rework connect logic on cert retrieval
[xombrero.git] / linux / tree.h
blob7d20047a00f2acf65269f39e5a8801daa96c88cb
1 /* $xxxterm$ */
2 /* $OpenBSD: tree.h,v 1.12 2009/03/02 09:42:55 mikeb Exp $ */
3 /*
4 * Copyright 2002 Niels Provos <provos@citi.umich.edu>
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #ifndef _SYS_TREE_H_
29 #define _SYS_TREE_H_
32 * This file defines data structures for different types of trees:
33 * splay trees and red-black trees.
35 * A splay tree is a self-organizing data structure. Every operation
36 * on the tree causes a splay to happen. The splay moves the requested
37 * node to the root of the tree and partly rebalances it.
39 * This has the benefit that request locality causes faster lookups as
40 * the requested nodes move to the top of the tree. On the other hand,
41 * every lookup causes memory writes.
43 * The Balance Theorem bounds the total access time for m operations
44 * and n inserts on an initially empty tree as O((m + n)lg n). The
45 * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
47 * A red-black tree is a binary search tree with the node color as an
48 * extra attribute. It fulfills a set of conditions:
49 * - every search path from the root to a leaf consists of the
50 * same number of black nodes,
51 * - each red node (except for the root) has a black parent,
52 * - each leaf node is black.
54 * Every operation on a red-black tree is bounded as O(lg n).
55 * The maximum height of a red-black tree is 2lg (n+1).
58 #define SPLAY_HEAD(name, type) \
59 struct name { \
60 struct type *sph_root; /* root of the tree */ \
63 #define SPLAY_INITIALIZER(root) \
64 { NULL }
66 #define SPLAY_INIT(root) do { \
67 (root)->sph_root = NULL; \
68 } while (0)
70 #define SPLAY_ENTRY(type) \
71 struct { \
72 struct type *spe_left; /* left element */ \
73 struct type *spe_right; /* right element */ \
76 #define SPLAY_LEFT(elm, field) (elm)->field.spe_left
77 #define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
78 #define SPLAY_ROOT(head) (head)->sph_root
79 #define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
81 /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
82 #define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
83 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
84 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
85 (head)->sph_root = tmp; \
86 } while (0)
88 #define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
89 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
90 SPLAY_LEFT(tmp, field) = (head)->sph_root; \
91 (head)->sph_root = tmp; \
92 } while (0)
94 #define SPLAY_LINKLEFT(head, tmp, field) do { \
95 SPLAY_LEFT(tmp, field) = (head)->sph_root; \
96 tmp = (head)->sph_root; \
97 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
98 } while (0)
100 #define SPLAY_LINKRIGHT(head, tmp, field) do { \
101 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
102 tmp = (head)->sph_root; \
103 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
104 } while (0)
106 #define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
107 SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
108 SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
109 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
110 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
111 } while (0)
113 /* Generates prototypes and inline functions */
115 #define SPLAY_PROTOTYPE(name, type, field, cmp) \
116 void name##_SPLAY(struct name *, struct type *); \
117 void name##_SPLAY_MINMAX(struct name *, int); \
118 struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
119 struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
121 /* Finds the node with the same key as elm */ \
122 static __inline struct type * \
123 name##_SPLAY_FIND(struct name *head, struct type *elm) \
125 if (SPLAY_EMPTY(head)) \
126 return(NULL); \
127 name##_SPLAY(head, elm); \
128 if ((cmp)(elm, (head)->sph_root) == 0) \
129 return (head->sph_root); \
130 return (NULL); \
133 static __inline struct type * \
134 name##_SPLAY_NEXT(struct name *head, struct type *elm) \
136 name##_SPLAY(head, elm); \
137 if (SPLAY_RIGHT(elm, field) != NULL) { \
138 elm = SPLAY_RIGHT(elm, field); \
139 while (SPLAY_LEFT(elm, field) != NULL) { \
140 elm = SPLAY_LEFT(elm, field); \
142 } else \
143 elm = NULL; \
144 return (elm); \
147 static __inline struct type * \
148 name##_SPLAY_MIN_MAX(struct name *head, int val) \
150 name##_SPLAY_MINMAX(head, val); \
151 return (SPLAY_ROOT(head)); \
154 /* Main splay operation.
155 * Moves node close to the key of elm to top
157 #define SPLAY_GENERATE(name, type, field, cmp) \
158 struct type * \
159 name##_SPLAY_INSERT(struct name *head, struct type *elm) \
161 if (SPLAY_EMPTY(head)) { \
162 SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
163 } else { \
164 int __comp; \
165 name##_SPLAY(head, elm); \
166 __comp = (cmp)(elm, (head)->sph_root); \
167 if(__comp < 0) { \
168 SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
169 SPLAY_RIGHT(elm, field) = (head)->sph_root; \
170 SPLAY_LEFT((head)->sph_root, field) = NULL; \
171 } else if (__comp > 0) { \
172 SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
173 SPLAY_LEFT(elm, field) = (head)->sph_root; \
174 SPLAY_RIGHT((head)->sph_root, field) = NULL; \
175 } else \
176 return ((head)->sph_root); \
178 (head)->sph_root = (elm); \
179 return (NULL); \
182 struct type * \
183 name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
185 struct type *__tmp; \
186 if (SPLAY_EMPTY(head)) \
187 return (NULL); \
188 name##_SPLAY(head, elm); \
189 if ((cmp)(elm, (head)->sph_root) == 0) { \
190 if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
191 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
192 } else { \
193 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
194 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
195 name##_SPLAY(head, elm); \
196 SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
198 return (elm); \
200 return (NULL); \
203 void \
204 name##_SPLAY(struct name *head, struct type *elm) \
206 struct type __node, *__left, *__right, *__tmp; \
207 int __comp; \
209 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
210 __left = __right = &__node; \
212 while ((__comp = (cmp)(elm, (head)->sph_root))) { \
213 if (__comp < 0) { \
214 __tmp = SPLAY_LEFT((head)->sph_root, field); \
215 if (__tmp == NULL) \
216 break; \
217 if ((cmp)(elm, __tmp) < 0){ \
218 SPLAY_ROTATE_RIGHT(head, __tmp, field); \
219 if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
220 break; \
222 SPLAY_LINKLEFT(head, __right, field); \
223 } else if (__comp > 0) { \
224 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
225 if (__tmp == NULL) \
226 break; \
227 if ((cmp)(elm, __tmp) > 0){ \
228 SPLAY_ROTATE_LEFT(head, __tmp, field); \
229 if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
230 break; \
232 SPLAY_LINKRIGHT(head, __left, field); \
235 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
238 /* Splay with either the minimum or the maximum element \
239 * Used to find minimum or maximum element in tree. \
240 */ \
241 void name##_SPLAY_MINMAX(struct name *head, int __comp) \
243 struct type __node, *__left, *__right, *__tmp; \
245 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
246 __left = __right = &__node; \
248 while (1) { \
249 if (__comp < 0) { \
250 __tmp = SPLAY_LEFT((head)->sph_root, field); \
251 if (__tmp == NULL) \
252 break; \
253 if (__comp < 0){ \
254 SPLAY_ROTATE_RIGHT(head, __tmp, field); \
255 if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
256 break; \
258 SPLAY_LINKLEFT(head, __right, field); \
259 } else if (__comp > 0) { \
260 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
261 if (__tmp == NULL) \
262 break; \
263 if (__comp > 0) { \
264 SPLAY_ROTATE_LEFT(head, __tmp, field); \
265 if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
266 break; \
268 SPLAY_LINKRIGHT(head, __left, field); \
271 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
274 #define SPLAY_NEGINF -1
275 #define SPLAY_INF 1
277 #define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
278 #define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
279 #define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
280 #define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
281 #define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
282 : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
283 #define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
284 : name##_SPLAY_MIN_MAX(x, SPLAY_INF))
286 #define SPLAY_FOREACH(x, name, head) \
287 for ((x) = SPLAY_MIN(name, head); \
288 (x) != NULL; \
289 (x) = SPLAY_NEXT(name, head, x))
291 /* Macros that define a red-black tree */
292 #define RB_HEAD(name, type) \
293 struct name { \
294 struct type *rbh_root; /* root of the tree */ \
297 #define RB_INITIALIZER(root) \
298 { NULL }
300 #define RB_INIT(root) do { \
301 (root)->rbh_root = NULL; \
302 } while (0)
304 #define RB_BLACK 0
305 #define RB_RED 1
306 #define RB_ENTRY(type) \
307 struct { \
308 struct type *rbe_left; /* left element */ \
309 struct type *rbe_right; /* right element */ \
310 struct type *rbe_parent; /* parent element */ \
311 int rbe_color; /* node color */ \
314 #define RB_LEFT(elm, field) (elm)->field.rbe_left
315 #define RB_RIGHT(elm, field) (elm)->field.rbe_right
316 #define RB_PARENT(elm, field) (elm)->field.rbe_parent
317 #define RB_COLOR(elm, field) (elm)->field.rbe_color
318 #define RB_ROOT(head) (head)->rbh_root
319 #define RB_EMPTY(head) (RB_ROOT(head) == NULL)
321 #define RB_SET(elm, parent, field) do { \
322 RB_PARENT(elm, field) = parent; \
323 RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
324 RB_COLOR(elm, field) = RB_RED; \
325 } while (0)
327 #define RB_SET_BLACKRED(black, red, field) do { \
328 RB_COLOR(black, field) = RB_BLACK; \
329 RB_COLOR(red, field) = RB_RED; \
330 } while (0)
332 #ifndef RB_AUGMENT
333 #define RB_AUGMENT(x) do {} while (0)
334 #endif
336 #define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
337 (tmp) = RB_RIGHT(elm, field); \
338 if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field))) { \
339 RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
341 RB_AUGMENT(elm); \
342 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
343 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
344 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
345 else \
346 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
347 } else \
348 (head)->rbh_root = (tmp); \
349 RB_LEFT(tmp, field) = (elm); \
350 RB_PARENT(elm, field) = (tmp); \
351 RB_AUGMENT(tmp); \
352 if ((RB_PARENT(tmp, field))) \
353 RB_AUGMENT(RB_PARENT(tmp, field)); \
354 } while (0)
356 #define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
357 (tmp) = RB_LEFT(elm, field); \
358 if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field))) { \
359 RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
361 RB_AUGMENT(elm); \
362 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
363 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
364 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
365 else \
366 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
367 } else \
368 (head)->rbh_root = (tmp); \
369 RB_RIGHT(tmp, field) = (elm); \
370 RB_PARENT(elm, field) = (tmp); \
371 RB_AUGMENT(tmp); \
372 if ((RB_PARENT(tmp, field))) \
373 RB_AUGMENT(RB_PARENT(tmp, field)); \
374 } while (0)
376 /* Generates prototypes and inline functions */
377 #define RB_PROTOTYPE(name, type, field, cmp) \
378 RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
379 #define RB_PROTOTYPE_STATIC(name, type, field, cmp) \
380 RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __attribute__((__unused__)) static)
381 #define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \
382 attr void name##_RB_INSERT_COLOR(struct name *, struct type *); \
383 attr void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
384 attr struct type *name##_RB_REMOVE(struct name *, struct type *); \
385 attr struct type *name##_RB_INSERT(struct name *, struct type *); \
386 attr struct type *name##_RB_FIND(struct name *, struct type *); \
387 attr struct type *name##_RB_NFIND(struct name *, struct type *); \
388 attr struct type *name##_RB_NEXT(struct type *); \
389 attr struct type *name##_RB_PREV(struct type *); \
390 attr struct type *name##_RB_MINMAX(struct name *, int); \
393 /* Main rb operation.
394 * Moves node close to the key of elm to top
396 #define RB_GENERATE(name, type, field, cmp) \
397 RB_GENERATE_INTERNAL(name, type, field, cmp,)
398 #define RB_GENERATE_STATIC(name, type, field, cmp) \
399 RB_GENERATE_INTERNAL(name, type, field, cmp, __attribute__((__unused__)) static)
400 #define RB_GENERATE_INTERNAL(name, type, field, cmp, attr) \
401 attr void \
402 name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
404 struct type *parent, *gparent, *tmp; \
405 while ((parent = RB_PARENT(elm, field)) && \
406 RB_COLOR(parent, field) == RB_RED) { \
407 gparent = RB_PARENT(parent, field); \
408 if (parent == RB_LEFT(gparent, field)) { \
409 tmp = RB_RIGHT(gparent, field); \
410 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
411 RB_COLOR(tmp, field) = RB_BLACK; \
412 RB_SET_BLACKRED(parent, gparent, field);\
413 elm = gparent; \
414 continue; \
416 if (RB_RIGHT(parent, field) == elm) { \
417 RB_ROTATE_LEFT(head, parent, tmp, field);\
418 tmp = parent; \
419 parent = elm; \
420 elm = tmp; \
422 RB_SET_BLACKRED(parent, gparent, field); \
423 RB_ROTATE_RIGHT(head, gparent, tmp, field); \
424 } else { \
425 tmp = RB_LEFT(gparent, field); \
426 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
427 RB_COLOR(tmp, field) = RB_BLACK; \
428 RB_SET_BLACKRED(parent, gparent, field);\
429 elm = gparent; \
430 continue; \
432 if (RB_LEFT(parent, field) == elm) { \
433 RB_ROTATE_RIGHT(head, parent, tmp, field);\
434 tmp = parent; \
435 parent = elm; \
436 elm = tmp; \
438 RB_SET_BLACKRED(parent, gparent, field); \
439 RB_ROTATE_LEFT(head, gparent, tmp, field); \
442 RB_COLOR(head->rbh_root, field) = RB_BLACK; \
445 attr void \
446 name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
448 struct type *tmp; \
449 while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
450 elm != RB_ROOT(head)) { \
451 if (RB_LEFT(parent, field) == elm) { \
452 tmp = RB_RIGHT(parent, field); \
453 if (RB_COLOR(tmp, field) == RB_RED) { \
454 RB_SET_BLACKRED(tmp, parent, field); \
455 RB_ROTATE_LEFT(head, parent, tmp, field);\
456 tmp = RB_RIGHT(parent, field); \
458 if ((RB_LEFT(tmp, field) == NULL || \
459 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
460 (RB_RIGHT(tmp, field) == NULL || \
461 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
462 RB_COLOR(tmp, field) = RB_RED; \
463 elm = parent; \
464 parent = RB_PARENT(elm, field); \
465 } else { \
466 if (RB_RIGHT(tmp, field) == NULL || \
467 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
468 struct type *oleft; \
469 if ((oleft = RB_LEFT(tmp, field)))\
470 RB_COLOR(oleft, field) = RB_BLACK;\
471 RB_COLOR(tmp, field) = RB_RED; \
472 RB_ROTATE_RIGHT(head, tmp, oleft, field);\
473 tmp = RB_RIGHT(parent, field); \
475 RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
476 RB_COLOR(parent, field) = RB_BLACK; \
477 if (RB_RIGHT(tmp, field)) \
478 RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
479 RB_ROTATE_LEFT(head, parent, tmp, field);\
480 elm = RB_ROOT(head); \
481 break; \
483 } else { \
484 tmp = RB_LEFT(parent, field); \
485 if (RB_COLOR(tmp, field) == RB_RED) { \
486 RB_SET_BLACKRED(tmp, parent, field); \
487 RB_ROTATE_RIGHT(head, parent, tmp, field);\
488 tmp = RB_LEFT(parent, field); \
490 if ((RB_LEFT(tmp, field) == NULL || \
491 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
492 (RB_RIGHT(tmp, field) == NULL || \
493 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
494 RB_COLOR(tmp, field) = RB_RED; \
495 elm = parent; \
496 parent = RB_PARENT(elm, field); \
497 } else { \
498 if (RB_LEFT(tmp, field) == NULL || \
499 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
500 struct type *oright; \
501 if ((oright = RB_RIGHT(tmp, field)))\
502 RB_COLOR(oright, field) = RB_BLACK;\
503 RB_COLOR(tmp, field) = RB_RED; \
504 RB_ROTATE_LEFT(head, tmp, oright, field);\
505 tmp = RB_LEFT(parent, field); \
507 RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
508 RB_COLOR(parent, field) = RB_BLACK; \
509 if (RB_LEFT(tmp, field)) \
510 RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
511 RB_ROTATE_RIGHT(head, parent, tmp, field);\
512 elm = RB_ROOT(head); \
513 break; \
517 if (elm) \
518 RB_COLOR(elm, field) = RB_BLACK; \
521 attr struct type * \
522 name##_RB_REMOVE(struct name *head, struct type *elm) \
524 struct type *child, *parent, *old = elm; \
525 int color; \
526 if (RB_LEFT(elm, field) == NULL) \
527 child = RB_RIGHT(elm, field); \
528 else if (RB_RIGHT(elm, field) == NULL) \
529 child = RB_LEFT(elm, field); \
530 else { \
531 struct type *left; \
532 elm = RB_RIGHT(elm, field); \
533 while ((left = RB_LEFT(elm, field))) \
534 elm = left; \
535 child = RB_RIGHT(elm, field); \
536 parent = RB_PARENT(elm, field); \
537 color = RB_COLOR(elm, field); \
538 if (child) \
539 RB_PARENT(child, field) = parent; \
540 if (parent) { \
541 if (RB_LEFT(parent, field) == elm) \
542 RB_LEFT(parent, field) = child; \
543 else \
544 RB_RIGHT(parent, field) = child; \
545 RB_AUGMENT(parent); \
546 } else \
547 RB_ROOT(head) = child; \
548 if (RB_PARENT(elm, field) == old) \
549 parent = elm; \
550 (elm)->field = (old)->field; \
551 if (RB_PARENT(old, field)) { \
552 if (RB_LEFT(RB_PARENT(old, field), field) == old)\
553 RB_LEFT(RB_PARENT(old, field), field) = elm;\
554 else \
555 RB_RIGHT(RB_PARENT(old, field), field) = elm;\
556 RB_AUGMENT(RB_PARENT(old, field)); \
557 } else \
558 RB_ROOT(head) = elm; \
559 RB_PARENT(RB_LEFT(old, field), field) = elm; \
560 if (RB_RIGHT(old, field)) \
561 RB_PARENT(RB_RIGHT(old, field), field) = elm; \
562 if (parent) { \
563 left = parent; \
564 do { \
565 RB_AUGMENT(left); \
566 } while ((left = RB_PARENT(left, field))); \
568 goto color; \
570 parent = RB_PARENT(elm, field); \
571 color = RB_COLOR(elm, field); \
572 if (child) \
573 RB_PARENT(child, field) = parent; \
574 if (parent) { \
575 if (RB_LEFT(parent, field) == elm) \
576 RB_LEFT(parent, field) = child; \
577 else \
578 RB_RIGHT(parent, field) = child; \
579 RB_AUGMENT(parent); \
580 } else \
581 RB_ROOT(head) = child; \
582 color: \
583 if (color == RB_BLACK) \
584 name##_RB_REMOVE_COLOR(head, parent, child); \
585 return (old); \
588 /* Inserts a node into the RB tree */ \
589 attr struct type * \
590 name##_RB_INSERT(struct name *head, struct type *elm) \
592 struct type *tmp; \
593 struct type *parent = NULL; \
594 int comp = 0; \
595 tmp = RB_ROOT(head); \
596 while (tmp) { \
597 parent = tmp; \
598 comp = (cmp)(elm, parent); \
599 if (comp < 0) \
600 tmp = RB_LEFT(tmp, field); \
601 else if (comp > 0) \
602 tmp = RB_RIGHT(tmp, field); \
603 else \
604 return (tmp); \
606 RB_SET(elm, parent, field); \
607 if (parent != NULL) { \
608 if (comp < 0) \
609 RB_LEFT(parent, field) = elm; \
610 else \
611 RB_RIGHT(parent, field) = elm; \
612 RB_AUGMENT(parent); \
613 } else \
614 RB_ROOT(head) = elm; \
615 name##_RB_INSERT_COLOR(head, elm); \
616 return (NULL); \
619 /* Finds the node with the same key as elm */ \
620 attr struct type * \
621 name##_RB_FIND(struct name *head, struct type *elm) \
623 struct type *tmp = RB_ROOT(head); \
624 int comp; \
625 while (tmp) { \
626 comp = cmp(elm, tmp); \
627 if (comp < 0) \
628 tmp = RB_LEFT(tmp, field); \
629 else if (comp > 0) \
630 tmp = RB_RIGHT(tmp, field); \
631 else \
632 return (tmp); \
634 return (NULL); \
637 /* Finds the first node greater than or equal to the search key */ \
638 attr struct type * \
639 name##_RB_NFIND(struct name *head, struct type *elm) \
641 struct type *tmp = RB_ROOT(head); \
642 struct type *res = NULL; \
643 int comp; \
644 while (tmp) { \
645 comp = cmp(elm, tmp); \
646 if (comp < 0) { \
647 res = tmp; \
648 tmp = RB_LEFT(tmp, field); \
650 else if (comp > 0) \
651 tmp = RB_RIGHT(tmp, field); \
652 else \
653 return (tmp); \
655 return (res); \
658 /* ARGSUSED */ \
659 attr struct type * \
660 name##_RB_NEXT(struct type *elm) \
662 if (RB_RIGHT(elm, field)) { \
663 elm = RB_RIGHT(elm, field); \
664 while (RB_LEFT(elm, field)) \
665 elm = RB_LEFT(elm, field); \
666 } else { \
667 if (RB_PARENT(elm, field) && \
668 (elm == RB_LEFT(RB_PARENT(elm, field), field))) \
669 elm = RB_PARENT(elm, field); \
670 else { \
671 while (RB_PARENT(elm, field) && \
672 (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
673 elm = RB_PARENT(elm, field); \
674 elm = RB_PARENT(elm, field); \
677 return (elm); \
680 /* ARGSUSED */ \
681 attr struct type * \
682 name##_RB_PREV(struct type *elm) \
684 if (RB_LEFT(elm, field)) { \
685 elm = RB_LEFT(elm, field); \
686 while (RB_RIGHT(elm, field)) \
687 elm = RB_RIGHT(elm, field); \
688 } else { \
689 if (RB_PARENT(elm, field) && \
690 (elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
691 elm = RB_PARENT(elm, field); \
692 else { \
693 while (RB_PARENT(elm, field) && \
694 (elm == RB_LEFT(RB_PARENT(elm, field), field)))\
695 elm = RB_PARENT(elm, field); \
696 elm = RB_PARENT(elm, field); \
699 return (elm); \
702 attr struct type * \
703 name##_RB_MINMAX(struct name *head, int val) \
705 struct type *tmp = RB_ROOT(head); \
706 struct type *parent = NULL; \
707 while (tmp) { \
708 parent = tmp; \
709 if (val < 0) \
710 tmp = RB_LEFT(tmp, field); \
711 else \
712 tmp = RB_RIGHT(tmp, field); \
714 return (parent); \
717 #define RB_NEGINF -1
718 #define RB_INF 1
720 #define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
721 #define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
722 #define RB_FIND(name, x, y) name##_RB_FIND(x, y)
723 #define RB_NFIND(name, x, y) name##_RB_NFIND(x, y)
724 #define RB_NEXT(name, x, y) name##_RB_NEXT(y)
725 #define RB_PREV(name, x, y) name##_RB_PREV(y)
726 #define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
727 #define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
729 #define RB_FOREACH(x, name, head) \
730 for ((x) = RB_MIN(name, head); \
731 (x) != NULL; \
732 (x) = name##_RB_NEXT(x))
734 #define RB_FOREACH_REVERSE(x, name, head) \
735 for ((x) = RB_MAX(name, head); \
736 (x) != NULL; \
737 (x) = name##_RB_PREV(x))
739 #endif /* _SYS_TREE_H_ */