1 //------------------------------------------------------------------------------
4 // Desc: DirectShow base classes - implements class for simple Transform-
5 // In-Place filters such as audio.
7 // Copyright (c) 1992-2002 Microsoft Corporation. All rights reserved.
8 //------------------------------------------------------------------------------
11 // How allocators are decided.
13 // An in-place transform tries to do its work in someone else's buffers.
14 // It tries to persuade the filters on either side to use the same allocator
15 // (and for that matter the same media type). In desperation, if the downstream
16 // filter refuses to supply an allocator and the upstream filter offers only
17 // a read-only one then it will provide an allocator.
18 // if the upstream filter insists on a read-only allocator then the transform
19 // filter will (reluctantly) copy the data before transforming it.
21 // In order to pass an allocator through it needs to remember the one it got
22 // from the first connection to pass it on to the second one.
24 // It is good if we can avoid insisting on a particular order of connection
25 // (There is a precedent for insisting on the input
26 // being connected first. Insisting on the output being connected first is
27 // not allowed. That would break RenderFile.)
29 // The base pin classes (CBaseOutputPin and CBaseInputPin) both have a
30 // m_pAllocator member which is used in places like
31 // CBaseOutputPin::GetDeliveryBuffer and CBaseInputPin::Inactive.
32 // To avoid lots of extra overriding, we should keep these happy
33 // by using these pointers.
35 // When each pin is connected, it will set the corresponding m_pAllocator
36 // and will have a single ref-count on that allocator.
38 // Refcounts are acquired by GetAllocator calls which return AddReffed
39 // allocators and are released in one of:
40 // CBaseInputPin::Disconnect
41 // CBaseOutputPin::BreakConect
42 // In each case m_pAllocator is set to NULL after the release, so this
43 // is the last chance to ever release it. If there should ever be
44 // multiple refcounts associated with the same pointer, this had better
45 // be cleared up before that happens. To avoid such problems, we'll
46 // stick with one per pointer.
50 // RECONNECTING and STATE CHANGES
52 // Each pin could be disconnected, connected with a read-only allocator,
53 // connected with an upstream read/write allocator, connected with an
54 // allocator from downstream or connected with its own allocator.
55 // Five states for each pin gives a data space of 25 states.
62 // <input pin state> <output pin state> <comments>
64 // 00 means an unconnected pin.
65 // <- means using a R/W allocator from the upstream filter
66 // <= means using a R-O allocator from an upstream filter
67 // || means using our own (R/W) allocator.
68 // -> means using a R/W allocator from a downstream filter
69 // (a R-O allocator from downstream is nonsense, it can't ever work).
72 // That makes 25 possible states. Some states are nonsense (two different
73 // allocators from the same place). These are just an artifact of the notation.
76 // Some states are illegal (the output pin never accepts a R-O allocator):
81 // Three states appears to be inaccessible:
85 // Some states only ever occur as intermediates with a pending reconnect which
86 // is guaranteed to finish in another state.
87 // -> 00 ?? unstable goes to || 00
88 // 00 <- ?? unstable goes to 00 ||
89 // -> <- ?? unstable goes to -> ->
90 // <- || ?? unstable goes to <- <-
91 // <- -> ?? unstable goes to <- <-
92 // And that leaves 11 possible resting states:
93 // 1 00 00 Nothing connected.
94 // 2 <- 00 Input pin connected.
95 // 3 <= 00 Input pin connected using R-O allocator.
96 // 4 || 00 Needs several state changes to get here.
97 // 5 00 || Output pin connected using our allocator
98 // 6 00 -> Downstream only connected
99 // 7 || || Undesirable but can be forced upon us.
100 // 8 <= || Copy forced. <= -> is preferable
101 // 9 <= -> OK - forced to copy.
102 // 10 <- <- Transform in place (ideal)
103 // 11 -> -> Transform in place (ideal)
105 // The object of the exercise is to ensure that we finish up in states
106 // 10 or 11 whenever possible. State 10 is only possible if the upstream
107 // filter has a R/W allocator (the AVI splitter notoriously
108 // doesn't) and state 11 is only possible if the downstream filter does
109 // offer an allocator.
111 // The transition table (entries marked * go via a reconnect)
113 // There are 8 possible transitions:
114 // A: Connect upstream to filter with R-O allocator that insists on using it.
115 // B: Connect upstream to filter with R-O allocator but chooses not to use it.
116 // C: Connect upstream to filter with R/W allocator and insists on using it.
117 // D: Connect upstream to filter with R/W allocator but chooses not to use it.
118 // E: Connect downstream to a filter that offers an allocator
119 // F: Connect downstream to a filter that does not offer an allocator
120 // G: disconnect upstream
121 // H: Disconnect downstream
124 // ---------------------------------------------------------
125 // 00 00 1 | 3 3 2 2 6 5 . . |1 00 00
126 // <- 00 2 | . . . . *10/11 10 1 . |2 <- 00
127 // <= 00 3 | . . . . *9/11 *7/8 1 . |3 <= 00
128 // || 00 4 | . . . . *8 *7 1 . |4 || 00
129 // 00 || 5 | 8 7 *10 7 . . . 1 |5 00 ||
130 // 00 -> 6 | 9 11 *10 11 . . . 1 |6 00 ->
131 // || || 7 | . . . . . . 5 4 |7 || ||
132 // <= || 8 | . . . . . . 5 3 |8 <= ||
133 // <= -> 9 | . . . . . . 6 3 |9 <= ->
134 // <- <- 10| . . . . . . *5/6 2 |10 <- <-
135 // -> -> 11| . . . . . . 6 *2/3 |11 -> ->
136 // ---------------------------------------------------------
139 // All these states are accessible without requiring any filter to
140 // change its behaviour but not all transitions are accessible, for
141 // instance a transition from state 4 to anywhere other than
142 // state 8 requires that the upstream filter first offer a R-O allocator
143 // and then changes its mind and offer R/W. This is NOT allowable - it
144 // leads to things like the output pin getting a R/W allocator from
145 // upstream and then the input pin being told it can only have a R-O one.
146 // Note that you CAN change (say) the upstream filter for a different one, but
147 // only as a disconnect / connect, not as a Reconnect. (Exercise for
148 // the reader is to see how you get into state 4).
150 // The reconnection stuff goes as follows (some of the cases shown here as
151 // "no reconnect" may get one to finalise media type - an old story).
152 // If there is a reconnect where it says "no reconnect" here then the
153 // reconnection must not change the allocator choice.
155 // state 2: <- 00 transition E <- <- case C <- <- (no change)
156 // case D -> <- and then to -> ->
158 // state 2: <- 00 transition F <- <- (no reconnect)
160 // state 3: <= 00 transition E <= -> case A <= -> (no change)
162 // transition F <= || case A <= || (no change)
165 // state 4: || 00 transition E || || case B -> || and then all cases to -> ->
166 // F || || case B || || (no change)
168 // state 5: 00 || transition A <= || (no reconnect)
169 // B || || (no reconnect)
170 // C <- || all cases <- <-
171 // D || || (unfortunate, but upstream's choice)
173 // state 6: 00 -> transition A <= -> (no reconnect)
174 // B -> -> (no reconnect)
175 // C <- -> all cases <- <-
176 // D -> -> (no reconnect)
178 // state 10:<- <- transition G 00 <- case E 00 ->
181 // state 11:-> -> transition H -> 00 case A <= 00 (schizo)
183 // case C <- 00 (schizo)
187 // To sort out media types:
188 // The input is reconnected
189 // if the input pin is connected and the output pin connects
190 // The output is reconnected
191 // If the output pin is connected
192 // and the input pin connects to a different media type
194 // To sort out allocators:
195 // The input is reconnected
196 // if the output disconnects and the input was using a downstream allocator
197 // The output pin calls SetAllocator to pass on a new allocator
198 // if the output is connected and
199 // if the input disconnects and the output was using an upstream allocator
200 // if the input acquires an allocator different from the output one
201 // and that new allocator is not R-O
203 // Data is copied (i.e. call getbuffer and copy the data before transforming it)
204 // if the two allocators are different.
208 // CHAINS of filters:
210 // We sit between two filters (call them A and Z). We should finish up
211 // with the same allocator on both of our pins and that should be the
212 // same one that A and Z would have agreed on if we hadn't been in the
213 // way. Furthermore, it should not matter how many in-place transforms
214 // are in the way. Let B, C, D... be in-place transforms ("us").
215 // Here's how it goes:
218 // A connects to B. They agree on A's allocator.
222 // B connects to C. Same story. There is no point in a reconnect, but
223 // B will request an input reconnect anyway.
228 // C insists on using A's allocator, but compromises by requesting a reconnect.
232 // We now have pending reconnects on both A--->B and B--->C
235 // The A--->B link is reconnected.
236 // A asks B for an allocator. B sees that it has a downstream connection so
237 // asks its downstream input pin i.e. C's input pin for an allocator. C sees
238 // that it too has a downstream connection so asks Z for an allocator.
240 // Even though Z's input pin is connected, it is being asked for an allocator.
241 // It could refuse, in which case the chain is done and will use A's allocator
242 // Alternatively, Z may supply one. A chooses either Z's or A's own one.
243 // B's input pin gets NotifyAllocator called to tell it the decision and it
244 // propagates this downstream by calling ReceiveAllocator on its output pin
245 // which calls NotifyAllocator on the next input pin downstream etc.
246 // If the choice is Z then it goes:
251 // And that's IT!! Any further (essentially spurious) reconnects peter out
252 // with no change in the chain.
259 // =================================================================
260 // Implements the CTransInPlaceFilter class
261 // =================================================================
263 CTransInPlaceFilter::CTransInPlaceFilter
270 : CTransformFilter(pName
, pUnk
, clsid
),
271 m_bModifiesData(bModifiesData
)
280 CTransInPlaceFilter::CTransInPlaceFilter
287 : CTransformFilter(pName
, pUnk
, clsid
),
288 m_bModifiesData(bModifiesData
)
297 // return a non-addrefed CBasePin * for the user to addref if he holds onto it
298 // for longer than his pointer to us. We create the pins dynamically when they
299 // are asked for rather than in the constructor. This is because we want to
300 // give the derived class an oppportunity to return different pin objects
302 // As soon as any pin is needed we create both (this is different from the
303 // usual transform filter) because enumerators, allocators etc are passed
304 // through from one pin to another and it becomes very painful if the other
305 // pin isn't there. If we fail to create either pin we ensure we fail both.
308 CTransInPlaceFilter::GetPin(int n
)
312 // Create an input pin if not already done
314 if (m_pInput
== NULL
) {
316 m_pInput
= new CTransInPlaceInputPin( NAME("TransInPlace input pin")
317 , this // Owner filter
319 , L
"Input" // Pin name
322 // Constructor for CTransInPlaceInputPin can't fail
323 ASSERT(SUCCEEDED(hr
));
326 // Create an output pin if not already done
328 if (m_pInput
!=NULL
&& m_pOutput
== NULL
) {
330 m_pOutput
= new CTransInPlaceOutputPin( NAME("TransInPlace output pin")
331 , this // Owner filter
333 , L
"Output" // Pin name
336 // a failed return code should delete the object
338 ASSERT(SUCCEEDED(hr
));
339 if (m_pOutput
== NULL
) {
345 // Return the appropriate pin
347 ASSERT (n
>=0 && n
<=1);
360 // dir is the direction of our pin.
361 // pReceivePin is the pin we are connecting to.
362 HRESULT
CTransInPlaceFilter::CompleteConnect(PIN_DIRECTION dir
,IPin
*pReceivePin
)
364 UNREFERENCED_PARAMETER(pReceivePin
);
368 // if we are not part of a graph, then don't indirect the pointer
369 // this probably prevents use of the filter without a filtergraph
371 return VFW_E_NOT_IN_GRAPH
;
374 // Always reconnect the input to account for buffering changes
376 // Because we don't get to suggest a type on ReceiveConnection
377 // we need another way of making sure the right type gets used.
379 // One way would be to have our EnumMediaTypes return our output
380 // connection type first but more deterministic and simple is to
381 // call ReconnectEx passing the type we want to reconnect with
382 // via the base class ReconeectPin method.
384 if (dir
== PINDIR_OUTPUT
) {
385 if( m_pInput
->IsConnected() ) {
386 return ReconnectPin( m_pInput
, &m_pOutput
->CurrentMediaType() );
391 ASSERT(dir
== PINDIR_INPUT
);
393 // Reconnect output if necessary
395 if( m_pOutput
->IsConnected() ) {
397 if ( m_pInput
->CurrentMediaType()
398 != m_pOutput
->CurrentMediaType()
400 return ReconnectPin( m_pOutput
, &m_pInput
->CurrentMediaType() );
405 } // ComnpleteConnect
411 // Tell the output pin's allocator what size buffers we require.
412 // *pAlloc will be the allocator our output pin is using.
415 HRESULT
CTransInPlaceFilter::DecideBufferSize
416 ( IMemAllocator
*pAlloc
417 , ALLOCATOR_PROPERTIES
*pProperties
420 ALLOCATOR_PROPERTIES Request
, Actual
;
423 // If we are connected upstream, get his views
424 if (m_pInput
->IsConnected()) {
425 // Get the input pin allocator, and get its size and count.
426 // we don't care about his alignment and prefix.
428 hr
= InputPin()->PeekAllocator()->GetProperties(&Request
);
430 // Input connected but with a secretive allocator - enough!
434 // We're reduced to blind guessing. Let's guess one byte and if
435 // this isn't enough then when the other pin does get connected
437 ZeroMemory(&Request
, sizeof(Request
));
438 Request
.cBuffers
= 1;
439 Request
.cbBuffer
= 1;
443 DbgLog((LOG_MEMORY
,1,TEXT("Setting Allocator Requirements")));
444 DbgLog((LOG_MEMORY
,1,TEXT("Count %d, Size %d"),
445 Request
.cBuffers
, Request
.cbBuffer
));
447 // Pass the allocator requirements to our output side
448 // but do a little sanity checking first or we'll just hit
449 // asserts in the allocator.
451 pProperties
->cBuffers
= Request
.cBuffers
;
452 pProperties
->cbBuffer
= Request
.cbBuffer
;
453 pProperties
->cbAlign
= Request
.cbAlign
;
454 if (pProperties
->cBuffers
<=0) {pProperties
->cBuffers
= 1; }
455 if (pProperties
->cbBuffer
<=0) {pProperties
->cbBuffer
= 1; }
456 hr
= pAlloc
->SetProperties(pProperties
, &Actual
);
462 DbgLog((LOG_MEMORY
,1,TEXT("Obtained Allocator Requirements")));
463 DbgLog((LOG_MEMORY
,1,TEXT("Count %d, Size %d, Alignment %d"),
464 Actual
.cBuffers
, Actual
.cbBuffer
, Actual
.cbAlign
));
466 // Make sure we got the right alignment and at least the minimum required
468 if ( (Request
.cBuffers
> Actual
.cBuffers
)
469 || (Request
.cbBuffer
> Actual
.cbBuffer
)
470 || (Request
.cbAlign
> Actual
.cbAlign
)
476 } // DecideBufferSize
481 // return a pointer to an identical copy of pSample
482 IMediaSample
* CTransInPlaceFilter::Copy(IMediaSample
*pSource
)
484 IMediaSample
* pDest
;
487 REFERENCE_TIME tStart
, tStop
;
488 const BOOL bTime
= S_OK
== pSource
->GetTime( &tStart
, &tStop
);
490 // this may block for an indeterminate amount of time
491 hr
= OutputPin()->PeekAllocator()->GetBuffer(
493 , bTime
? &tStart
: NULL
494 , bTime
? &tStop
: NULL
495 , m_bSampleSkipped
? AM_GBF_PREVFRAMESKIPPED
: 0
503 IMediaSample2
*pSample2
;
504 if (SUCCEEDED(pDest
->QueryInterface(IID_IMediaSample2
, (void **)&pSample2
))) {
505 HRESULT hr
= pSample2
->SetProperties(
506 FIELD_OFFSET(AM_SAMPLE2_PROPERTIES
, pbBuffer
),
507 (PBYTE
)m_pInput
->SampleProps());
515 pDest
->SetTime(&tStart
, &tStop
);
518 if (S_OK
== pSource
->IsSyncPoint()) {
519 pDest
->SetSyncPoint(TRUE
);
521 if (S_OK
== pSource
->IsDiscontinuity() || m_bSampleSkipped
) {
522 pDest
->SetDiscontinuity(TRUE
);
524 if (S_OK
== pSource
->IsPreroll()) {
525 pDest
->SetPreroll(TRUE
);
528 // Copy the media type
529 AM_MEDIA_TYPE
*pMediaType
;
530 if (S_OK
== pSource
->GetMediaType(&pMediaType
)) {
531 pDest
->SetMediaType(pMediaType
);
532 DeleteMediaType( pMediaType
);
537 m_bSampleSkipped
= FALSE
;
539 // Copy the sample media times
540 REFERENCE_TIME TimeStart
, TimeEnd
;
541 if (pSource
->GetMediaTime(&TimeStart
,&TimeEnd
) == NOERROR
) {
542 pDest
->SetMediaTime(&TimeStart
,&TimeEnd
);
545 // Copy the actual data length and the actual data.
547 const long lDataLength
= pSource
->GetActualDataLength();
548 pDest
->SetActualDataLength(lDataLength
);
550 // Copy the sample data
552 BYTE
*pSourceBuffer
, *pDestBuffer
;
553 long lSourceSize
= pSource
->GetSize();
554 long lDestSize
= pDest
->GetSize();
556 ASSERT(lDestSize
>= lSourceSize
&& lDestSize
>= lDataLength
);
558 pSource
->GetPointer(&pSourceBuffer
);
559 pDest
->GetPointer(&pDestBuffer
);
560 ASSERT(lDestSize
== 0 || pSourceBuffer
!= NULL
&& pDestBuffer
!= NULL
);
562 CopyMemory( (PVOID
) pDestBuffer
, (PVOID
) pSourceBuffer
, lDataLength
);
571 // override this to customize the transform process
574 CTransInPlaceFilter::Receive(IMediaSample
*pSample
)
576 /* Check for other streams and pass them on */
577 AM_SAMPLE2_PROPERTIES
* const pProps
= m_pInput
->SampleProps();
578 if (pProps
->dwStreamId
!= AM_STREAM_MEDIA
) {
579 return m_pOutput
->Deliver(pSample
);
583 // Start timing the TransInPlace (if PERF is defined)
584 MSR_START(m_idTransInPlace
);
586 if (UsingDifferentAllocators()) {
588 // We have to copy the data.
590 pSample
= Copy(pSample
);
593 MSR_STOP(m_idTransInPlace
);
598 // have the derived class transform the data
599 hr
= Transform(pSample
);
601 // Stop the clock and log it (if PERF is defined)
602 MSR_STOP(m_idTransInPlace
);
605 DbgLog((LOG_TRACE
, 1, TEXT("Error from TransInPlace")));
606 if (UsingDifferentAllocators()) {
612 // the Transform() function can return S_FALSE to indicate that the
613 // sample should not be delivered; we only deliver the sample if it's
614 // really S_OK (same as NOERROR, of course.)
616 hr
= m_pOutput
->Deliver(pSample
);
618 // But it would be an error to return this private workaround
621 // S_FALSE returned from Transform is a PRIVATE agreement
622 // We should return NOERROR from Receive() in this cause because
623 // returning S_FALSE from Receive() means that this is the end
624 // of the stream and no more data should be sent.
625 m_bSampleSkipped
= TRUE
;
626 if (!m_bQualityChanged
) {
627 NotifyEvent(EC_QUALITY_CHANGE
,0,0);
628 m_bQualityChanged
= TRUE
;
634 // release the output buffer. If the connected pin still needs it,
635 // it will have addrefed it itself.
636 if (UsingDifferentAllocators()) {
646 // =================================================================
647 // Implements the CTransInPlaceInputPin class
648 // =================================================================
653 CTransInPlaceInputPin::CTransInPlaceInputPin
655 , CTransInPlaceFilter
*pFilter
659 : CTransformInputPin(pObjectName
,
664 , m_pTIPFilter(pFilter
)
667 , TEXT("CTransInPlaceInputPin::CTransInPlaceInputPin")));
672 // =================================================================
673 // Implements IMemInputPin interface
674 // =================================================================
677 // If the downstream filter has one then offer that (even if our own output
678 // pin is not using it yet. If the upstream filter chooses it then we will
679 // tell our output pin to ReceiveAllocator).
680 // Else if our output pin is using an allocator then offer that.
681 // ( This could mean offering the upstream filter his own allocator,
682 // it could mean offerring our own
683 // ) or it could mean offering the one from downstream
684 // Else fail to offer any allocator at all.
686 STDMETHODIMP
CTransInPlaceInputPin::GetAllocator(IMemAllocator
** ppAllocator
)
688 CheckPointer(ppAllocator
,E_POINTER
);
689 ValidateReadWritePtr(ppAllocator
,sizeof(IMemAllocator
*));
690 CAutoLock
cObjectLock(m_pLock
);
694 if ( m_pTIPFilter
->m_pOutput
->IsConnected() ) {
695 // Store the allocator we got
696 hr
= m_pTIPFilter
->OutputPin()->ConnectedIMemInputPin()
697 ->GetAllocator( ppAllocator
);
699 m_pTIPFilter
->OutputPin()->SetAllocator( *ppAllocator
);
703 // Help upstream filter (eg TIP filter which is having to do a copy)
704 // by providing a temp allocator here - we'll never use
705 // this allocator because when our output is connected we'll
706 // reconnect this pin
707 hr
= CTransformInputPin::GetAllocator( ppAllocator
);
715 /* Get told which allocator the upstream output pin is actually going to use */
719 CTransInPlaceInputPin::NotifyAllocator(
720 IMemAllocator
* pAllocator
,
724 CheckPointer(pAllocator
,E_POINTER
);
725 ValidateReadPtr(pAllocator
,sizeof(IMemAllocator
));
727 CAutoLock
cObjectLock(m_pLock
);
729 m_bReadOnly
= bReadOnly
;
730 // If we modify data then don't accept the allocator if it's
731 // the same as the output pin's allocator
733 // If our output is not connected just accept the allocator
734 // We're never going to use this allocator because when our
735 // output pin is connected we'll reconnect this pin
736 if (!m_pTIPFilter
->OutputPin()->IsConnected()) {
737 return CTransformInputPin::NotifyAllocator(pAllocator
, bReadOnly
);
740 // If the allocator is read-only and we're modifying data
741 // and the allocator is the same as the output pin's
743 if (bReadOnly
&& m_pTIPFilter
->m_bModifiesData
) {
744 IMemAllocator
*pOutputAllocator
=
745 m_pTIPFilter
->OutputPin()->PeekAllocator();
747 // Make sure we have an output allocator
748 if (pOutputAllocator
== NULL
) {
749 hr
= m_pTIPFilter
->OutputPin()->ConnectedIMemInputPin()->
750 GetAllocator(&pOutputAllocator
);
752 hr
= CreateMemoryAllocator(&pOutputAllocator
);
755 m_pTIPFilter
->OutputPin()->SetAllocator(pOutputAllocator
);
756 pOutputAllocator
->Release();
759 if (pAllocator
== pOutputAllocator
) {
761 } else if(SUCCEEDED(hr
)) {
762 // Must copy so set the allocator properties on the output
763 ALLOCATOR_PROPERTIES Props
, Actual
;
764 hr
= pAllocator
->GetProperties(&Props
);
766 hr
= pOutputAllocator
->SetProperties(&Props
, &Actual
);
769 if ( (Props
.cBuffers
> Actual
.cBuffers
)
770 || (Props
.cbBuffer
> Actual
.cbBuffer
)
771 || (Props
.cbAlign
> Actual
.cbAlign
)
777 // Set the allocator on the output pin
779 hr
= m_pTIPFilter
->OutputPin()->ConnectedIMemInputPin()
780 ->NotifyAllocator( pOutputAllocator
, FALSE
);
784 hr
= m_pTIPFilter
->OutputPin()->ConnectedIMemInputPin()
785 ->NotifyAllocator( pAllocator
, bReadOnly
);
787 m_pTIPFilter
->OutputPin()->SetAllocator( pAllocator
);
793 // It's possible that the old and the new are the same thing.
794 // AddRef before release ensures that we don't unload it.
795 pAllocator
->AddRef();
797 if( m_pAllocator
!= NULL
)
798 m_pAllocator
->Release();
800 m_pAllocator
= pAllocator
; // We have an allocator for the input pin
809 // - pass through to our downstream filter
810 STDMETHODIMP
CTransInPlaceInputPin::EnumMediaTypes( IEnumMediaTypes
**ppEnum
)
812 // Can only pass through if connected
813 if( !m_pTIPFilter
->m_pOutput
->IsConnected() )
814 return VFW_E_NOT_CONNECTED
;
816 return m_pTIPFilter
->m_pOutput
->GetConnected()->EnumMediaTypes( ppEnum
);
822 // - agree to anything if not connected,
823 // otherwise pass through to the downstream filter.
824 // This assumes that the filter does not change the media type.
826 HRESULT
CTransInPlaceInputPin::CheckMediaType(const CMediaType
*pmt
)
828 HRESULT hr
= m_pTIPFilter
->CheckInputType(pmt
);
829 if (hr
!=S_OK
) return hr
;
831 if( m_pTIPFilter
->m_pOutput
->IsConnected() )
832 return m_pTIPFilter
->m_pOutput
->GetConnected()->QueryAccept( pmt
);
839 // If upstream asks us what our requirements are, we will try to ask downstream
840 // if that doesn't work, we'll just take the defaults.
842 CTransInPlaceInputPin::GetAllocatorRequirements(ALLOCATOR_PROPERTIES
*pProps
)
845 if( m_pTIPFilter
->m_pOutput
->IsConnected() )
846 return m_pTIPFilter
->OutputPin()
847 ->ConnectedIMemInputPin()->GetAllocatorRequirements( pProps
);
851 } // GetAllocatorRequirements
854 // CTransInPlaceInputPin::CompleteConnect() calls CBaseInputPin::CompleteConnect()
855 // and then calls CTransInPlaceFilter::CompleteConnect(). It does this because
856 // CTransInPlaceFilter::CompleteConnect() can reconnect a pin and we do not
857 // want to reconnect a pin if CBaseInputPin::CompleteConnect() fails.
859 CTransInPlaceInputPin::CompleteConnect(IPin
*pReceivePin
)
861 HRESULT hr
= CBaseInputPin::CompleteConnect(pReceivePin
);
866 return m_pTransformFilter
->CompleteConnect(PINDIR_INPUT
,pReceivePin
);
870 // =================================================================
871 // Implements the CTransInPlaceOutputPin class
872 // =================================================================
877 CTransInPlaceOutputPin::CTransInPlaceOutputPin(
879 CTransInPlaceFilter
*pFilter
,
882 : CTransformOutputPin( pObjectName
886 m_pTIPFilter(pFilter
)
888 DbgLog(( LOG_TRACE
, 2
889 , TEXT("CTransInPlaceOutputPin::CTransInPlaceOutputPin")));
895 // - pass through to our upstream filter
896 STDMETHODIMP
CTransInPlaceOutputPin::EnumMediaTypes( IEnumMediaTypes
**ppEnum
)
898 // Can only pass through if connected.
899 if( ! m_pTIPFilter
->m_pInput
->IsConnected() )
900 return VFW_E_NOT_CONNECTED
;
902 return m_pTIPFilter
->m_pInput
->GetConnected()->EnumMediaTypes( ppEnum
);
909 // - agree to anything if not connected,
910 // otherwise pass through to the upstream filter.
912 HRESULT
CTransInPlaceOutputPin::CheckMediaType(const CMediaType
*pmt
)
914 // Don't accept any output pin type changes if we're copying
915 // between allocators - it's too late to change the input
917 if (m_pTIPFilter
->UsingDifferentAllocators() && !m_pFilter
->IsStopped()) {
921 return VFW_E_TYPE_NOT_ACCEPTED
;
925 // Assumes the type does not change. That's why we're calling
926 // CheckINPUTType here on the OUTPUT pin.
927 HRESULT hr
= m_pTIPFilter
->CheckInputType(pmt
);
928 if (hr
!=S_OK
) return hr
;
930 if( m_pTIPFilter
->m_pInput
->IsConnected() )
931 return m_pTIPFilter
->m_pInput
->GetConnected()->QueryAccept( pmt
);
938 /* Save the allocator pointer in the output pin
941 CTransInPlaceOutputPin::SetAllocator(IMemAllocator
* pAllocator
)
943 pAllocator
->AddRef();
945 m_pAllocator
->Release();
947 m_pAllocator
= pAllocator
;
951 // CTransInPlaceOutputPin::CompleteConnect() calls CBaseOutputPin::CompleteConnect()
952 // and then calls CTransInPlaceFilter::CompleteConnect(). It does this because
953 // CTransInPlaceFilter::CompleteConnect() can reconnect a pin and we do not want to
954 // reconnect a pin if CBaseOutputPin::CompleteConnect() fails.
955 // CBaseOutputPin::CompleteConnect() often fails when our output pin is being connected
956 // to the Video Mixing Renderer.
958 CTransInPlaceOutputPin::CompleteConnect(IPin
*pReceivePin
)
960 HRESULT hr
= CBaseOutputPin::CompleteConnect(pReceivePin
);
965 return m_pTransformFilter
->CompleteConnect(PINDIR_OUTPUT
,pReceivePin
);