 0x3fff;
812 set_func_name( "esa_ads" );
813 for( int j
= 0; j
< 72; j
++ )
814 sums
[j
] = rand() & 0x3fff;
815 for( int j
= 0; j
< 4; j
++ )
816 dc
[j
] = rand() & 0x3fff;
818 mvn_c
= call_c( pixel_c
.ads
[i
&3], dc
, sums
, 32, cost_mv
, mvs_c
, 28, thresh
);
819 mvn_a
= call_a( pixel_asm
.ads
[i
&3], dc
, sums
, 32, cost_mv
, mvs_a
, 28, thresh
);
820 if( mvn_c
!= mvn_a
|| memcmp( mvs_c
, mvs_a
, mvn_c
*sizeof(*mvs_c
) ) )
823 printf( "c%d: ", i
&3 );
824 for( int j
= 0; j
< mvn_c
; j
++ )
825 printf( "%d ", mvs_c
[j
] );
826 printf( "\na%d: ", i
&3 );
827 for( int j
= 0; j
< mvn_a
; j
++ )
828 printf( "%d ", mvs_a
[j
] );
832 report( "esa ads:" );
837 static int check_dct( int cpu_ref
, int cpu_new
)
839 x264_dct_function_t dct_c
;
840 x264_dct_function_t dct_ref
;
841 x264_dct_function_t dct_asm
;
842 x264_quant_function_t qf
;
843 int ret
= 0, ok
, used_asm
, interlace
= 0;
844 ALIGNED_ARRAY_64( dctcoef
, dct1
, [16],[16] );
845 ALIGNED_ARRAY_64( dctcoef
, dct2
, [16],[16] );
846 ALIGNED_ARRAY_64( dctcoef
, dct4
, [16],[16] );
847 ALIGNED_ARRAY_64( dctcoef
, dct8
, [4],[64] );
848 ALIGNED_16( dctcoef dctdc
[2][8] );
852 x264_dct_init( 0, &dct_c
);
853 x264_dct_init( cpu_ref
, &dct_ref
);
854 x264_dct_init( cpu_new
, &dct_asm
);
856 memset( h
, 0, sizeof(*h
) );
857 x264_param_default( &h
->param
);
858 h
->sps
->i_chroma_format_idc
= 1;
859 h
->chroma_qp_table
= i_chroma_qp_table
+ 12;
860 h
->param
.analyse
.i_luma_deadzone
[0] = 0;
861 h
->param
.analyse
.i_luma_deadzone
[1] = 0;
862 h
->param
.analyse
.b_transform_8x8
= 1;
863 for( int i
= 0; i
< 6; i
++ )
864 h
->sps
->scaling_list
[i
] = x264_cqm_flat16
;
866 x264_quant_init( h
, 0, &qf
);
868 /* overflow test cases */
869 for( int i
= 0; i
< 5; i
++ )
871 pixel
*enc
= &pbuf3
[16*i
*FENC_STRIDE
];
872 pixel
*dec
= &pbuf4
[16*i
*FDEC_STRIDE
];
874 for( int j
= 0; j
< 16; j
++ )
876 int cond_a
= (i
< 2) ? 1 : ((j
&3) == 0 || (j
&3) == (i
-1));
877 int cond_b
= (i
== 0) ? 1 : !cond_a
;
878 enc
[0] = enc
[1] = enc
[4] = enc
[5] = enc
[8] = enc
[9] = enc
[12] = enc
[13] = cond_a
? PIXEL_MAX
: 0;
879 enc
[2] = enc
[3] = enc
[6] = enc
[7] = enc
[10] = enc
[11] = enc
[14] = enc
[15] = cond_b
? PIXEL_MAX
: 0;
881 for( int k
= 0; k
< 4; k
++ )
882 dec
[k
] = PIXEL_MAX
- enc
[k
];
889 #define TEST_DCT( name, t1, t2, size ) \
890 if( dct_asm.name != dct_ref.name ) \
892 set_func_name( #name ); \
894 pixel *enc = pbuf3; \
895 pixel *dec = pbuf4; \
896 for( int j = 0; j < 5; j++) \
898 call_c( dct_c.name, t1, &pbuf1[j*64], &pbuf2[j*64] ); \
899 call_a( dct_asm.name, t2, &pbuf1[j*64], &pbuf2[j*64] ); \
900 if( memcmp( t1, t2, size*sizeof(dctcoef) ) ) \
903 fprintf( stderr, #name " [FAILED]\n" ); \
904 for( int k = 0; k < size; k++ )\
905 printf( "%d ", ((dctcoef*)t1)[k] );\
907 for( int k = 0; k < size; k++ )\
908 printf( "%d ", ((dctcoef*)t2)[k] );\
912 call_c( dct_c.name, t1, enc, dec ); \
913 call_a( dct_asm.name, t2, enc, dec ); \
914 if( memcmp( t1, t2, size*sizeof(dctcoef) ) ) \
917 fprintf( stderr, #name " [FAILED] (overflow)\n" ); \
920 enc += 16*FENC_STRIDE; \
921 dec += 16*FDEC_STRIDE; \
924 ok
= 1; used_asm
= 0;
925 TEST_DCT( sub4x4_dct
, dct1
[0], dct2
[0], 16 );
926 TEST_DCT( sub8x8_dct
, dct1
, dct2
, 16*4 );
927 TEST_DCT( sub8x8_dct_dc
, dctdc
[0], dctdc
[1], 4 );
928 TEST_DCT( sub8x16_dct_dc
, dctdc
[0], dctdc
[1], 8 );
929 TEST_DCT( sub16x16_dct
, dct1
, dct2
, 16*16 );
930 report( "sub_dct4 :" );
932 ok
= 1; used_asm
= 0;
933 TEST_DCT( sub8x8_dct8
, (void*)dct1
[0], (void*)dct2
[0], 64 );
934 TEST_DCT( sub16x16_dct8
, (void*)dct1
, (void*)dct2
, 64*4 );
935 report( "sub_dct8 :" );
938 // fdct and idct are denormalized by different factors, so quant/dequant
939 // is needed to force the coefs into the right range.
940 dct_c
.sub16x16_dct( dct4
, pbuf1
, pbuf2
);
941 dct_c
.sub16x16_dct8( dct8
, pbuf1
, pbuf2
);
942 for( int i
= 0; i
< 16; i
++ )
944 qf
.quant_4x4( dct4
[i
], h
->quant4_mf
[CQM_4IY
][20], h
->quant4_bias
[CQM_4IY
][20] );
945 qf
.dequant_4x4( dct4
[i
], h
->dequant4_mf
[CQM_4IY
], 20 );
947 for( int i
= 0; i
< 4; i
++ )
949 qf
.quant_8x8( dct8
[i
], h
->quant8_mf
[CQM_8IY
][20], h
->quant8_bias
[CQM_8IY
][20] );
950 qf
.dequant_8x8( dct8
[i
], h
->dequant8_mf
[CQM_8IY
], 20 );
952 x264_cqm_delete( h
);
954 #define TEST_IDCT( name, src ) \
955 if( dct_asm.name != dct_ref.name ) \
957 set_func_name( #name ); \
959 memcpy( pbuf3, pbuf1, 32*32 * sizeof(pixel) ); \
960 memcpy( pbuf4, pbuf1, 32*32 * sizeof(pixel) ); \
961 memcpy( dct1, src, 256 * sizeof(dctcoef) ); \
962 memcpy( dct2, src, 256 * sizeof(dctcoef) ); \
963 call_c1( dct_c.name, pbuf3, (void*)dct1 ); \
964 call_a1( dct_asm.name, pbuf4, (void*)dct2 ); \
965 if( memcmp( pbuf3, pbuf4, 32*32 * sizeof(pixel) ) ) \
968 fprintf( stderr, #name " [FAILED]\n" ); \
970 call_c2( dct_c.name, pbuf3, (void*)dct1 ); \
971 call_a2( dct_asm.name, pbuf4, (void*)dct2 ); \
973 ok
= 1; used_asm
= 0;
974 TEST_IDCT( add4x4_idct
, dct4
);
975 TEST_IDCT( add8x8_idct
, dct4
);
976 TEST_IDCT( add8x8_idct_dc
, dct4
);
977 TEST_IDCT( add16x16_idct
, dct4
);
978 TEST_IDCT( add16x16_idct_dc
, dct4
);
979 report( "add_idct4 :" );
981 ok
= 1; used_asm
= 0;
982 TEST_IDCT( add8x8_idct8
, dct8
);
983 TEST_IDCT( add16x16_idct8
, dct8
);
984 report( "add_idct8 :" );
987 #define TEST_DCTDC( name )\
988 ok = 1; used_asm = 0;\
989 if( dct_asm.name != dct_ref.name )\
991 set_func_name( #name );\
993 uint16_t *p = (uint16_t*)buf1;\
994 for( int i = 0; i < 16 && ok; i++ )\
996 for( int j = 0; j < 16; j++ )\
997 dct1[0][j] = !i ? (j^j>>1^j>>2^j>>3)&1 ? PIXEL_MAX*16 : -PIXEL_MAX*16 /* max dc */\
998 : i<8 ? (*p++)&1 ? PIXEL_MAX*16 : -PIXEL_MAX*16 /* max elements */\
999 : ((*p++)&0x1fff)-0x1000; /* general case */\
1000 memcpy( dct2, dct1, 16 * sizeof(dctcoef) );\
1001 call_c1( dct_c.name, dct1[0] );\
1002 call_a1( dct_asm.name, dct2[0] );\
1003 if( memcmp( dct1, dct2, 16 * sizeof(dctcoef) ) )\
1006 call_c2( dct_c.name, dct1[0] );\
1007 call_a2( dct_asm.name, dct2[0] );\
1009 report( #name " :" );
1011 TEST_DCTDC( dct4x4dc
);
1012 TEST_DCTDC( idct4x4dc
);
1015 #define TEST_DCTDC_CHROMA( name )\
1016 ok = 1; used_asm = 0;\
1017 if( dct_asm.name != dct_ref.name )\
1019 set_func_name( #name );\
1021 uint16_t *p = (uint16_t*)buf1;\
1022 for( int i = 0; i < 16 && ok; i++ )\
1024 for( int j = 0; j < 8; j++ )\
1025 dct1[j][0] = !i ? (j^j>>1^j>>2)&1 ? PIXEL_MAX*16 : -PIXEL_MAX*16 /* max dc */\
1026 : i<8 ? (*p++)&1 ? PIXEL_MAX*16 : -PIXEL_MAX*16 /* max elements */\
1027 : ((*p++)&0x1fff)-0x1000; /* general case */\
1028 memcpy( dct2, dct1, 8*16 * sizeof(dctcoef) );\
1029 call_c1( dct_c.name, dctdc[0], dct1 );\
1030 call_a1( dct_asm.name, dctdc[1], dct2 );\
1031 if( memcmp( dctdc[0], dctdc[1], 8 * sizeof(dctcoef) ) || memcmp( dct1, dct2, 8*16 * sizeof(dctcoef) ) )\
1034 fprintf( stderr, #name " [FAILED]\n" ); \
1037 call_c2( dct_c.name, dctdc[0], dct1 );\
1038 call_a2( dct_asm.name, dctdc[1], dct2 );\
1040 report( #name " :" );
1042 TEST_DCTDC_CHROMA( dct2x4dc
);
1043 #undef TEST_DCTDC_CHROMA
1045 x264_zigzag_function_t zigzag_c
[2];
1046 x264_zigzag_function_t zigzag_ref
[2];
1047 x264_zigzag_function_t zigzag_asm
[2];
1049 ALIGNED_ARRAY_64( dctcoef
, level1
,[64] );
1050 ALIGNED_ARRAY_64( dctcoef
, level2
,[64] );
1052 #define TEST_ZIGZAG_SCAN( name, t1, t2, dct, size ) \
1053 if( zigzag_asm[interlace].name != zigzag_ref[interlace].name ) \
1055 set_func_name( "zigzag_"#name"_%s", interlace?"field":"frame" ); \
1057 for( int i = 0; i < size*size; i++ ) \
1059 call_c( zigzag_c[interlace].name, t1, dct ); \
1060 call_a( zigzag_asm[interlace].name, t2, dct ); \
1061 if( memcmp( t1, t2, size*size*sizeof(dctcoef) ) ) \
1064 for( int i = 0; i < 2; i++ ) \
1066 dctcoef *d = (dctcoef*)(i ? t2 : t1); \
1067 for( int j = 0; j < size; j++ ) \
1069 for( int k = 0; k < size; k++ ) \
1070 fprintf( stderr, "%2d ", d[k+j*8] ); \
1071 fprintf( stderr, "\n" ); \
1073 fprintf( stderr, "\n" ); \
1075 fprintf( stderr, #name " [FAILED]\n" ); \
1079 #define TEST_ZIGZAG_SUB( name, t1, t2, size ) \
1080 if( zigzag_asm[interlace].name != zigzag_ref[interlace].name ) \
1083 set_func_name( "zigzag_"#name"_%s", interlace?"field":"frame" ); \
1085 memcpy( pbuf3, pbuf1, 16*FDEC_STRIDE * sizeof(pixel) ); \
1086 memcpy( pbuf4, pbuf1, 16*FDEC_STRIDE * sizeof(pixel) ); \
1087 nz_c = call_c1( zigzag_c[interlace].name, t1, pbuf2, pbuf3 ); \
1088 nz_a = call_a1( zigzag_asm[interlace].name, t2, pbuf2, pbuf4 ); \
1089 if( memcmp( t1, t2, size*sizeof(dctcoef) ) || memcmp( pbuf3, pbuf4, 16*FDEC_STRIDE*sizeof(pixel) ) || nz_c != nz_a ) \
1092 fprintf( stderr, #name " [FAILED]\n" ); \
1094 call_c2( zigzag_c[interlace].name, t1, pbuf2, pbuf3 ); \
1095 call_a2( zigzag_asm[interlace].name, t2, pbuf2, pbuf4 ); \
1098 #define TEST_ZIGZAG_SUBAC( name, t1, t2 ) \
1099 if( zigzag_asm[interlace].name != zigzag_ref[interlace].name ) \
1102 dctcoef dc_a, dc_c; \
1103 set_func_name( "zigzag_"#name"_%s", interlace?"field":"frame" ); \
1105 for( int i = 0; i < 2; i++ ) \
1107 memcpy( pbuf3, pbuf2, 16*FDEC_STRIDE * sizeof(pixel) ); \
1108 memcpy( pbuf4, pbuf2, 16*FDEC_STRIDE * sizeof(pixel) ); \
1109 for( int j = 0; j < 4; j++ ) \
1111 memcpy( pbuf3 + j*FDEC_STRIDE, (i?pbuf1:pbuf2) + j*FENC_STRIDE, 4 * sizeof(pixel) ); \
1112 memcpy( pbuf4 + j*FDEC_STRIDE, (i?pbuf1:pbuf2) + j*FENC_STRIDE, 4 * sizeof(pixel) ); \
1114 nz_c = call_c1( zigzag_c[interlace].name, t1, pbuf2, pbuf3, &dc_c ); \
1115 nz_a = call_a1( zigzag_asm[interlace].name, t2, pbuf2, pbuf4, &dc_a ); \
1116 if( memcmp( t1+1, t2+1, 15*sizeof(dctcoef) ) || memcmp( pbuf3, pbuf4, 16*FDEC_STRIDE * sizeof(pixel) ) || nz_c != nz_a || dc_c != dc_a ) \
1119 fprintf( stderr, #name " [FAILED]\n" ); \
1123 call_c2( zigzag_c[interlace].name, t1, pbuf2, pbuf3, &dc_c ); \
1124 call_a2( zigzag_asm[interlace].name, t2, pbuf2, pbuf4, &dc_a ); \
1127 #define TEST_INTERLEAVE( name, t1, t2, dct, size ) \
1128 if( zigzag_asm[interlace].name != zigzag_ref[interlace].name ) \
1130 for( int j = 0; j < 100; j++ ) \
1132 set_func_name( "zigzag_"#name"_%s", interlace?"field":"frame" ); \
1134 memcpy(dct, buf1, size*sizeof(dctcoef)); \
1135 for( int i = 0; i < size; i++ ) \
1136 dct[i] = rand()&0x1F ? 0 : dct[i]; \
1137 memcpy(buf3, buf4, 10); \
1138 call_c( zigzag_c[interlace].name, t1, dct, buf3 ); \
1139 call_a( zigzag_asm[interlace].name, t2, dct, buf4 ); \
1140 if( memcmp( t1, t2, size*sizeof(dctcoef) ) || memcmp( buf3, buf4, 10 ) ) \
1142 ok = 0; printf("%d: %d %d %d %d\n%d %d %d %d\n\n",memcmp( t1, t2, size*sizeof(dctcoef) ),buf3[0], buf3[1], buf3[8], buf3[9], buf4[0], buf4[1], buf4[8], buf4[9]);break;\
1147 x264_zigzag_init( 0, &zigzag_c
[0], &zigzag_c
[1] );
1148 x264_zigzag_init( cpu_ref
, &zigzag_ref
[0], &zigzag_ref
[1] );
1149 x264_zigzag_init( cpu_new
, &zigzag_asm
[0], &zigzag_asm
[1] );
1151 ok
= 1; used_asm
= 0;
1152 TEST_INTERLEAVE( interleave_8x8_cavlc
, level1
, level2
, dct8
[0], 64 );
1153 report( "zigzag_interleave :" );
1155 for( interlace
= 0; interlace
<= 1; interlace
++ )
1157 ok
= 1; used_asm
= 0;
1158 TEST_ZIGZAG_SCAN( scan_8x8
, level1
, level2
, dct8
[0], 8 );
1159 TEST_ZIGZAG_SCAN( scan_4x4
, level1
, level2
, dct1
[0], 4 );
1160 TEST_ZIGZAG_SUB( sub_4x4
, level1
, level2
, 16 );
1161 TEST_ZIGZAG_SUB( sub_8x8
, level1
, level2
, 64 );
1162 TEST_ZIGZAG_SUBAC( sub_4x4ac
, level1
, level2
);
1163 report( interlace
? "zigzag_field :" : "zigzag_frame :" );
1165 #undef TEST_ZIGZAG_SCAN
1166 #undef TEST_ZIGZAG_SUB
1171 static int check_mc( int cpu_ref
, int cpu_new
)
1173 x264_mc_functions_t mc_c
;
1174 x264_mc_functions_t mc_ref
;
1175 x264_mc_functions_t mc_a
;
1176 x264_pixel_function_t pixf
;
1178 pixel
*src
= &(pbuf1
)[2*64+2];
1179 pixel
*src2
[4] = { &(pbuf1
)[3*64+2], &(pbuf1
)[5*64+2],
1180 &(pbuf1
)[7*64+2], &(pbuf1
)[9*64+2] };
1181 pixel
*dst1
= pbuf3
;
1182 pixel
*dst2
= pbuf4
;
1184 int ret
= 0, ok
, used_asm
;
1186 x264_mc_init( 0, &mc_c
, 0 );
1187 x264_mc_init( cpu_ref
, &mc_ref
, 0 );
1188 x264_mc_init( cpu_new
, &mc_a
, 0 );
1189 x264_pixel_init( 0, &pixf
);
1191 #define MC_TEST_LUMA( w, h ) \
1192 if( mc_a.mc_luma != mc_ref.mc_luma && !(w&(w-1)) && h<=16 ) \
1194 const x264_weight_t *weight = x264_weight_none; \
1195 set_func_name( "mc_luma_%dx%d", w, h ); \
1197 for( int i = 0; i < 1024; i++ ) \
1198 pbuf3[i] = pbuf4[i] = 0xCD; \
1199 call_c( mc_c.mc_luma, dst1, (intptr_t)32, src2, (intptr_t)64, dx, dy, w, h, weight ); \
1200 call_a( mc_a.mc_luma, dst2, (intptr_t)32, src2, (intptr_t)64, dx, dy, w, h, weight ); \
1201 if( memcmp( pbuf3, pbuf4, 1024 * sizeof(pixel) ) ) \
1203 fprintf( stderr, "mc_luma[mv(%d,%d) %2dx%-2d] [FAILED]\n", dx, dy, w, h ); \
1207 if( mc_a.get_ref != mc_ref.get_ref ) \
1209 pixel *ref = dst2; \
1210 intptr_t ref_stride = 32; \
1211 int w_checked = ( ( sizeof(pixel) == 2 && (w == 12 || w == 20)) ? w-2 : w ); \
1212 const x264_weight_t *weight = x264_weight_none; \
1213 set_func_name( "get_ref_%dx%d", w_checked, h ); \
1215 for( int i = 0; i < 1024; i++ ) \
1216 pbuf3[i] = pbuf4[i] = 0xCD; \
1217 call_c( mc_c.mc_luma, dst1, (intptr_t)32, src2, (intptr_t)64, dx, dy, w, h, weight ); \
1218 ref = (pixel*)call_a( mc_a.get_ref, ref, &ref_stride, src2, (intptr_t)64, dx, dy, w, h, weight ); \
1219 for( int i = 0; i < h; i++ ) \
1220 if( memcmp( dst1+i*32, ref+i*ref_stride, w_checked * sizeof(pixel) ) ) \
1222 fprintf( stderr, "get_ref[mv(%d,%d) %2dx%-2d] [FAILED]\n", dx, dy, w_checked, h ); \
1228 #define MC_TEST_CHROMA( w, h ) \
1229 if( mc_a.mc_chroma != mc_ref.mc_chroma ) \
1231 set_func_name( "mc_chroma_%dx%d", w, h ); \
1233 for( int i = 0; i < 1024; i++ ) \
1234 pbuf3[i] = pbuf4[i] = 0xCD; \
1235 call_c( mc_c.mc_chroma, dst1, dst1+8, (intptr_t)16, src, (intptr_t)64, dx, dy, w, h ); \
1236 call_a( mc_a.mc_chroma, dst2, dst2+8, (intptr_t)16, src, (intptr_t)64, dx, dy, w, h ); \
1237 /* mc_chroma width=2 may write garbage to the right of dst. ignore that. */ \
1238 for( int j = 0; j < h; j++ ) \
1239 for( int i = w; i < 8; i++ ) \
1241 dst2[i+j*16+8] = dst1[i+j*16+8]; \
1242 dst2[i+j*16 ] = dst1[i+j*16 ]; \
1244 if( memcmp( pbuf3, pbuf4, 1024 * sizeof(pixel) ) ) \
1246 fprintf( stderr, "mc_chroma[mv(%d,%d) %2dx%-2d] [FAILED]\n", dx, dy, w, h ); \
1250 ok
= 1; used_asm
= 0;
1251 for( int dy
= -8; dy
< 8; dy
++ )
1252 for( int dx
= -128; dx
< 128; dx
++ )
1254 if( rand()&15 ) continue; // running all of them is too slow
1255 MC_TEST_LUMA( 20, 18 );
1256 MC_TEST_LUMA( 16, 16 );
1257 MC_TEST_LUMA( 16, 8 );
1258 MC_TEST_LUMA( 12, 10 );
1259 MC_TEST_LUMA( 8, 16 );
1260 MC_TEST_LUMA( 8, 8 );
1261 MC_TEST_LUMA( 8, 4 );
1262 MC_TEST_LUMA( 4, 8 );
1263 MC_TEST_LUMA( 4, 4 );
1265 report( "mc luma :" );
1267 ok
= 1; used_asm
= 0;
1268 for( int dy
= -1; dy
< 9; dy
++ )
1269 for( int dx
= -128; dx
< 128; dx
++ )
1271 if( rand()&15 ) continue;
1272 MC_TEST_CHROMA( 8, 8 );
1273 MC_TEST_CHROMA( 8, 4 );
1274 MC_TEST_CHROMA( 4, 8 );
1275 MC_TEST_CHROMA( 4, 4 );
1276 MC_TEST_CHROMA( 4, 2 );
1277 MC_TEST_CHROMA( 2, 4 );
1278 MC_TEST_CHROMA( 2, 2 );
1280 report( "mc chroma :" );
1282 #undef MC_TEST_CHROMA
1284 #define MC_TEST_AVG( name, weight ) \
1286 for( int i = 0; i < 12; i++ ) \
1288 memcpy( pbuf3, pbuf1+320, 320 * sizeof(pixel) ); \
1289 memcpy( pbuf4, pbuf1+320, 320 * sizeof(pixel) ); \
1290 if( mc_a.name[i] != mc_ref.name[i] ) \
1292 set_func_name( "%s_%s", #name, pixel_names[i] ); \
1294 call_c1( mc_c.name[i], pbuf3, (intptr_t)16, pbuf2+1, (intptr_t)16, pbuf1+18, (intptr_t)16, weight ); \
1295 call_a1( mc_a.name[i], pbuf4, (intptr_t)16, pbuf2+1, (intptr_t)16, pbuf1+18, (intptr_t)16, weight ); \
1296 if( memcmp( pbuf3, pbuf4, 320 * sizeof(pixel) ) ) \
1299 fprintf( stderr, #name "[%d]: [FAILED]\n", i ); \
1301 call_c2( mc_c.name[i], pbuf3, (intptr_t)16, pbuf2+1, (intptr_t)16, pbuf1+18, (intptr_t)16, weight ); \
1302 call_a2( mc_a.name[i], pbuf4, (intptr_t)16, pbuf2+1, (intptr_t)16, pbuf1+18, (intptr_t)16, weight ); \
1307 ok
= 1, used_asm
= 0;
1308 for( int w
= -63; w
<= 127 && ok
; w
++ )
1309 MC_TEST_AVG( avg
, w
);
1310 report( "mc wpredb :" );
1312 #define MC_TEST_WEIGHT( name, weight, aligned ) \
1313 int align_off = (aligned ? 0 : rand()%16); \
1314 for( int i = 1; i <= 5; i++ ) \
1316 ALIGNED_16( pixel buffC[640] ); \
1317 ALIGNED_16( pixel buffA[640] ); \
1318 int j = X264_MAX( i*4, 2 ); \
1319 memset( buffC, 0, 640 * sizeof(pixel) ); \
1320 memset( buffA, 0, 640 * sizeof(pixel) ); \
1323 /* w12 is the same as w16 in some cases */ \
1324 if( i == 3 && mc_a.name[i] == mc_a.name[i+1] ) \
1326 if( mc_a.name[i] != mc_ref.name[i] ) \
1328 set_func_name( "%s_w%d", #name, j ); \
1330 call_c1( mc_c.weight[i], buffC, (intptr_t)32, pbuf2+align_off, (intptr_t)32, &weight, 16 ); \
1331 mc_a.weight_cache(&ha, &weight); \
1332 call_a1( weight.weightfn[i], buffA, (intptr_t)32, pbuf2+align_off, (intptr_t)32, &weight, 16 ); \
1333 for( int k = 0; k < 16; k++ ) \
1334 if( memcmp( &buffC[k*32], &buffA[k*32], j * sizeof(pixel) ) ) \
1337 fprintf( stderr, #name "[%d]: [FAILED] s:%d o:%d d%d\n", i, s, o, d ); \
1340 /* omit unlikely high scales for benchmarking */ \
1341 if( (s << (8-d)) < 512 ) \
1343 call_c2( mc_c.weight[i], buffC, (intptr_t)32, pbuf2+align_off, (intptr_t)32, &weight, 16 ); \
1344 call_a2( weight.weightfn[i], buffA, (intptr_t)32, pbuf2+align_off, (intptr_t)32, &weight, 16 ); \
1349 ok
= 1; used_asm
= 0;
1352 for( int s
= 0; s
<= 127 && ok
; s
++ )
1354 for( int o
= -128; o
<= 127 && ok
; o
++ )
1356 if( rand() & 2047 ) continue;
1357 for( int d
= 0; d
<= 7 && ok
; d
++ )
1361 x264_weight_t weight
= { .i_scale
= s
, .i_denom
= d
, .i_offset
= o
};
1362 MC_TEST_WEIGHT( weight
, weight
, (align_cnt
++ % 4) );
1367 report( "mc weight :" );
1369 ok
= 1; used_asm
= 0;
1370 for( int o
= 0; o
<= 127 && ok
; o
++ )
1373 if( rand() & 15 ) continue;
1374 x264_weight_t weight
= { .i_scale
= 1, .i_denom
= 0, .i_offset
= o
};
1375 MC_TEST_WEIGHT( offsetadd
, weight
, (align_cnt
++ % 4) );
1377 report( "mc offsetadd :" );
1378 ok
= 1; used_asm
= 0;
1379 for( int o
= -128; o
< 0 && ok
; o
++ )
1382 if( rand() & 15 ) continue;
1383 x264_weight_t weight
= { .i_scale
= 1, .i_denom
= 0, .i_offset
= o
};
1384 MC_TEST_WEIGHT( offsetsub
, weight
, (align_cnt
++ % 4) );
1386 report( "mc offsetsub :" );
1388 memset( pbuf3
, 0, 64*16 );
1389 memset( pbuf4
, 0, 64*16 );
1390 ok
= 1; used_asm
= 0;
1391 for( int height
= 8; height
<= 16; height
+= 8 )
1393 if( mc_a
.store_interleave_chroma
!= mc_ref
.store_interleave_chroma
)
1395 set_func_name( "store_interleave_chroma" );
1397 call_c( mc_c
.store_interleave_chroma
, pbuf3
, (intptr_t)64, pbuf1
, pbuf1
+16, height
);
1398 call_a( mc_a
.store_interleave_chroma
, pbuf4
, (intptr_t)64, pbuf1
, pbuf1
+16, height
);
1399 if( memcmp( pbuf3
, pbuf4
, 64*height
) )
1402 fprintf( stderr
, "store_interleave_chroma FAILED: h=%d\n", height
);
1406 if( mc_a
.load_deinterleave_chroma_fenc
!= mc_ref
.load_deinterleave_chroma_fenc
)
1408 set_func_name( "load_deinterleave_chroma_fenc" );
1410 call_c( mc_c
.load_deinterleave_chroma_fenc
, pbuf3
, pbuf1
, (intptr_t)64, height
);
1411 call_a( mc_a
.load_deinterleave_chroma_fenc
, pbuf4
, pbuf1
, (intptr_t)64, height
);
1412 if( memcmp( pbuf3
, pbuf4
, FENC_STRIDE
*height
) )
1415 fprintf( stderr
, "load_deinterleave_chroma_fenc FAILED: h=%d\n", height
);
1419 if( mc_a
.load_deinterleave_chroma_fdec
!= mc_ref
.load_deinterleave_chroma_fdec
)
1421 set_func_name( "load_deinterleave_chroma_fdec" );
1423 call_c( mc_c
.load_deinterleave_chroma_fdec
, pbuf3
, pbuf1
, (intptr_t)64, height
);
1424 call_a( mc_a
.load_deinterleave_chroma_fdec
, pbuf4
, pbuf1
, (intptr_t)64, height
);
1425 if( memcmp( pbuf3
, pbuf4
, FDEC_STRIDE
*height
) )
1428 fprintf( stderr
, "load_deinterleave_chroma_fdec FAILED: h=%d\n", height
);
1433 report( "store_interleave :" );
1436 int w
, h
, src_stride
;
1437 } plane_specs
[] = { {2,2,2}, {8,6,8}, {20,31,24}, {32,8,40}, {256,10,272}, {504,7,505}, {528,6,528}, {256,10,-256}, {263,9,-264}, {1904,1,0} };
1438 ok
= 1; used_asm
= 0;
1439 if( mc_a
.plane_copy
!= mc_ref
.plane_copy
)
1441 set_func_name( "plane_copy" );
1443 for( int i
= 0; i
< sizeof(plane_specs
)/sizeof(*plane_specs
); i
++ )
1445 int w
= plane_specs
[i
].w
;
1446 int h
= plane_specs
[i
].h
;
1447 intptr_t src_stride
= plane_specs
[i
].src_stride
;
1448 intptr_t dst_stride
= (w
+ 127) & ~63;
1449 assert( dst_stride
* h
<= 0x1000 );
1450 pixel
*src1
= pbuf1
+ X264_MAX(0, -src_stride
) * (h
-1);
1451 memset( pbuf3
, 0, 0x1000*sizeof(pixel
) );
1452 memset( pbuf4
, 0, 0x1000*sizeof(pixel
) );
1453 call_c( mc_c
.plane_copy
, pbuf3
, dst_stride
, src1
, src_stride
, w
, h
);
1454 call_a( mc_a
.plane_copy
, pbuf4
, dst_stride
, src1
, src_stride
, w
, h
);
1455 for( int y
= 0; y
< h
; y
++ )
1456 if( memcmp( pbuf3
+y
*dst_stride
, pbuf4
+y
*dst_stride
, w
*sizeof(pixel
) ) )
1459 fprintf( stderr
, "plane_copy FAILED: w=%d h=%d stride=%d\n", w
, h
, (int)src_stride
);
1465 if( mc_a
.plane_copy_swap
!= mc_ref
.plane_copy_swap
)
1467 set_func_name( "plane_copy_swap" );
1469 for( int i
= 0; i
< sizeof(plane_specs
)/sizeof(*plane_specs
); i
++ )
1471 int w
= (plane_specs
[i
].w
+ 1) >> 1;
1472 int h
= plane_specs
[i
].h
;
1473 intptr_t src_stride
= plane_specs
[i
].src_stride
;
1474 intptr_t dst_stride
= (2*w
+ 127) & ~63;
1475 assert( dst_stride
* h
<= 0x1000 );
1476 pixel
*src1
= pbuf1
+ X264_MAX(0, -src_stride
) * (h
-1);
1477 memset( pbuf3
, 0, 0x1000*sizeof(pixel
) );
1478 memset( pbuf4
, 0, 0x1000*sizeof(pixel
) );
1479 call_c( mc_c
.plane_copy_swap
, pbuf3
, dst_stride
, src1
, src_stride
, w
, h
);
1480 call_a( mc_a
.plane_copy_swap
, pbuf4
, dst_stride
, src1
, src_stride
, w
, h
);
1481 for( int y
= 0; y
< h
; y
++ )
1482 if( memcmp( pbuf3
+y
*dst_stride
, pbuf4
+y
*dst_stride
, 2*w
*sizeof(pixel
) ) )
1485 fprintf( stderr
, "plane_copy_swap FAILED: w=%d h=%d stride=%d\n", w
, h
, (int)src_stride
);
1491 if( mc_a
.plane_copy_interleave
!= mc_ref
.plane_copy_interleave
)
1493 set_func_name( "plane_copy_interleave" );
1495 for( int i
= 0; i
< sizeof(plane_specs
)/sizeof(*plane_specs
); i
++ )
1497 int w
= (plane_specs
[i
].w
+ 1) >> 1;
1498 int h
= plane_specs
[i
].h
;
1499 intptr_t src_stride
= (plane_specs
[i
].src_stride
+ 1) >> 1;
1500 intptr_t dst_stride
= (2*w
+ 127) & ~63;
1501 assert( dst_stride
* h
<= 0x1000 );
1502 pixel
*src1
= pbuf1
+ X264_MAX(0, -src_stride
) * (h
-1);
1503 memset( pbuf3
, 0, 0x1000*sizeof(pixel
) );
1504 memset( pbuf4
, 0, 0x1000*sizeof(pixel
) );
1505 call_c( mc_c
.plane_copy_interleave
, pbuf3
, dst_stride
, src1
, src_stride
, src1
+1024, src_stride
+16, w
, h
);
1506 call_a( mc_a
.plane_copy_interleave
, pbuf4
, dst_stride
, src1
, src_stride
, src1
+1024, src_stride
+16, w
, h
);
1507 for( int y
= 0; y
< h
; y
++ )
1508 if( memcmp( pbuf3
+y
*dst_stride
, pbuf4
+y
*dst_stride
, 2*w
*sizeof(pixel
) ) )
1511 fprintf( stderr
, "plane_copy_interleave FAILED: w=%d h=%d stride=%d\n", w
, h
, (int)src_stride
);
1517 if( mc_a
.plane_copy_deinterleave
!= mc_ref
.plane_copy_deinterleave
)
1519 set_func_name( "plane_copy_deinterleave" );
1521 for( int i
= 0; i
< sizeof(plane_specs
)/sizeof(*plane_specs
); i
++ )
1523 int w
= (plane_specs
[i
].w
+ 1) >> 1;
1524 int h
= plane_specs
[i
].h
;
1525 intptr_t dst_stride
= w
;
1526 intptr_t src_stride
= (2*w
+ 127) & ~63;
1527 intptr_t offv
= (dst_stride
*h
+ 63) & ~31;
1528 memset( pbuf3
, 0, 0x1000 );
1529 memset( pbuf4
, 0, 0x1000 );
1530 call_c( mc_c
.plane_copy_deinterleave
, pbuf3
, dst_stride
, pbuf3
+offv
, dst_stride
, pbuf1
, src_stride
, w
, h
);
1531 call_a( mc_a
.plane_copy_deinterleave
, pbuf4
, dst_stride
, pbuf4
+offv
, dst_stride
, pbuf1
, src_stride
, w
, h
);
1532 for( int y
= 0; y
< h
; y
++ )
1533 if( memcmp( pbuf3
+y
*dst_stride
, pbuf4
+y
*dst_stride
, w
) ||
1534 memcmp( pbuf3
+y
*dst_stride
+offv
, pbuf4
+y
*dst_stride
+offv
, w
) )
1537 fprintf( stderr
, "plane_copy_deinterleave FAILED: w=%d h=%d stride=%d\n", w
, h
, (int)src_stride
);
1543 if( mc_a
.plane_copy_deinterleave_yuyv
!= mc_ref
.plane_copy_deinterleave_yuyv
)
1545 set_func_name( "plane_copy_deinterleave_yuyv" );
1547 for( int i
= 0; i
< sizeof(plane_specs
)/sizeof(*plane_specs
); i
++ )
1549 int w
= (plane_specs
[i
].w
+ 1) >> 1;
1550 int h
= plane_specs
[i
].h
;
1551 intptr_t dst_stride
= ALIGN( w
, 32/sizeof(pixel
) );
1552 intptr_t src_stride
= (plane_specs
[i
].src_stride
+ 1) >> 1;
1553 intptr_t offv
= dst_stride
*h
;
1554 pixel
*src1
= pbuf1
+ X264_MAX(0, -src_stride
) * (h
-1);
1555 memset( pbuf3
, 0, 0x1000 );
1556 memset( pbuf4
, 0, 0x1000 );
1557 /* Skip benchmarking since it's the same as plane_copy_deinterleave(), just verify correctness. */
1558 call_c1( mc_c
.plane_copy_deinterleave_yuyv
, pbuf3
, dst_stride
, pbuf3
+offv
, dst_stride
, src1
, src_stride
, w
, h
);
1559 call_a1( mc_a
.plane_copy_deinterleave_yuyv
, pbuf4
, dst_stride
, pbuf4
+offv
, dst_stride
, src1
, src_stride
, w
, h
);
1560 for( int y
= 0; y
< h
; y
++ )
1561 if( memcmp( pbuf3
+y
*dst_stride
, pbuf4
+y
*dst_stride
, w
*sizeof(pixel
) ) ||
1562 memcmp( pbuf3
+y
*dst_stride
+offv
, pbuf4
+y
*dst_stride
+offv
, w
*sizeof(pixel
) ) )
1564 fprintf( stderr
, "plane_copy_deinterleave_yuyv FAILED: w=%d h=%d stride=%d\n", w
, h
, (int)src_stride
);
1570 if( mc_a
.plane_copy_deinterleave_rgb
!= mc_ref
.plane_copy_deinterleave_rgb
)
1572 set_func_name( "plane_copy_deinterleave_rgb" );
1574 for( int i
= 0; i
< sizeof(plane_specs
)/sizeof(*plane_specs
); i
++ )
1576 int w
= (plane_specs
[i
].w
+ 2) >> 2;
1577 int h
= plane_specs
[i
].h
;
1578 intptr_t src_stride
= plane_specs
[i
].src_stride
;
1579 intptr_t dst_stride
= ALIGN( w
, 16 );
1580 intptr_t offv
= dst_stride
*h
+ 16;
1582 for( int pw
= 3; pw
<= 4; pw
++ )
1584 memset( pbuf3
, 0, 0x1000 );
1585 memset( pbuf4
, 0, 0x1000 );
1586 call_c( mc_c
.plane_copy_deinterleave_rgb
, pbuf3
, dst_stride
, pbuf3
+offv
, dst_stride
, pbuf3
+2*offv
, dst_stride
, pbuf1
, src_stride
, pw
, w
, h
);
1587 call_a( mc_a
.plane_copy_deinterleave_rgb
, pbuf4
, dst_stride
, pbuf4
+offv
, dst_stride
, pbuf4
+2*offv
, dst_stride
, pbuf1
, src_stride
, pw
, w
, h
);
1588 for( int y
= 0; y
< h
; y
++ )
1589 if( memcmp( pbuf3
+y
*dst_stride
+0*offv
, pbuf4
+y
*dst_stride
+0*offv
, w
) ||
1590 memcmp( pbuf3
+y
*dst_stride
+1*offv
, pbuf4
+y
*dst_stride
+1*offv
, w
) ||
1591 memcmp( pbuf3
+y
*dst_stride
+2*offv
, pbuf4
+y
*dst_stride
+2*offv
, w
) )
1594 fprintf( stderr
, "plane_copy_deinterleave_rgb FAILED: w=%d h=%d stride=%d pw=%d\n", w
, h
, (int)src_stride
, pw
);
1600 report( "plane_copy :" );
1602 if( mc_a
.plane_copy_deinterleave_v210
!= mc_ref
.plane_copy_deinterleave_v210
)
1604 set_func_name( "plane_copy_deinterleave_v210" );
1605 ok
= 1; used_asm
= 1;
1606 for( int i
= 0; i
< sizeof(plane_specs
)/sizeof(*plane_specs
); i
++ )
1608 int w
= (plane_specs
[i
].w
+ 1) >> 1;
1609 int h
= plane_specs
[i
].h
;
1610 intptr_t dst_stride
= ALIGN( w
, 32 );
1611 intptr_t src_stride
= (w
+ 47) / 48 * 128 / sizeof(uint32_t);
1612 intptr_t offv
= dst_stride
*h
+ 32;
1613 memset( pbuf3
, 0, 0x1000 );
1614 memset( pbuf4
, 0, 0x1000 );
1615 call_c( mc_c
.plane_copy_deinterleave_v210
, pbuf3
, dst_stride
, pbuf3
+offv
, dst_stride
, (uint32_t *)buf1
, src_stride
, w
, h
);
1616 call_a( mc_a
.plane_copy_deinterleave_v210
, pbuf4
, dst_stride
, pbuf4
+offv
, dst_stride
, (uint32_t *)buf1
, src_stride
, w
, h
);
1617 for( int y
= 0; y
< h
; y
++ )
1618 if( memcmp( pbuf3
+y
*dst_stride
, pbuf4
+y
*dst_stride
, w
*sizeof(uint16_t) ) ||
1619 memcmp( pbuf3
+y
*dst_stride
+offv
, pbuf4
+y
*dst_stride
+offv
, w
*sizeof(uint16_t) ) )
1622 fprintf( stderr
, "plane_copy_deinterleave_v210 FAILED: w=%d h=%d stride=%d\n", w
, h
, (int)src_stride
);
1629 if( mc_a
.hpel_filter
!= mc_ref
.hpel_filter
)
1631 pixel
*srchpel
= pbuf1
+8+2*64;
1632 pixel
*dstc
[3] = { pbuf3
+8, pbuf3
+8+16*64, pbuf3
+8+32*64 };
1633 pixel
*dsta
[3] = { pbuf4
+8, pbuf4
+8+16*64, pbuf4
+8+32*64 };
1634 void *tmp
= pbuf3
+49*64;
1635 set_func_name( "hpel_filter" );
1636 ok
= 1; used_asm
= 1;
1637 memset( pbuf3
, 0, 4096 * sizeof(pixel
) );
1638 memset( pbuf4
, 0, 4096 * sizeof(pixel
) );
1639 call_c( mc_c
.hpel_filter
, dstc
[0], dstc
[1], dstc
[2], srchpel
, (intptr_t)64, 48, 10, tmp
);
1640 call_a( mc_a
.hpel_filter
, dsta
[0], dsta
[1], dsta
[2], srchpel
, (intptr_t)64, 48, 10, tmp
);
1641 for( int i
= 0; i
< 3; i
++ )
1642 for( int j
= 0; j
< 10; j
++ )
1643 //FIXME ideally the first pixels would match too, but they aren't actually used
1644 if( memcmp( dstc
[i
]+j
*64+2, dsta
[i
]+j
*64+2, 43 * sizeof(pixel
) ) )
1647 fprintf( stderr
, "hpel filter differs at plane %c line %d\n", "hvc"[i
], j
);
1648 for( int k
= 0; k
< 48; k
++ )
1649 printf( "%02x%s", dstc
[i
][j
*64+k
], (k
+1)&3 ? "" : " " );
1651 for( int k
= 0; k
< 48; k
++ )
1652 printf( "%02x%s", dsta
[i
][j
*64+k
], (k
+1)&3 ? "" : " " );
1656 report( "hpel filter :" );
1659 if( mc_a
.frame_init_lowres_core
!= mc_ref
.frame_init_lowres_core
)
1661 pixel
*dstc
[4] = { pbuf3
, pbuf3
+1024, pbuf3
+2048, pbuf3
+3072 };
1662 pixel
*dsta
[4] = { pbuf4
, pbuf4
+1024, pbuf4
+2048, pbuf4
+3072 };
1663 set_func_name( "lowres_init" );
1664 ok
= 1; used_asm
= 1;
1665 for( int w
= 96; w
<= 96+24; w
+= 8 )
1667 intptr_t stride
= (w
*2+31)&~31;
1668 intptr_t stride_lowres
= (w
+31)&~31;
1669 call_c( mc_c
.frame_init_lowres_core
, pbuf1
, dstc
[0], dstc
[1], dstc
[2], dstc
[3], stride
, stride_lowres
, w
, 8 );
1670 call_a( mc_a
.frame_init_lowres_core
, pbuf1
, dsta
[0], dsta
[1], dsta
[2], dsta
[3], stride
, stride_lowres
, w
, 8 );
1671 for( int i
= 0; i
< 8; i
++ )
1673 for( int j
= 0; j
< 4; j
++ )
1674 if( memcmp( dstc
[j
]+i
*stride_lowres
, dsta
[j
]+i
*stride_lowres
, w
* sizeof(pixel
) ) )
1677 fprintf( stderr
, "frame_init_lowres differs at plane %d line %d\n", j
, i
);
1678 for( int k
= 0; k
< w
; k
++ )
1679 printf( "%d ", dstc
[j
][k
+i
*stride_lowres
] );
1681 for( int k
= 0; k
< w
; k
++ )
1682 printf( "%d ", dsta
[j
][k
+i
*stride_lowres
] );
1688 report( "lowres init :" );
1691 #define INTEGRAL_INIT( name, size, offset, cmp_len, ... )\
1692 if( mc_a.name != mc_ref.name )\
1694 intptr_t stride = 96;\
1695 set_func_name( #name );\
1697 memcpy( buf3, buf1, size*2*stride );\
1698 memcpy( buf4, buf1, size*2*stride );\
1699 uint16_t *sum = (uint16_t*)buf3;\
1700 call_c1( mc_c.name, sum+offset, __VA_ARGS__ );\
1701 sum = (uint16_t*)buf4;\
1702 call_a1( mc_a.name, sum+offset, __VA_ARGS__ );\
1703 if( memcmp( buf3+2*offset, buf4+2*offset, cmp_len*2 )\
1704 || (size>9 && memcmp( buf3+18*stride, buf4+18*stride, (stride-8)*2 )))\
1706 call_c2( mc_c.name, sum+offset, __VA_ARGS__ );\
1707 call_a2( mc_a.name, sum+offset, __VA_ARGS__ );\
1709 ok
= 1; used_asm
= 0;
1710 INTEGRAL_INIT( integral_init4h
, 2, stride
, stride
-4, pbuf2
, stride
);
1711 INTEGRAL_INIT( integral_init8h
, 2, stride
, stride
-8, pbuf2
, stride
);
1712 INTEGRAL_INIT( integral_init4v
, 14, 0, stride
-8, sum
+9*stride
, stride
);
1713 INTEGRAL_INIT( integral_init8v
, 9, 0, stride
-8, stride
);
1714 report( "integral init :" );
1716 ok
= 1; used_asm
= 0;
1717 if( mc_a
.mbtree_propagate_cost
!= mc_ref
.mbtree_propagate_cost
)
1721 for( int i
= 0; i
< 10; i
++ )
1723 float fps_factor
= (rand()&65535) / 65535.0f
;
1724 set_func_name( "mbtree_propagate_cost" );
1725 int16_t *dsta
= (int16_t*)buf3
;
1726 int16_t *dstc
= dsta
+400;
1727 uint16_t *prop
= (uint16_t*)buf1
;
1728 uint16_t *intra
= (uint16_t*)buf4
;
1729 uint16_t *inter
= intra
+128;
1730 uint16_t *qscale
= inter
+128;
1731 uint16_t *rnd
= (uint16_t*)buf2
;
1733 for( int j
= 0; j
< 100; j
++ )
1735 intra
[j
] = *rnd
++ & 0x7fff;
1736 intra
[j
] += !intra
[j
];
1737 inter
[j
] = *rnd
++ & 0x7fff;
1738 qscale
[j
] = *rnd
++ & 0x7fff;
1740 call_c( mc_c
.mbtree_propagate_cost
, dstc
, prop
, intra
, inter
, qscale
, &fps_factor
, 100 );
1741 call_a( mc_a
.mbtree_propagate_cost
, dsta
, prop
, intra
, inter
, qscale
, &fps_factor
, 100 );
1742 // I don't care about exact rounding, this is just how close the floating-point implementation happens to be
1744 for( int j
= 0; j
< 100 && ok
; j
++ )
1746 ok
&= abs( dstc
[j
]-dsta
[j
] ) <= 1 || fabs( (double)dstc
[j
]/dsta
[j
]-1 ) < 1e-4;
1748 fprintf( stderr
, "mbtree_propagate_cost FAILED: %d !~= %d\n", dstc
[j
], dsta
[j
] );
1753 if( mc_a
.mbtree_propagate_list
!= mc_ref
.mbtree_propagate_list
)
1756 for( int i
= 0; i
< 8; i
++ )
1758 set_func_name( "mbtree_propagate_list" );
1762 int size
= width
*height
;
1763 h
.mb
.i_mb_stride
= width
;
1764 h
.mb
.i_mb_width
= width
;
1765 h
.mb
.i_mb_height
= height
;
1767 uint16_t *ref_costsc
= (uint16_t*)buf3
+ width
;
1768 uint16_t *ref_costsa
= (uint16_t*)buf4
+ width
;
1769 int16_t (*mvs
)[2] = (int16_t(*)[2])(ref_costsc
+ width
+ size
);
1770 int16_t *propagate_amount
= (int16_t*)(mvs
+ width
);
1771 uint16_t *lowres_costs
= (uint16_t*)(propagate_amount
+ width
);
1772 h
.scratch_buffer2
= (uint8_t*)(ref_costsa
+ width
+ size
);
1773 int bipred_weight
= (rand()%63)+1;
1774 int mb_y
= rand()&3;
1776 for( int j
= -width
; j
< size
+width
; j
++ )
1777 ref_costsc
[j
] = ref_costsa
[j
] = rand()&32767;
1778 for( int j
= 0; j
< width
; j
++ )
1780 static const uint8_t list_dist
[2][8] = {{0,1,1,1,1,1,1,1},{1,1,3,3,3,3,3,2}};
1781 for( int k
= 0; k
< 2; k
++ )
1782 mvs
[j
][k
] = (rand()&127) - 64;
1783 propagate_amount
[j
] = rand()&32767;
1784 lowres_costs
[j
] = list_dist
[list
][rand()&7] << LOWRES_COST_SHIFT
;
1787 call_c1( mc_c
.mbtree_propagate_list
, &h
, ref_costsc
, mvs
, propagate_amount
, lowres_costs
, bipred_weight
, mb_y
, width
, list
);
1788 call_a1( mc_a
.mbtree_propagate_list
, &h
, ref_costsa
, mvs
, propagate_amount
, lowres_costs
, bipred_weight
, mb_y
, width
, list
);
1790 for( int j
= -width
; j
< size
+width
&& ok
; j
++ )
1792 ok
&= abs(ref_costsa
[j
] - ref_costsc
[j
]) <= 1;
1794 fprintf( stderr
, "mbtree_propagate_list FAILED at %d: %d !~= %d\n", j
, ref_costsc
[j
], ref_costsa
[j
] );
1797 call_c2( mc_c
.mbtree_propagate_list
, &h
, ref_costsc
, mvs
, propagate_amount
, lowres_costs
, bipred_weight
, mb_y
, width
, list
);
1798 call_a2( mc_a
.mbtree_propagate_list
, &h
, ref_costsa
, mvs
, propagate_amount
, lowres_costs
, bipred_weight
, mb_y
, width
, list
);
1802 static const uint16_t mbtree_fix8_counts
[] = { 5, 384, 392, 400, 415 };
1804 if( mc_a
.mbtree_fix8_pack
!= mc_ref
.mbtree_fix8_pack
)
1806 set_func_name( "mbtree_fix8_pack" );
1808 float *fix8_src
= (float*)(buf3
+ 0x800);
1809 uint16_t *dstc
= (uint16_t*)buf3
;
1810 uint16_t *dsta
= (uint16_t*)buf4
;
1811 for( int i
= 0; i
< ARRAY_ELEMS(mbtree_fix8_counts
); i
++ )
1813 int count
= mbtree_fix8_counts
[i
];
1815 for( int j
= 0; j
< count
; j
++ )
1816 fix8_src
[j
] = (int16_t)(rand()) / 256.0f
;
1817 dsta
[count
] = 0xAAAA;
1819 call_c( mc_c
.mbtree_fix8_pack
, dstc
, fix8_src
, count
);
1820 call_a( mc_a
.mbtree_fix8_pack
, dsta
, fix8_src
, count
);
1822 if( memcmp( dsta
, dstc
, count
* sizeof(uint16_t) ) || dsta
[count
] != 0xAAAA )
1825 fprintf( stderr
, "mbtree_fix8_pack FAILED\n" );
1831 if( mc_a
.mbtree_fix8_unpack
!= mc_ref
.mbtree_fix8_unpack
)
1833 set_func_name( "mbtree_fix8_unpack" );
1835 uint16_t *fix8_src
= (uint16_t*)(buf3
+ 0x800);
1836 float *dstc
= (float*)buf3
;
1837 float *dsta
= (float*)buf4
;
1838 for( int i
= 0; i
< ARRAY_ELEMS(mbtree_fix8_counts
); i
++ )
1840 int count
= mbtree_fix8_counts
[i
];
1842 for( int j
= 0; j
< count
; j
++ )
1843 fix8_src
[j
] = rand();
1844 M32( &dsta
[count
] ) = 0xAAAAAAAA;
1846 call_c( mc_c
.mbtree_fix8_unpack
, dstc
, fix8_src
, count
);
1847 call_a( mc_a
.mbtree_fix8_unpack
, dsta
, fix8_src
, count
);
1849 if( memcmp( dsta
, dstc
, count
* sizeof(float) ) || M32( &dsta
[count
] ) != 0xAAAAAAAA )
1852 fprintf( stderr
, "mbtree_fix8_unpack FAILED\n" );
1857 report( "mbtree :" );
1859 if( mc_a
.memcpy_aligned
!= mc_ref
.memcpy_aligned
)
1861 set_func_name( "memcpy_aligned" );
1862 ok
= 1; used_asm
= 1;
1863 for( size_t size
= 16; size
< 512; size
+= 16 )
1865 for( int i
= 0; i
< size
; i
++ )
1867 memset( buf4
-1, 0xAA, size
+ 2 );
1868 call_c( mc_c
.memcpy_aligned
, buf3
, buf1
, size
);
1869 call_a( mc_a
.memcpy_aligned
, buf4
, buf1
, size
);
1870 if( memcmp( buf3
, buf4
, size
) || buf4
[-1] != 0xAA || buf4
[size
] != 0xAA )
1873 fprintf( stderr
, "memcpy_aligned FAILED: size=%d\n", (int)size
);
1877 report( "memcpy aligned :" );
1880 if( mc_a
.memzero_aligned
!= mc_ref
.memzero_aligned
)
1882 set_func_name( "memzero_aligned" );
1883 ok
= 1; used_asm
= 1;
1884 for( size_t size
= 128; size
< 1024; size
+= 128 )
1886 memset( buf4
-1, 0xAA, size
+ 2 );
1887 call_c( mc_c
.memzero_aligned
, buf3
, size
);
1888 call_a( mc_a
.memzero_aligned
, buf4
, size
);
1889 if( memcmp( buf3
, buf4
, size
) || buf4
[-1] != 0xAA || buf4
[size
] != 0xAA )
1892 fprintf( stderr
, "memzero_aligned FAILED: size=%d\n", (int)size
);
1896 report( "memzero aligned :" );
1902 static int check_deblock( int cpu_ref
, int cpu_new
)
1904 x264_deblock_function_t db_c
;
1905 x264_deblock_function_t db_ref
;
1906 x264_deblock_function_t db_a
;
1907 int ret
= 0, ok
= 1, used_asm
= 0;
1908 int alphas
[36], betas
[36];
1911 x264_deblock_init( 0, &db_c
, 0 );
1912 x264_deblock_init( cpu_ref
, &db_ref
, 0 );
1913 x264_deblock_init( cpu_new
, &db_a
, 0 );
1915 /* not exactly the real values of a,b,tc but close enough */
1916 for( int i
= 35, a
= 255, c
= 250; i
>= 0; i
-- )
1918 alphas
[i
] = a
<< (BIT_DEPTH
-8);
1919 betas
[i
] = (i
+1)/2 << (BIT_DEPTH
-8);
1920 tcs
[i
][0] = tcs
[i
][3] = (c
+6)/10 << (BIT_DEPTH
-8);
1921 tcs
[i
][1] = (c
+7)/15 << (BIT_DEPTH
-8);
1922 tcs
[i
][2] = (c
+9)/20 << (BIT_DEPTH
-8);
1927 #define TEST_DEBLOCK( name, align, ... ) \
1928 for( int i = 0; i < 36; i++ ) \
1930 intptr_t off = 8*32 + (i&15)*4*!align; /* benchmark various alignments of h filter */ \
1931 for( int j = 0; j < 1024; j++ ) \
1932 /* two distributions of random to excersize different failure modes */ \
1933 pbuf3[j] = rand() & (i&1 ? 0xf : PIXEL_MAX ); \
1934 memcpy( pbuf4, pbuf3, 1024 * sizeof(pixel) ); \
1935 if( db_a.name != db_ref.name ) \
1937 set_func_name( #name ); \
1939 call_c1( db_c.name, pbuf3+off, (intptr_t)32, alphas[i], betas[i], ##__VA_ARGS__ ); \
1940 call_a1( db_a.name, pbuf4+off, (intptr_t)32, alphas[i], betas[i], ##__VA_ARGS__ ); \
1941 if( memcmp( pbuf3, pbuf4, 1024 * sizeof(pixel) ) ) \
1944 fprintf( stderr, #name "(a=%d, b=%d): [FAILED]\n", alphas[i], betas[i] ); \
1947 call_c2( db_c.name, pbuf3+off, (intptr_t)32, alphas[i], betas[i], ##__VA_ARGS__ ); \
1948 call_a2( db_a.name, pbuf4+off, (intptr_t)32, alphas[i], betas[i], ##__VA_ARGS__ ); \
1952 TEST_DEBLOCK( deblock_luma
[0], 0, tcs
[i
] );
1953 TEST_DEBLOCK( deblock_luma
[1], 1, tcs
[i
] );
1954 TEST_DEBLOCK( deblock_h_chroma_420
, 0, tcs
[i
] );
1955 TEST_DEBLOCK( deblock_h_chroma_422
, 0, tcs
[i
] );
1956 TEST_DEBLOCK( deblock_chroma_420_mbaff
, 0, tcs
[i
] );
1957 TEST_DEBLOCK( deblock_chroma_422_mbaff
, 0, tcs
[i
] );
1958 TEST_DEBLOCK( deblock_chroma
[1], 1, tcs
[i
] );
1959 TEST_DEBLOCK( deblock_luma_intra
[0], 0 );
1960 TEST_DEBLOCK( deblock_luma_intra
[1], 1 );
1961 TEST_DEBLOCK( deblock_h_chroma_420_intra
, 0 );
1962 TEST_DEBLOCK( deblock_h_chroma_422_intra
, 0 );
1963 TEST_DEBLOCK( deblock_chroma_420_intra_mbaff
, 0 );
1964 TEST_DEBLOCK( deblock_chroma_422_intra_mbaff
, 0 );
1965 TEST_DEBLOCK( deblock_chroma_intra
[1], 1 );
1967 if( db_a
.deblock_strength
!= db_ref
.deblock_strength
)
1969 set_func_name( "deblock_strength" );
1971 for( int i
= 0; i
< 100; i
++ )
1973 ALIGNED_ARRAY_16( uint8_t, nnz_buf
, [X264_SCAN8_SIZE
+8] );
1974 uint8_t *nnz
= &nnz_buf
[8];
1975 ALIGNED_4( int8_t ref
[2][X264_SCAN8_LUMA_SIZE
] );
1976 ALIGNED_ARRAY_16( int16_t, mv
, [2],[X264_SCAN8_LUMA_SIZE
][2] );
1977 ALIGNED_ARRAY_32( uint8_t, bs
, [2],[2][8][4] );
1978 memset( bs
, 99, sizeof(uint8_t)*2*4*8*2 );
1979 for( int j
= 0; j
< X264_SCAN8_SIZE
; j
++ )
1980 nnz
[j
] = ((rand()&7) == 7) * rand() & 0xf;
1981 for( int j
= 0; j
< 2; j
++ )
1982 for( int k
= 0; k
< X264_SCAN8_LUMA_SIZE
; k
++ )
1984 ref
[j
][k
] = ((rand()&3) != 3) ? 0 : (rand() & 31) - 2;
1985 for( int l
= 0; l
< 2; l
++ )
1986 mv
[j
][k
][l
] = ((rand()&7) != 7) ? (rand()&7) - 3 : (rand()&16383) - 8192;
1988 call_c( db_c
.deblock_strength
, nnz
, ref
, mv
, bs
[0], 2<<(i
&1), ((i
>>1)&1) );
1989 call_a( db_a
.deblock_strength
, nnz
, ref
, mv
, bs
[1], 2<<(i
&1), ((i
>>1)&1) );
1990 if( memcmp( bs
[0], bs
[1], sizeof(uint8_t)*2*4*8 ) )
1993 fprintf( stderr
, "deblock_strength: [FAILED]\n" );
1994 for( int j
= 0; j
< 2; j
++ )
1996 for( int k
= 0; k
< 2; k
++ )
1997 for( int l
= 0; l
< 4; l
++ )
1999 for( int m
= 0; m
< 4; m
++ )
2000 printf("%d ",bs
[j
][k
][l
][m
]);
2010 report( "deblock :" );
2015 static int check_quant( int cpu_ref
, int cpu_new
)
2017 x264_quant_function_t qf_c
;
2018 x264_quant_function_t qf_ref
;
2019 x264_quant_function_t qf_a
;
2020 ALIGNED_ARRAY_64( dctcoef
, dct1
,[64] );
2021 ALIGNED_ARRAY_64( dctcoef
, dct2
,[64] );
2022 ALIGNED_ARRAY_32( dctcoef
, dct3
,[8],[16] );
2023 ALIGNED_ARRAY_32( dctcoef
, dct4
,[8],[16] );
2024 ALIGNED_ARRAY_32( uint8_t, cqm_buf
,[64] );
2025 int ret
= 0, ok
, used_asm
;
2026 int oks
[3] = {1,1,1}, used_asms
[3] = {0,0,0};
2029 memset( h
, 0, sizeof(*h
) );
2030 h
->sps
->i_chroma_format_idc
= 1;
2031 x264_param_default( &h
->param
);
2032 h
->chroma_qp_table
= i_chroma_qp_table
+ 12;
2033 h
->param
.analyse
.b_transform_8x8
= 1;
2035 for( int i_cqm
= 0; i_cqm
< 4; i_cqm
++ )
2039 for( int i
= 0; i
< 6; i
++ )
2040 h
->sps
->scaling_list
[i
] = x264_cqm_flat16
;
2041 h
->param
.i_cqm_preset
= h
->sps
->i_cqm_preset
= X264_CQM_FLAT
;
2043 else if( i_cqm
== 1 )
2045 for( int i
= 0; i
< 6; i
++ )
2046 h
->sps
->scaling_list
[i
] = x264_cqm_jvt
[i
];
2047 h
->param
.i_cqm_preset
= h
->sps
->i_cqm_preset
= X264_CQM_JVT
;
2051 int max_scale
= BIT_DEPTH
< 10 ? 255 : 228;
2053 for( int i
= 0; i
< 64; i
++ )
2054 cqm_buf
[i
] = 10 + rand() % (max_scale
- 9);
2056 for( int i
= 0; i
< 64; i
++ )
2058 for( int i
= 0; i
< 6; i
++ )
2059 h
->sps
->scaling_list
[i
] = cqm_buf
;
2060 h
->param
.i_cqm_preset
= h
->sps
->i_cqm_preset
= X264_CQM_CUSTOM
;
2063 h
->param
.rc
.i_qp_min
= 0;
2064 h
->param
.rc
.i_qp_max
= QP_MAX_SPEC
;
2066 x264_quant_init( h
, 0, &qf_c
);
2067 x264_quant_init( h
, cpu_ref
, &qf_ref
);
2068 x264_quant_init( h
, cpu_new
, &qf_a
);
2070 #define INIT_QUANT8(j,max) \
2072 static const int scale1d[8] = {32,31,24,31,32,31,24,31}; \
2073 for( int i = 0; i < max; i++ ) \
2075 unsigned int scale = (255*scale1d[(i>>3)&7]*scale1d[i&7])/16; \
2076 dct1[i] = dct2[i] = (j>>(i>>6))&1 ? (rand()%(2*scale+1))-scale : 0; \
2080 #define INIT_QUANT4(j,max) \
2082 static const int scale1d[4] = {4,6,4,6}; \
2083 for( int i = 0; i < max; i++ ) \
2085 unsigned int scale = 255*scale1d[(i>>2)&3]*scale1d[i&3]; \
2086 dct1[i] = dct2[i] = (j>>(i>>4))&1 ? (rand()%(2*scale+1))-scale : 0; \
2090 #define TEST_QUANT_DC( name, cqm ) \
2091 if( qf_a.name != qf_ref.name ) \
2093 set_func_name( #name ); \
2095 for( int qp = h->param.rc.i_qp_max; qp >= h->param.rc.i_qp_min; qp-- ) \
2097 for( int j = 0; j < 2; j++ ) \
2099 int result_c, result_a; \
2100 for( int i = 0; i < 16; i++ ) \
2101 dct1[i] = dct2[i] = j ? (rand() & 0x1fff) - 0xfff : 0; \
2102 result_c = call_c1( qf_c.name, dct1, h->quant4_mf[CQM_4IY][qp][0], h->quant4_bias[CQM_4IY][qp][0] ); \
2103 result_a = call_a1( qf_a.name, dct2, h->quant4_mf[CQM_4IY][qp][0], h->quant4_bias[CQM_4IY][qp][0] ); \
2104 if( memcmp( dct1, dct2, 16*sizeof(dctcoef) ) || result_c != result_a ) \
2107 fprintf( stderr, #name "(cqm=%d): [FAILED]\n", i_cqm ); \
2110 call_c2( qf_c.name, dct1, h->quant4_mf[CQM_4IY][qp][0], h->quant4_bias[CQM_4IY][qp][0] ); \
2111 call_a2( qf_a.name, dct2, h->quant4_mf[CQM_4IY][qp][0], h->quant4_bias[CQM_4IY][qp][0] ); \
2116 #define TEST_QUANT( qname, block, type, w, maxj ) \
2117 if( qf_a.qname != qf_ref.qname ) \
2119 set_func_name( #qname ); \
2121 for( int qp = h->param.rc.i_qp_max; qp >= h->param.rc.i_qp_min; qp-- ) \
2123 for( int j = 0; j < maxj; j++ ) \
2125 INIT_QUANT##type(j, w*w) \
2126 int result_c = call_c1( qf_c.qname, (void*)dct1, h->quant##type##_mf[block][qp], h->quant##type##_bias[block][qp] ); \
2127 int result_a = call_a1( qf_a.qname, (void*)dct2, h->quant##type##_mf[block][qp], h->quant##type##_bias[block][qp] ); \
2128 if( memcmp( dct1, dct2, w*w*sizeof(dctcoef) ) || result_c != result_a ) \
2131 fprintf( stderr, #qname "(qp=%d, cqm=%d, block="#block"): [FAILED]\n", qp, i_cqm ); \
2134 call_c2( qf_c.qname, (void*)dct1, h->quant##type##_mf[block][qp], h->quant##type##_bias[block][qp] ); \
2135 call_a2( qf_a.qname, (void*)dct2, h->quant##type##_mf[block][qp], h->quant##type##_bias[block][qp] ); \
2140 TEST_QUANT( quant_8x8
, CQM_8IY
, 8, 8, 2 );
2141 TEST_QUANT( quant_8x8
, CQM_8PY
, 8, 8, 2 );
2142 TEST_QUANT( quant_4x4
, CQM_4IY
, 4, 4, 2 );
2143 TEST_QUANT( quant_4x4
, CQM_4PY
, 4, 4, 2 );
2144 TEST_QUANT( quant_4x4x4
, CQM_4IY
, 4, 8, 16 );
2145 TEST_QUANT( quant_4x4x4
, CQM_4PY
, 4, 8, 16 );
2146 TEST_QUANT_DC( quant_4x4_dc
, **h
->quant4_mf
[CQM_4IY
] );
2147 TEST_QUANT_DC( quant_2x2_dc
, **h
->quant4_mf
[CQM_4IC
] );
2149 #define TEST_DEQUANT( qname, dqname, block, w ) \
2150 if( qf_a.dqname != qf_ref.dqname ) \
2152 set_func_name( "%s_%s", #dqname, i_cqm?"cqm":"flat" ); \
2154 for( int qp = h->param.rc.i_qp_max; qp >= h->param.rc.i_qp_min; qp-- ) \
2156 INIT_QUANT##w(1, w*w) \
2157 qf_c.qname( dct1, h->quant##w##_mf[block][qp], h->quant##w##_bias[block][qp] ); \
2158 memcpy( dct2, dct1, w*w*sizeof(dctcoef) ); \
2159 call_c1( qf_c.dqname, dct1, h->dequant##w##_mf[block], qp ); \
2160 call_a1( qf_a.dqname, dct2, h->dequant##w##_mf[block], qp ); \
2161 if( memcmp( dct1, dct2, w*w*sizeof(dctcoef) ) ) \
2164 fprintf( stderr, #dqname "(qp=%d, cqm=%d, block="#block"): [FAILED]\n", qp, i_cqm ); \
2167 call_c2( qf_c.dqname, dct1, h->dequant##w##_mf[block], qp ); \
2168 call_a2( qf_a.dqname, dct2, h->dequant##w##_mf[block], qp ); \
2172 TEST_DEQUANT( quant_8x8
, dequant_8x8
, CQM_8IY
, 8 );
2173 TEST_DEQUANT( quant_8x8
, dequant_8x8
, CQM_8PY
, 8 );
2174 TEST_DEQUANT( quant_4x4
, dequant_4x4
, CQM_4IY
, 4 );
2175 TEST_DEQUANT( quant_4x4
, dequant_4x4
, CQM_4PY
, 4 );
2177 #define TEST_DEQUANT_DC( qname, dqname, block, w ) \
2178 if( qf_a.dqname != qf_ref.dqname ) \
2180 set_func_name( "%s_%s", #dqname, i_cqm?"cqm":"flat" ); \
2182 for( int qp = h->param.rc.i_qp_max; qp >= h->param.rc.i_qp_min; qp-- ) \
2184 for( int i = 0; i < 16; i++ ) \
2185 dct1[i] = rand()%(PIXEL_MAX*16*2+1) - PIXEL_MAX*16; \
2186 qf_c.qname( dct1, h->quant##w##_mf[block][qp][0]>>1, h->quant##w##_bias[block][qp][0]>>1 ); \
2187 memcpy( dct2, dct1, w*w*sizeof(dctcoef) ); \
2188 call_c1( qf_c.dqname, dct1, h->dequant##w##_mf[block], qp ); \
2189 call_a1( qf_a.dqname, dct2, h->dequant##w##_mf[block], qp ); \
2190 if( memcmp( dct1, dct2, w*w*sizeof(dctcoef) ) ) \
2193 fprintf( stderr, #dqname "(qp=%d, cqm=%d, block="#block"): [FAILED]\n", qp, i_cqm ); \
2195 call_c2( qf_c.dqname, dct1, h->dequant##w##_mf[block], qp ); \
2196 call_a2( qf_a.dqname, dct2, h->dequant##w##_mf[block], qp ); \
2200 TEST_DEQUANT_DC( quant_4x4_dc
, dequant_4x4_dc
, CQM_4IY
, 4 );
2202 if( qf_a
.idct_dequant_2x4_dc
!= qf_ref
.idct_dequant_2x4_dc
)
2204 set_func_name( "idct_dequant_2x4_dc_%s", i_cqm
?"cqm":"flat" );
2206 for( int qp
= h
->chroma_qp_table
[h
->param
.rc
.i_qp_max
]; qp
>= h
->chroma_qp_table
[h
->param
.rc
.i_qp_min
]; qp
-- )
2208 for( int i
= 0; i
< 8; i
++ )
2209 dct1
[i
] = rand()%(PIXEL_MAX
*16*2+1) - PIXEL_MAX
*16;
2210 qf_c
.quant_2x2_dc( &dct1
[0], h
->quant4_mf
[CQM_4IC
][qp
+3][0]>>1, h
->quant4_bias
[CQM_4IC
][qp
+3][0]>>1 );
2211 qf_c
.quant_2x2_dc( &dct1
[4], h
->quant4_mf
[CQM_4IC
][qp
+3][0]>>1, h
->quant4_bias
[CQM_4IC
][qp
+3][0]>>1 );
2212 call_c( qf_c
.idct_dequant_2x4_dc
, dct1
, dct3
, h
->dequant4_mf
[CQM_4IC
], qp
+3 );
2213 call_a( qf_a
.idct_dequant_2x4_dc
, dct1
, dct4
, h
->dequant4_mf
[CQM_4IC
], qp
+3 );
2214 for( int i
= 0; i
< 8; i
++ )
2215 if( dct3
[i
][0] != dct4
[i
][0] )
2218 fprintf( stderr
, "idct_dequant_2x4_dc (qp=%d, cqm=%d): [FAILED]\n", qp
, i_cqm
);
2224 if( qf_a
.idct_dequant_2x4_dconly
!= qf_ref
.idct_dequant_2x4_dconly
)
2226 set_func_name( "idct_dequant_2x4_dconly_%s", i_cqm
?"cqm":"flat" );
2228 for( int qp
= h
->chroma_qp_table
[h
->param
.rc
.i_qp_max
]; qp
>= h
->chroma_qp_table
[h
->param
.rc
.i_qp_min
]; qp
-- )
2230 for( int i
= 0; i
< 8; i
++ )
2231 dct1
[i
] = rand()%(PIXEL_MAX
*16*2+1) - PIXEL_MAX
*16;
2232 qf_c
.quant_2x2_dc( &dct1
[0], h
->quant4_mf
[CQM_4IC
][qp
+3][0]>>1, h
->quant4_bias
[CQM_4IC
][qp
+3][0]>>1 );
2233 qf_c
.quant_2x2_dc( &dct1
[4], h
->quant4_mf
[CQM_4IC
][qp
+3][0]>>1, h
->quant4_bias
[CQM_4IC
][qp
+3][0]>>1 );
2234 memcpy( dct2
, dct1
, 8*sizeof(dctcoef
) );
2235 call_c1( qf_c
.idct_dequant_2x4_dconly
, dct1
, h
->dequant4_mf
[CQM_4IC
], qp
+3 );
2236 call_a1( qf_a
.idct_dequant_2x4_dconly
, dct2
, h
->dequant4_mf
[CQM_4IC
], qp
+3 );
2237 if( memcmp( dct1
, dct2
, 8*sizeof(dctcoef
) ) )
2240 fprintf( stderr
, "idct_dequant_2x4_dconly (qp=%d, cqm=%d): [FAILED]\n", qp
, i_cqm
);
2243 call_c2( qf_c
.idct_dequant_2x4_dconly
, dct1
, h
->dequant4_mf
[CQM_4IC
], qp
+3 );
2244 call_a2( qf_a
.idct_dequant_2x4_dconly
, dct2
, h
->dequant4_mf
[CQM_4IC
], qp
+3 );
2248 #define TEST_OPTIMIZE_CHROMA_DC( optname, size ) \
2249 if( qf_a.optname != qf_ref.optname ) \
2251 set_func_name( #optname ); \
2253 for( int qp = h->param.rc.i_qp_max; qp >= h->param.rc.i_qp_min; qp-- ) \
2255 int qpdc = qp + (size == 8 ? 3 : 0); \
2256 int dmf = h->dequant4_mf[CQM_4IC][qpdc%6][0] << qpdc/6; \
2259 for( int i = 16;; i <<= 1 ) \
2261 int res_c, res_asm; \
2262 int max = X264_MIN( i, PIXEL_MAX*16 ); \
2263 for( int j = 0; j < size; j++ ) \
2264 dct1[j] = rand()%(max*2+1) - max; \
2265 for( int j = 0; j <= size; j += 4 ) \
2266 qf_c.quant_2x2_dc( &dct1[j], h->quant4_mf[CQM_4IC][qpdc][0]>>1, h->quant4_bias[CQM_4IC][qpdc][0]>>1 ); \
2267 memcpy( dct2, dct1, size*sizeof(dctcoef) ); \
2268 res_c = call_c1( qf_c.optname, dct1, dmf ); \
2269 res_asm = call_a1( qf_a.optname, dct2, dmf ); \
2270 if( res_c != res_asm || memcmp( dct1, dct2, size*sizeof(dctcoef) ) ) \
2273 fprintf( stderr, #optname "(qp=%d, res_c=%d, res_asm=%d): [FAILED]\n", qp, res_c, res_asm ); \
2275 call_c2( qf_c.optname, dct1, dmf ); \
2276 call_a2( qf_a.optname, dct2, dmf ); \
2277 if( i >= PIXEL_MAX*16 ) \
2283 TEST_OPTIMIZE_CHROMA_DC( optimize_chroma_2x2_dc
, 4 );
2284 TEST_OPTIMIZE_CHROMA_DC( optimize_chroma_2x4_dc
, 8 );
2286 x264_cqm_delete( h
);
2289 ok
= oks
[0]; used_asm
= used_asms
[0];
2290 report( "quant :" );
2292 ok
= oks
[1]; used_asm
= used_asms
[1];
2293 report( "dequant :" );
2295 ok
= oks
[2]; used_asm
= used_asms
[2];
2296 report( "optimize chroma dc :" );
2298 ok
= 1; used_asm
= 0;
2299 if( qf_a
.denoise_dct
!= qf_ref
.denoise_dct
)
2302 for( int size
= 16; size
<= 64; size
+= 48 )
2304 set_func_name( "denoise_dct" );
2305 memcpy( dct1
, buf1
, size
*sizeof(dctcoef
) );
2306 memcpy( dct2
, buf1
, size
*sizeof(dctcoef
) );
2307 memcpy( buf3
+256, buf3
, 256 );
2308 call_c1( qf_c
.denoise_dct
, dct1
, (uint32_t*)buf3
, (udctcoef
*)buf2
, size
);
2309 call_a1( qf_a
.denoise_dct
, dct2
, (uint32_t*)(buf3
+256), (udctcoef
*)buf2
, size
);
2310 if( memcmp( dct1
, dct2
, size
*sizeof(dctcoef
) ) || memcmp( buf3
+4, buf3
+256+4, (size
-1)*sizeof(uint32_t) ) )
2312 call_c2( qf_c
.denoise_dct
, dct1
, (uint32_t*)buf3
, (udctcoef
*)buf2
, size
);
2313 call_a2( qf_a
.denoise_dct
, dct2
, (uint32_t*)(buf3
+256), (udctcoef
*)buf2
, size
);
2316 report( "denoise dct :" );
2318 #define TEST_DECIMATE( decname, w, ac, thresh ) \
2319 if( qf_a.decname != qf_ref.decname ) \
2321 set_func_name( #decname ); \
2323 for( int i = 0; i < 100; i++ ) \
2325 static const int distrib[16] = {1,1,1,1,1,1,1,1,1,1,1,1,2,3,4};\
2326 static const int zerorate_lut[4] = {3,7,15,31};\
2327 int zero_rate = zerorate_lut[i&3];\
2328 for( int idx = 0; idx < w*w; idx++ ) \
2330 int sign = (rand()&1) ? -1 : 1; \
2331 int abs_level = distrib[rand()&15]; \
2332 if( abs_level == 4 ) abs_level = rand()&0x3fff; \
2333 int zero = !(rand()&zero_rate); \
2334 dct1[idx] = zero * abs_level * sign; \
2338 int result_c = call_c( qf_c.decname, dct1 ); \
2339 int result_a = call_a( qf_a.decname, dct1 ); \
2340 if( X264_MIN(result_c,thresh) != X264_MIN(result_a,thresh) ) \
2343 fprintf( stderr, #decname ": [FAILED]\n" ); \
2349 ok
= 1; used_asm
= 0;
2350 TEST_DECIMATE( decimate_score64
, 8, 0, 6 );
2351 TEST_DECIMATE( decimate_score16
, 4, 0, 6 );
2352 TEST_DECIMATE( decimate_score15
, 4, 1, 7 );
2353 report( "decimate_score :" );
2355 #define TEST_LAST( last, lastname, size, ac ) \
2356 if( qf_a.last != qf_ref.last ) \
2358 set_func_name( #lastname ); \
2360 for( int i = 0; i < 100; i++ ) \
2363 int max = rand() & (size-1); \
2364 memset( dct1, 0, size*sizeof(dctcoef) ); \
2365 for( int idx = ac; idx < max; idx++ ) \
2366 nnz |= dct1[idx] = !(rand()&3) + (!(rand()&15))*rand(); \
2369 int result_c = call_c( qf_c.last, dct1+ac ); \
2370 int result_a = call_a( qf_a.last, dct1+ac ); \
2371 if( result_c != result_a ) \
2374 fprintf( stderr, #lastname ": [FAILED]\n" ); \
2380 ok
= 1; used_asm
= 0;
2381 TEST_LAST( coeff_last4
, coeff_last4
, 4, 0 );
2382 TEST_LAST( coeff_last8
, coeff_last8
, 8, 0 );
2383 TEST_LAST( coeff_last
[ DCT_LUMA_AC
], coeff_last15
, 16, 1 );
2384 TEST_LAST( coeff_last
[ DCT_LUMA_4x4
], coeff_last16
, 16, 0 );
2385 TEST_LAST( coeff_last
[ DCT_LUMA_8x8
], coeff_last64
, 64, 0 );
2386 report( "coeff_last :" );
2388 #define TEST_LEVELRUN( lastname, name, size, ac ) \
2389 if( qf_a.lastname != qf_ref.lastname ) \
2391 set_func_name( #name ); \
2393 for( int i = 0; i < 100; i++ ) \
2395 x264_run_level_t runlevel_c, runlevel_a; \
2397 int max = rand() & (size-1); \
2398 memset( dct1, 0, size*sizeof(dctcoef) ); \
2399 memcpy( &runlevel_a, buf1+i, sizeof(x264_run_level_t) ); \
2400 memcpy( &runlevel_c, buf1+i, sizeof(x264_run_level_t) ); \
2401 for( int idx = ac; idx < max; idx++ ) \
2402 nnz |= dct1[idx] = !(rand()&3) + (!(rand()&15))*rand(); \
2405 int result_c = call_c( qf_c.lastname, dct1+ac, &runlevel_c ); \
2406 int result_a = call_a( qf_a.lastname, dct1+ac, &runlevel_a ); \
2407 if( result_c != result_a || runlevel_c.last != runlevel_a.last || \
2408 runlevel_c.mask != runlevel_a.mask || \
2409 memcmp(runlevel_c.level, runlevel_a.level, sizeof(dctcoef)*result_c)) \
2412 fprintf( stderr, #name ": [FAILED]\n" ); \
2418 ok
= 1; used_asm
= 0;
2419 TEST_LEVELRUN( coeff_level_run4
, coeff_level_run4
, 4, 0 );
2420 TEST_LEVELRUN( coeff_level_run8
, coeff_level_run8
, 8, 0 );
2421 TEST_LEVELRUN( coeff_level_run
[ DCT_LUMA_AC
], coeff_level_run15
, 16, 1 );
2422 TEST_LEVELRUN( coeff_level_run
[ DCT_LUMA_4x4
], coeff_level_run16
, 16, 0 );
2423 report( "coeff_level_run :" );
2428 static int check_intra( int cpu_ref
, int cpu_new
)
2430 int ret
= 0, ok
= 1, used_asm
= 0;
2431 ALIGNED_ARRAY_32( pixel
, edge
,[36] );
2432 ALIGNED_ARRAY_32( pixel
, edge2
,[36] );
2433 ALIGNED_ARRAY_32( pixel
, fdec
,[FDEC_STRIDE
*20] );
2436 x264_predict_t predict_16x16
[4+3];
2437 x264_predict_t predict_8x8c
[4+3];
2438 x264_predict_t predict_8x16c
[4+3];
2439 x264_predict8x8_t predict_8x8
[9+3];
2440 x264_predict_t predict_4x4
[9+3];
2441 x264_predict_8x8_filter_t predict_8x8_filter
;
2442 } ip_c
, ip_ref
, ip_a
;
2444 x264_predict_16x16_init( 0, ip_c
.predict_16x16
);
2445 x264_predict_8x8c_init( 0, ip_c
.predict_8x8c
);
2446 x264_predict_8x16c_init( 0, ip_c
.predict_8x16c
);
2447 x264_predict_8x8_init( 0, ip_c
.predict_8x8
, &ip_c
.predict_8x8_filter
);
2448 x264_predict_4x4_init( 0, ip_c
.predict_4x4
);
2450 x264_predict_16x16_init( cpu_ref
, ip_ref
.predict_16x16
);
2451 x264_predict_8x8c_init( cpu_ref
, ip_ref
.predict_8x8c
);
2452 x264_predict_8x16c_init( cpu_ref
, ip_ref
.predict_8x16c
);
2453 x264_predict_8x8_init( cpu_ref
, ip_ref
.predict_8x8
, &ip_ref
.predict_8x8_filter
);
2454 x264_predict_4x4_init( cpu_ref
, ip_ref
.predict_4x4
);
2456 x264_predict_16x16_init( cpu_new
, ip_a
.predict_16x16
);
2457 x264_predict_8x8c_init( cpu_new
, ip_a
.predict_8x8c
);
2458 x264_predict_8x16c_init( cpu_new
, ip_a
.predict_8x16c
);
2459 x264_predict_8x8_init( cpu_new
, ip_a
.predict_8x8
, &ip_a
.predict_8x8_filter
);
2460 x264_predict_4x4_init( cpu_new
, ip_a
.predict_4x4
);
2462 memcpy( fdec
, pbuf1
, 32*20 * sizeof(pixel
) );\
2464 ip_c
.predict_8x8_filter( fdec
+48, edge
, ALL_NEIGHBORS
, ALL_NEIGHBORS
);
2466 #define INTRA_TEST( name, dir, w, h, align, bench, ... )\
2467 if( ip_a.name[dir] != ip_ref.name[dir] )\
2469 set_func_name( "intra_%s_%s", #name, intra_##name##_names[dir] );\
2471 memcpy( pbuf3, fdec, FDEC_STRIDE*20 * sizeof(pixel) );\
2472 memcpy( pbuf4, fdec, FDEC_STRIDE*20 * sizeof(pixel) );\
2473 for( int a = 0; a < (do_bench ? 64/sizeof(pixel) : 1); a += align )\
2475 call_c##bench( ip_c.name[dir], pbuf3+48+a, ##__VA_ARGS__ );\
2476 call_a##bench( ip_a.name[dir], pbuf4+48+a, ##__VA_ARGS__ );\
2477 if( memcmp( pbuf3, pbuf4, FDEC_STRIDE*20 * sizeof(pixel) ) )\
2479 fprintf( stderr, #name "[%d] : [FAILED]\n", dir );\
2481 if( ip_c.name == (void *)ip_c.predict_8x8 )\
2483 for( int k = -1; k < 16; k++ )\
2484 printf( "%2x ", edge[16+k] );\
2487 for( int j = 0; j < h; j++ )\
2489 if( ip_c.name == (void *)ip_c.predict_8x8 )\
2490 printf( "%2x ", edge[14-j] );\
2491 for( int k = 0; k < w; k++ )\
2492 printf( "%2x ", pbuf4[48+k+j*FDEC_STRIDE] );\
2496 for( int j = 0; j < h; j++ )\
2498 if( ip_c.name == (void *)ip_c.predict_8x8 )\
2500 for( int k = 0; k < w; k++ )\
2501 printf( "%2x ", pbuf3[48+k+j*FDEC_STRIDE] );\
2509 for( int i
= 0; i
< 12; i
++ )
2510 INTRA_TEST( predict_4x4
, i
, 4, 4, 4, );
2511 for( int i
= 0; i
< 7; i
++ )
2512 INTRA_TEST( predict_8x8c
, i
, 8, 8, 16, );
2513 for( int i
= 0; i
< 7; i
++ )
2514 INTRA_TEST( predict_8x16c
, i
, 8, 16, 16, );
2515 for( int i
= 0; i
< 7; i
++ )
2516 INTRA_TEST( predict_16x16
, i
, 16, 16, 16, );
2517 for( int i
= 0; i
< 12; i
++ )
2518 INTRA_TEST( predict_8x8
, i
, 8, 8, 8, , edge
);
2520 set_func_name("intra_predict_8x8_filter");
2521 if( ip_a
.predict_8x8_filter
!= ip_ref
.predict_8x8_filter
)
2524 for( int i
= 0; i
< 32; i
++ )
2526 if( !(i
&7) || ((i
&MB_TOPRIGHT
) && !(i
&MB_TOP
)) )
2528 int neighbor
= (i
&24)>>1;
2529 memset( edge
, 0, 36*sizeof(pixel
) );
2530 memset( edge2
, 0, 36*sizeof(pixel
) );
2531 call_c( ip_c
.predict_8x8_filter
, pbuf1
+48, edge
, neighbor
, i
&7 );
2532 call_a( ip_a
.predict_8x8_filter
, pbuf1
+48, edge2
, neighbor
, i
&7 );
2533 if( !(neighbor
&MB_TOPLEFT
) )
2534 edge
[15] = edge2
[15] = 0;
2535 if( memcmp( edge
+7, edge2
+7, (i
&MB_TOPRIGHT
? 26 : i
&MB_TOP
? 17 : 8) * sizeof(pixel
) ) )
2537 fprintf( stderr
, "predict_8x8_filter : [FAILED] %d %d\n", (i
&24)>>1, i
&7);
2543 #define EXTREMAL_PLANE( w, h ) \
2546 for( int j = 0; j < 7; j++ ) \
2547 max[j] = test ? rand()&PIXEL_MAX : PIXEL_MAX; \
2548 fdec[48-1-FDEC_STRIDE] = (i&1)*max[0]; \
2549 for( int j = 0; j < w/2; j++ ) \
2550 fdec[48+j-FDEC_STRIDE] = (!!(i&2))*max[1]; \
2551 for( int j = w/2; j < w-1; j++ ) \
2552 fdec[48+j-FDEC_STRIDE] = (!!(i&4))*max[2]; \
2553 fdec[48+(w-1)-FDEC_STRIDE] = (!!(i&8))*max[3]; \
2554 for( int j = 0; j < h/2; j++ ) \
2555 fdec[48+j*FDEC_STRIDE-1] = (!!(i&16))*max[4]; \
2556 for( int j = h/2; j < h-1; j++ ) \
2557 fdec[48+j*FDEC_STRIDE-1] = (!!(i&32))*max[5]; \
2558 fdec[48+(h-1)*FDEC_STRIDE-1] = (!!(i&64))*max[6]; \
2560 /* Extremal test case for planar prediction. */
2561 for( int test
= 0; test
< 100 && ok
; test
++ )
2562 for( int i
= 0; i
< 128 && ok
; i
++ )
2564 EXTREMAL_PLANE( 8, 8 );
2565 INTRA_TEST( predict_8x8c
, I_PRED_CHROMA_P
, 8, 8, 64, 1 );
2566 EXTREMAL_PLANE( 8, 16 );
2567 INTRA_TEST( predict_8x16c
, I_PRED_CHROMA_P
, 8, 16, 64, 1 );
2568 EXTREMAL_PLANE( 16, 16 );
2569 INTRA_TEST( predict_16x16
, I_PRED_16x16_P
, 16, 16, 64, 1 );
2571 report( "intra pred :" );
2575 #define DECL_CABAC(cpu) \
2576 static void run_cabac_decision_##cpu( x264_t *h, uint8_t *dst )\
2579 x264_cabac_context_init( h, &cb, SLICE_TYPE_P, 26, 0 );\
2580 x264_cabac_encode_init( &cb, dst, dst+0xff0 );\
2581 for( int i = 0; i < 0x1000; i++ )\
2582 x264_cabac_encode_decision_##cpu( &cb, buf1[i]>>1, buf1[i]&1 );\
2584 static void run_cabac_bypass_##cpu( x264_t *h, uint8_t *dst )\
2587 x264_cabac_context_init( h, &cb, SLICE_TYPE_P, 26, 0 );\
2588 x264_cabac_encode_init( &cb, dst, dst+0xff0 );\
2589 for( int i = 0; i < 0x1000; i++ )\
2590 x264_cabac_encode_bypass_##cpu( &cb, buf1[i]&1 );\
2592 static void run_cabac_terminal_##cpu( x264_t *h, uint8_t *dst )\
2595 x264_cabac_context_init( h, &cb, SLICE_TYPE_P, 26, 0 );\
2596 x264_cabac_encode_init( &cb, dst, dst+0xff0 );\
2597 for( int i = 0; i < 0x1000; i++ )\
2598 x264_cabac_encode_terminal_##cpu( &cb );\
2603 #elif defined(ARCH_AARCH64)
2606 #define run_cabac_decision_asm run_cabac_decision_c
2607 #define run_cabac_bypass_asm run_cabac_bypass_c
2608 #define run_cabac_terminal_asm run_cabac_terminal_c
2611 extern const uint8_t x264_count_cat_m1
[14];
2613 static int check_cabac( int cpu_ref
, int cpu_new
)
2615 int ret
= 0, ok
= 1, used_asm
= 0;
2617 h
.sps
->i_chroma_format_idc
= 3;
2619 x264_bitstream_function_t bs_ref
;
2620 x264_bitstream_function_t bs_a
;
2621 x264_bitstream_init( cpu_ref
, &bs_ref
);
2622 x264_bitstream_init( cpu_new
, &bs_a
);
2623 x264_quant_init( &h
, cpu_new
, &h
.quantf
);
2624 h
.quantf
.coeff_last
[DCT_CHROMA_DC
] = h
.quantf
.coeff_last4
;
2626 /* Reset cabac state to avoid buffer overruns in do_bench() with large BENCH_RUNS values. */
2627 #define GET_CB( i ) (\
2628 x264_cabac_encode_init( &cb[i], bitstream[i], bitstream[i]+0xfff0 ),\
2629 cb[i].f8_bits_encoded = 0, &cb[i] )
2631 #define CABAC_RESIDUAL(name, start, end, rd)\
2633 if( bs_a.name##_internal && (bs_a.name##_internal != bs_ref.name##_internal || (cpu_new&X264_CPU_SSE2_IS_SLOW)) )\
2636 set_func_name( #name );\
2637 for( int i = 0; i < 2; i++ )\
2639 for( intptr_t ctx_block_cat = start; ctx_block_cat <= end; ctx_block_cat++ )\
2641 for( int j = 0; j < 256; j++ )\
2643 ALIGNED_ARRAY_64( dctcoef, dct, [2],[64] );\
2644 uint8_t bitstream[2][1<<16];\
2645 static const uint8_t ctx_ac[14] = {0,1,0,0,1,0,0,1,0,0,0,1,0,0};\
2646 int ac = ctx_ac[ctx_block_cat];\
2650 for( int k = 0; k <= x264_count_cat_m1[ctx_block_cat]; k++ )\
2652 /* Very rough distribution that covers possible inputs */\
2654 int coef = !(rnd&3);\
2655 coef += !(rnd& 15) * (rand()&0x0006);\
2656 coef += !(rnd& 63) * (rand()&0x0008);\
2657 coef += !(rnd& 255) * (rand()&0x00F0);\
2658 coef += !(rnd&1023) * (rand()&0x7F00);\
2659 nz |= dct[0][ac+k] = dct[1][ac+k] = coef * ((rand()&1) ? 1 : -1);\
2662 h.mb.b_interlaced = i;\
2663 x264_cabac_t cb[2];\
2664 x264_cabac_context_init( &h, &cb[0], SLICE_TYPE_P, 26, 0 );\
2665 x264_cabac_context_init( &h, &cb[1], SLICE_TYPE_P, 26, 0 );\
2666 if( !rd ) memcpy( bitstream[1], bitstream[0], 0x400 );\
2667 call_c1( x264_##name##_c, &h, GET_CB( 0 ), ctx_block_cat, dct[0]+ac );\
2668 call_a1( bs_a.name##_internal, dct[1]+ac, i, ctx_block_cat, GET_CB( 1 ) );\
2669 ok = cb[0].f8_bits_encoded == cb[1].f8_bits_encoded && !memcmp(cb[0].state, cb[1].state, 1024);\
2670 if( !rd ) ok |= !memcmp( bitstream[1], bitstream[0], 0x400 ) && !memcmp( &cb[1], &cb[0], offsetof(x264_cabac_t, p_start) );\
2673 fprintf( stderr, #name " : [FAILED] ctx_block_cat %d", (int)ctx_block_cat );\
2674 if( rd && cb[0].f8_bits_encoded != cb[1].f8_bits_encoded )\
2675 fprintf( stderr, " (%d != %d)", cb[0].f8_bits_encoded, cb[1].f8_bits_encoded );\
2676 fprintf( stderr, "\n");\
2681 call_c2( x264_##name##_c, &h, GET_CB( 0 ), ctx_block_cat, dct[0]+ac );\
2682 call_a2( bs_a.name##_internal, dct[1]+ac, i, ctx_block_cat, GET_CB( 1 ) );\
2691 CABAC_RESIDUAL( cabac_block_residual
, 0, DCT_LUMA_8x8
, 0 )
2692 report( "cabac residual:" );
2694 ok
= 1; used_asm
= 0;
2695 CABAC_RESIDUAL( cabac_block_residual_rd
, 0, DCT_LUMA_8x8
-1, 1 )
2696 CABAC_RESIDUAL( cabac_block_residual_8x8_rd
, DCT_LUMA_8x8
, DCT_LUMA_8x8
, 1 )
2697 report( "cabac residual rd:" );
2699 if( cpu_ref
|| run_cabac_decision_c
== run_cabac_decision_asm
)
2701 ok
= 1; used_asm
= 0;
2702 x264_cabac_init( &h
);
2704 set_func_name( "cabac_encode_decision" );
2705 memcpy( buf4
, buf3
, 0x1000 );
2706 call_c( run_cabac_decision_c
, &h
, buf3
);
2707 call_a( run_cabac_decision_asm
, &h
, buf4
);
2708 ok
= !memcmp( buf3
, buf4
, 0x1000 );
2709 report( "cabac decision:" );
2711 set_func_name( "cabac_encode_bypass" );
2712 memcpy( buf4
, buf3
, 0x1000 );
2713 call_c( run_cabac_bypass_c
, &h
, buf3
);
2714 call_a( run_cabac_bypass_asm
, &h
, buf4
);
2715 ok
= !memcmp( buf3
, buf4
, 0x1000 );
2716 report( "cabac bypass:" );
2718 set_func_name( "cabac_encode_terminal" );
2719 memcpy( buf4
, buf3
, 0x1000 );
2720 call_c( run_cabac_terminal_c
, &h
, buf3
);
2721 call_a( run_cabac_terminal_asm
, &h
, buf4
);
2722 ok
= !memcmp( buf3
, buf4
, 0x1000 );
2723 report( "cabac terminal:" );
2728 static int check_bitstream( int cpu_ref
, int cpu_new
)
2730 x264_bitstream_function_t bs_c
;
2731 x264_bitstream_function_t bs_ref
;
2732 x264_bitstream_function_t bs_a
;
2734 int ret
= 0, ok
= 1, used_asm
= 0;
2736 x264_bitstream_init( 0, &bs_c
);
2737 x264_bitstream_init( cpu_ref
, &bs_ref
);
2738 x264_bitstream_init( cpu_new
, &bs_a
);
2739 if( bs_a
.nal_escape
!= bs_ref
.nal_escape
)
2742 uint8_t *input
= malloc(size
+100);
2743 uint8_t *output1
= malloc(size
*2);
2744 uint8_t *output2
= malloc(size
*2);
2746 set_func_name( "nal_escape" );
2747 for( int i
= 0; i
< 100; i
++ )
2749 /* Test corner-case sizes */
2750 int test_size
= i
< 10 ? i
+1 : rand() & 0x3fff;
2751 /* Test 8 different probability distributions of zeros */
2752 for( int j
= 0; j
< test_size
+32; j
++ )
2753 input
[j
] = (rand()&((1 << ((i
&7)+1)) - 1)) * rand();
2754 uint8_t *end_c
= (uint8_t*)call_c1( bs_c
.nal_escape
, output1
, input
, input
+test_size
);
2755 uint8_t *end_a
= (uint8_t*)call_a1( bs_a
.nal_escape
, output2
, input
, input
+test_size
);
2756 int size_c
= end_c
-output1
;
2757 int size_a
= end_a
-output2
;
2758 if( size_c
!= size_a
|| memcmp( output1
, output2
, size_c
) )
2760 fprintf( stderr
, "nal_escape : [FAILED] %d %d\n", size_c
, size_a
);
2765 for( int j
= 0; j
< size
+32; j
++ )
2767 call_c2( bs_c
.nal_escape
, output1
, input
, input
+size
);
2768 call_a2( bs_a
.nal_escape
, output2
, input
, input
+size
);
2773 report( "nal escape:" );
2778 static int check_all_funcs( int cpu_ref
, int cpu_new
)
2780 return check_pixel( cpu_ref
, cpu_new
)
2781 + check_dct( cpu_ref
, cpu_new
)
2782 + check_mc( cpu_ref
, cpu_new
)
2783 + check_intra( cpu_ref
, cpu_new
)
2784 + check_deblock( cpu_ref
, cpu_new
)
2785 + check_quant( cpu_ref
, cpu_new
)
2786 + check_cabac( cpu_ref
, cpu_new
)
2787 + check_bitstream( cpu_ref
, cpu_new
);
2790 static int add_flags( int *cpu_ref
, int *cpu_new
, int flags
, const char *name
)
2792 *cpu_ref
= *cpu_new
;
2794 #if STACK_ALIGNMENT < 16
2795 *cpu_new
|= X264_CPU_STACK_MOD4
;
2797 if( *cpu_new
& X264_CPU_SSE2_IS_FAST
)
2798 *cpu_new
&= ~X264_CPU_SSE2_IS_SLOW
;
2800 fprintf( stderr
, "x264: %s\n", name
);
2801 return check_all_funcs( *cpu_ref
, *cpu_new
);
2804 static int check_all_flags( void )
2807 int cpu0
= 0, cpu1
= 0;
2808 uint32_t cpu_detect
= x264_cpu_detect();
2809 #if ARCH_X86 || ARCH_X86_64
2810 if( cpu_detect
& X264_CPU_AVX512
)
2811 simd_warmup_func
= x264_checkasm_warmup_avx512
;
2812 else if( cpu_detect
& X264_CPU_AVX
)
2813 simd_warmup_func
= x264_checkasm_warmup_avx
;
2818 if( cpu_detect
& X264_CPU_MMX2
)
2820 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_MMX
| X264_CPU_MMX2
, "MMX" );
2821 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_CACHELINE_64
, "MMX Cache64" );
2822 cpu1
&= ~X264_CPU_CACHELINE_64
;
2824 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_CACHELINE_32
, "MMX Cache32" );
2825 cpu1
&= ~X264_CPU_CACHELINE_32
;
2828 if( cpu_detect
& X264_CPU_SSE
)
2829 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_SSE
, "SSE" );
2830 if( cpu_detect
& X264_CPU_SSE2
)
2832 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_SSE2
| X264_CPU_SSE2_IS_SLOW
, "SSE2Slow" );
2833 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_SSE2_IS_FAST
, "SSE2Fast" );
2834 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_CACHELINE_64
, "SSE2Fast Cache64" );
2835 cpu1
&= ~X264_CPU_CACHELINE_64
;
2836 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_SLOW_SHUFFLE
, "SSE2 SlowShuffle" );
2837 cpu1
&= ~X264_CPU_SLOW_SHUFFLE
;
2839 if( cpu_detect
& X264_CPU_LZCNT
)
2841 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_LZCNT
, "LZCNT" );
2842 cpu1
&= ~X264_CPU_LZCNT
;
2844 if( cpu_detect
& X264_CPU_SSE3
)
2846 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_SSE3
| X264_CPU_CACHELINE_64
, "SSE3" );
2847 cpu1
&= ~X264_CPU_CACHELINE_64
;
2849 if( cpu_detect
& X264_CPU_SSSE3
)
2851 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_SSSE3
, "SSSE3" );
2852 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_CACHELINE_64
, "SSSE3 Cache64" );
2853 cpu1
&= ~X264_CPU_CACHELINE_64
;
2854 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_SLOW_SHUFFLE
, "SSSE3 SlowShuffle" );
2855 cpu1
&= ~X264_CPU_SLOW_SHUFFLE
;
2856 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_SLOW_ATOM
, "SSSE3 SlowAtom" );
2857 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_CACHELINE_64
, "SSSE3 Cache64 SlowAtom" );
2858 cpu1
&= ~X264_CPU_CACHELINE_64
;
2859 cpu1
&= ~X264_CPU_SLOW_ATOM
;
2860 if( cpu_detect
& X264_CPU_LZCNT
)
2862 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_LZCNT
, "SSSE3 LZCNT" );
2863 cpu1
&= ~X264_CPU_LZCNT
;
2866 if( cpu_detect
& X264_CPU_SSE4
)
2867 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_SSE4
, "SSE4" );
2868 if( cpu_detect
& X264_CPU_SSE42
)
2869 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_SSE42
, "SSE4.2" );
2870 if( cpu_detect
& X264_CPU_AVX
)
2871 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_AVX
, "AVX" );
2872 if( cpu_detect
& X264_CPU_XOP
)
2873 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_XOP
, "XOP" );
2874 if( cpu_detect
& X264_CPU_FMA4
)
2876 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_FMA4
, "FMA4" );
2877 cpu1
&= ~X264_CPU_FMA4
;
2879 if( cpu_detect
& X264_CPU_FMA3
)
2880 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_FMA3
, "FMA3" );
2881 if( cpu_detect
& X264_CPU_BMI1
)
2882 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_BMI1
, "BMI1" );
2883 if( cpu_detect
& X264_CPU_BMI2
)
2884 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_BMI2
, "BMI2" );
2885 if( cpu_detect
& X264_CPU_AVX2
)
2886 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_AVX2
, "AVX2" );
2887 if( cpu_detect
& X264_CPU_AVX512
)
2888 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_AVX512
, "AVX512" );
2890 if( cpu_detect
& X264_CPU_ALTIVEC
)
2892 fprintf( stderr
, "x264: ALTIVEC against C\n" );
2893 ret
= check_all_funcs( 0, X264_CPU_ALTIVEC
);
2896 if( cpu_detect
& X264_CPU_NEON
)
2897 x264_checkasm_call
= x264_checkasm_call_neon
;
2898 if( cpu_detect
& X264_CPU_ARMV6
)
2899 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_ARMV6
, "ARMv6" );
2900 if( cpu_detect
& X264_CPU_NEON
)
2901 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_NEON
, "NEON" );
2902 if( cpu_detect
& X264_CPU_FAST_NEON_MRC
)
2903 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_FAST_NEON_MRC
, "Fast NEON MRC" );
2905 if( cpu_detect
& X264_CPU_ARMV8
)
2906 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_ARMV8
, "ARMv8" );
2907 if( cpu_detect
& X264_CPU_NEON
)
2908 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_NEON
, "NEON" );
2910 if( cpu_detect
& X264_CPU_MSA
)
2911 ret
|= add_flags( &cpu0
, &cpu1
, X264_CPU_MSA
, "MSA" );
2916 static int main_internal( int argc
, char **argv
)
2919 /* Disable the Windows Error Reporting dialog */
2920 SetErrorMode( SEM_NOGPFAULTERRORBOX
);
2923 if( argc
> 1 && !strncmp( argv
[1], "--bench", 7 ) )
2925 #if !ARCH_X86 && !ARCH_X86_64 && !ARCH_PPC && !ARCH_ARM && !ARCH_AARCH64 && !ARCH_MIPS
2926 fprintf( stderr
, "no --bench for your cpu until you port rdtsc\n" );
2930 if( argv
[1][7] == '=' )
2932 bench_pattern
= argv
[1]+8;
2933 bench_pattern_len
= strlen(bench_pattern
);
2939 int seed
= ( argc
> 1 ) ? atoi(argv
[1]) : x264_mdate();
2940 fprintf( stderr
, "x264: using random seed %u\n", seed
);
2943 buf1
= x264_malloc( 0x1e00 + 0x2000*sizeof(pixel
) );
2944 pbuf1
= x264_malloc( 0x1e00*sizeof(pixel
) );
2945 if( !buf1
|| !pbuf1
)
2947 fprintf( stderr
, "malloc failed, unable to initiate tests!\n" );
2950 #define INIT_POINTER_OFFSETS\
2951 buf2 = buf1 + 0xf00;\
2952 buf3 = buf2 + 0xf00;\
2953 buf4 = buf3 + 0x1000*sizeof(pixel);\
2954 pbuf2 = pbuf1 + 0xf00;\
2955 pbuf3 = (pixel*)buf3;\
2956 pbuf4 = (pixel*)buf4;
2957 INIT_POINTER_OFFSETS
;
2958 for( int i
= 0; i
< 0x1e00; i
++ )
2960 buf1
[i
] = rand() & 0xFF;
2961 pbuf1
[i
] = rand() & PIXEL_MAX
;
2963 memset( buf1
+0x1e00, 0, 0x2000*sizeof(pixel
) );
2965 if( x264_stack_pagealign( check_all_flags
, 0 ) )
2967 fprintf( stderr
, "x264: at least one test has failed. Go and fix that Right Now!\n" );
2970 fprintf( stderr
, "x264: All tests passed Yeah :)\n" );
2976 int main( int argc
, char **argv
)
2978 return x264_stack_align( main_internal
, argc
, argv
);