1 ///////////////////////////////////////////////////////////////////////////////
3 /// \file lzma_encoder.c
4 /// \brief LZMA encoder
6 // Authors: Igor Pavlov
9 // This file has been put into the public domain.
10 // You can do whatever you want with this file.
12 ///////////////////////////////////////////////////////////////////////////////
14 #include "lzma2_encoder.h"
15 #include "lzma_encoder_private.h"
24 literal_matched(lzma_range_encoder
*rc
, probability
*subcoder
,
25 uint32_t match_byte
, uint32_t symbol
)
27 uint32_t offset
= 0x100;
28 symbol
+= UINT32_C(1) << 8;
32 const uint32_t match_bit
= match_byte
& offset
;
33 const uint32_t subcoder_index
34 = offset
+ match_bit
+ (symbol
>> 8);
35 const uint32_t bit
= (symbol
>> 7) & 1;
36 rc_bit(rc
, &subcoder
[subcoder_index
], bit
);
39 offset
&= ~(match_byte
^ symbol
);
41 } while (symbol
< (UINT32_C(1) << 16));
46 literal(lzma_lzma1_encoder
*coder
, lzma_mf
*mf
, uint32_t position
)
48 // Locate the literal byte to be encoded and the subcoder.
49 const uint8_t cur_byte
= mf
->buffer
[
50 mf
->read_pos
- mf
->read_ahead
];
51 probability
*subcoder
= literal_subcoder(coder
->literal
,
52 coder
->literal_context_bits
, coder
->literal_pos_mask
,
53 position
, mf
->buffer
[mf
->read_pos
- mf
->read_ahead
- 1]);
55 if (is_literal_state(coder
->state
)) {
56 // Previous LZMA-symbol was a literal. Encode a normal
57 // literal without a match byte.
58 rc_bittree(&coder
->rc
, subcoder
, 8, cur_byte
);
60 // Previous LZMA-symbol was a match. Use the last byte of
61 // the match as a "match byte". That is, compare the bits
62 // of the current literal and the match byte.
63 const uint8_t match_byte
= mf
->buffer
[
64 mf
->read_pos
- coder
->reps
[0] - 1
66 literal_matched(&coder
->rc
, subcoder
, match_byte
, cur_byte
);
69 update_literal(coder
->state
);
78 length_update_prices(lzma_length_encoder
*lc
, const uint32_t pos_state
)
80 const uint32_t table_size
= lc
->table_size
;
81 lc
->counters
[pos_state
] = table_size
;
83 const uint32_t a0
= rc_bit_0_price(lc
->choice
);
84 const uint32_t a1
= rc_bit_1_price(lc
->choice
);
85 const uint32_t b0
= a1
+ rc_bit_0_price(lc
->choice2
);
86 const uint32_t b1
= a1
+ rc_bit_1_price(lc
->choice2
);
87 uint32_t *const prices
= lc
->prices
[pos_state
];
90 for (i
= 0; i
< table_size
&& i
< LEN_LOW_SYMBOLS
; ++i
)
91 prices
[i
] = a0
+ rc_bittree_price(lc
->low
[pos_state
],
94 for (; i
< table_size
&& i
< LEN_LOW_SYMBOLS
+ LEN_MID_SYMBOLS
; ++i
)
95 prices
[i
] = b0
+ rc_bittree_price(lc
->mid
[pos_state
],
96 LEN_MID_BITS
, i
- LEN_LOW_SYMBOLS
);
98 for (; i
< table_size
; ++i
)
99 prices
[i
] = b1
+ rc_bittree_price(lc
->high
, LEN_HIGH_BITS
,
100 i
- LEN_LOW_SYMBOLS
- LEN_MID_SYMBOLS
);
107 length(lzma_range_encoder
*rc
, lzma_length_encoder
*lc
,
108 const uint32_t pos_state
, uint32_t len
, const bool fast_mode
)
110 assert(len
<= MATCH_LEN_MAX
);
111 len
-= MATCH_LEN_MIN
;
113 if (len
< LEN_LOW_SYMBOLS
) {
114 rc_bit(rc
, &lc
->choice
, 0);
115 rc_bittree(rc
, lc
->low
[pos_state
], LEN_LOW_BITS
, len
);
117 rc_bit(rc
, &lc
->choice
, 1);
118 len
-= LEN_LOW_SYMBOLS
;
120 if (len
< LEN_MID_SYMBOLS
) {
121 rc_bit(rc
, &lc
->choice2
, 0);
122 rc_bittree(rc
, lc
->mid
[pos_state
], LEN_MID_BITS
, len
);
124 rc_bit(rc
, &lc
->choice2
, 1);
125 len
-= LEN_MID_SYMBOLS
;
126 rc_bittree(rc
, lc
->high
, LEN_HIGH_BITS
, len
);
130 // Only getoptimum uses the prices so don't update the table when
133 if (--lc
->counters
[pos_state
] == 0)
134 length_update_prices(lc
, pos_state
);
143 match(lzma_lzma1_encoder
*coder
, const uint32_t pos_state
,
144 const uint32_t distance
, const uint32_t len
)
146 update_match(coder
->state
);
148 length(&coder
->rc
, &coder
->match_len_encoder
, pos_state
, len
,
151 const uint32_t dist_slot
= get_dist_slot(distance
);
152 const uint32_t dist_state
= get_dist_state(len
);
153 rc_bittree(&coder
->rc
, coder
->dist_slot
[dist_state
],
154 DIST_SLOT_BITS
, dist_slot
);
156 if (dist_slot
>= DIST_MODEL_START
) {
157 const uint32_t footer_bits
= (dist_slot
>> 1) - 1;
158 const uint32_t base
= (2 | (dist_slot
& 1)) << footer_bits
;
159 const uint32_t dist_reduced
= distance
- base
;
161 if (dist_slot
< DIST_MODEL_END
) {
162 // Careful here: base - dist_slot - 1 can be -1, but
163 // rc_bittree_reverse starts at probs[1], not probs[0].
164 rc_bittree_reverse(&coder
->rc
,
165 coder
->dist_special
+ base
- dist_slot
- 1,
166 footer_bits
, dist_reduced
);
168 rc_direct(&coder
->rc
, dist_reduced
>> ALIGN_BITS
,
169 footer_bits
- ALIGN_BITS
);
171 &coder
->rc
, coder
->dist_align
,
172 ALIGN_BITS
, dist_reduced
& ALIGN_MASK
);
173 ++coder
->align_price_count
;
177 coder
->reps
[3] = coder
->reps
[2];
178 coder
->reps
[2] = coder
->reps
[1];
179 coder
->reps
[1] = coder
->reps
[0];
180 coder
->reps
[0] = distance
;
181 ++coder
->match_price_count
;
190 rep_match(lzma_lzma1_encoder
*coder
, const uint32_t pos_state
,
191 const uint32_t rep
, const uint32_t len
)
194 rc_bit(&coder
->rc
, &coder
->is_rep0
[coder
->state
], 0);
196 &coder
->is_rep0_long
[coder
->state
][pos_state
],
199 const uint32_t distance
= coder
->reps
[rep
];
200 rc_bit(&coder
->rc
, &coder
->is_rep0
[coder
->state
], 1);
203 rc_bit(&coder
->rc
, &coder
->is_rep1
[coder
->state
], 0);
205 rc_bit(&coder
->rc
, &coder
->is_rep1
[coder
->state
], 1);
206 rc_bit(&coder
->rc
, &coder
->is_rep2
[coder
->state
],
210 coder
->reps
[3] = coder
->reps
[2];
212 coder
->reps
[2] = coder
->reps
[1];
215 coder
->reps
[1] = coder
->reps
[0];
216 coder
->reps
[0] = distance
;
220 update_short_rep(coder
->state
);
222 length(&coder
->rc
, &coder
->rep_len_encoder
, pos_state
, len
,
224 update_long_rep(coder
->state
);
234 encode_symbol(lzma_lzma1_encoder
*coder
, lzma_mf
*mf
,
235 uint32_t back
, uint32_t len
, uint32_t position
)
237 const uint32_t pos_state
= position
& coder
->pos_mask
;
239 if (back
== UINT32_MAX
) {
240 // Literal i.e. eight-bit byte
243 &coder
->is_match
[coder
->state
][pos_state
], 0);
244 literal(coder
, mf
, position
);
246 // Some type of match
248 &coder
->is_match
[coder
->state
][pos_state
], 1);
251 // It's a repeated match i.e. the same distance
252 // has been used earlier.
253 rc_bit(&coder
->rc
, &coder
->is_rep
[coder
->state
], 1);
254 rep_match(coder
, pos_state
, back
, len
);
257 rc_bit(&coder
->rc
, &coder
->is_rep
[coder
->state
], 0);
258 match(coder
, pos_state
, back
- REPS
, len
);
262 assert(mf
->read_ahead
>= len
);
263 mf
->read_ahead
-= len
;
268 encode_init(lzma_lzma1_encoder
*coder
, lzma_mf
*mf
)
270 assert(mf_position(mf
) == 0);
271 assert(coder
->uncomp_size
== 0);
273 if (mf
->read_pos
== mf
->read_limit
) {
274 if (mf
->action
== LZMA_RUN
)
275 return false; // We cannot do anything.
277 // We are finishing (we cannot get here when flushing).
278 assert(mf
->write_pos
== mf
->read_pos
);
279 assert(mf
->action
== LZMA_FINISH
);
281 // Do the actual initialization. The first LZMA symbol must
282 // always be a literal.
285 rc_bit(&coder
->rc
, &coder
->is_match
[0][0], 0);
286 rc_bittree(&coder
->rc
, coder
->literal
[0], 8, mf
->buffer
[0]);
287 ++coder
->uncomp_size
;
290 // Initialization is done (except if empty file).
291 coder
->is_initialized
= true;
298 encode_eopm(lzma_lzma1_encoder
*coder
, uint32_t position
)
300 const uint32_t pos_state
= position
& coder
->pos_mask
;
301 rc_bit(&coder
->rc
, &coder
->is_match
[coder
->state
][pos_state
], 1);
302 rc_bit(&coder
->rc
, &coder
->is_rep
[coder
->state
], 0);
303 match(coder
, pos_state
, UINT32_MAX
, MATCH_LEN_MIN
);
307 /// Number of bytes that a single encoding loop in lzma_lzma_encode() can
308 /// consume from the dictionary. This limit comes from lzma_lzma_optimum()
309 /// and may need to be updated if that function is significantly modified.
310 #define LOOP_INPUT_MAX (OPTS + 1)
314 lzma_lzma_encode(lzma_lzma1_encoder
*restrict coder
, lzma_mf
*restrict mf
,
315 uint8_t *restrict out
, size_t *restrict out_pos
,
316 size_t out_size
, uint32_t limit
)
318 // Initialize the stream if no data has been encoded yet.
319 if (!coder
->is_initialized
&& !encode_init(coder
, mf
))
322 // Encode pending output bytes from the range encoder.
323 // At the start of the stream, encode_init() encodes one literal.
324 // Later there can be pending output only with LZMA1 because LZMA2
325 // ensures that there is always enough output space. Thus when using
326 // LZMA2, rc_encode() calls in this function will always return false.
327 if (rc_encode(&coder
->rc
, out
, out_pos
, out_size
)) {
328 // We don't get here with LZMA2.
329 assert(limit
== UINT32_MAX
);
333 // If the range encoder was flushed in an earlier call to this
334 // function but there wasn't enough output buffer space, those
335 // bytes would have now been encoded by the above rc_encode() call
336 // and the stream has now been finished. This can only happen with
337 // LZMA1 as LZMA2 always provides enough output buffer space.
338 if (coder
->is_flushed
) {
339 assert(limit
== UINT32_MAX
);
340 return LZMA_STREAM_END
;
344 // With LZMA2 we need to take care that compressed size of
345 // a chunk doesn't get too big.
346 // FIXME? Check if this could be improved.
347 if (limit
!= UINT32_MAX
348 && (mf
->read_pos
- mf
->read_ahead
>= limit
349 || *out_pos
+ rc_pending(&coder
->rc
)
354 // Check that there is some input to process.
355 if (mf
->read_pos
>= mf
->read_limit
) {
356 if (mf
->action
== LZMA_RUN
)
359 if (mf
->read_ahead
== 0)
363 // Get optimal match (repeat position and length).
364 // Value ranges for pos:
365 // - [0, REPS): repeated match
366 // - [REPS, UINT32_MAX):
367 // match at (pos - REPS)
368 // - UINT32_MAX: not a match but a literal
369 // Value ranges for len:
370 // - [MATCH_LEN_MIN, MATCH_LEN_MAX]
374 if (coder
->fast_mode
)
375 lzma_lzma_optimum_fast(coder
, mf
, &back
, &len
);
377 lzma_lzma_optimum_normal(coder
, mf
, &back
, &len
,
378 (uint32_t)(coder
->uncomp_size
));
380 encode_symbol(coder
, mf
, back
, len
,
381 (uint32_t)(coder
->uncomp_size
));
383 // If output size limiting is active (out_limit != 0), check
384 // if encoding this LZMA symbol would make the output size
385 // exceed the specified limit.
386 if (coder
->out_limit
!= 0 && rc_encode_dummy(
387 &coder
->rc
, coder
->out_limit
)) {
388 // The most recent LZMA symbol would make the output
389 // too big. Throw it away.
390 rc_forget(&coder
->rc
);
392 // FIXME: Tell the LZ layer to not read more input as
393 // it would be waste of time. This doesn't matter if
394 // output-size-limited encoding is done with a single
400 // This symbol will be encoded so update the uncompressed size.
401 coder
->uncomp_size
+= len
;
403 // Encode the LZMA symbol.
404 if (rc_encode(&coder
->rc
, out
, out_pos
, out_size
)) {
405 // Once again, this can only happen with LZMA1.
406 assert(limit
== UINT32_MAX
);
411 // Make the uncompressed size available to the application.
412 if (coder
->uncomp_size_ptr
!= NULL
)
413 *coder
->uncomp_size_ptr
= coder
->uncomp_size
;
415 // LZMA2 doesn't use EOPM at LZMA level.
417 // Plain LZMA streams without EOPM aren't supported except when
418 // output size limiting is enabled.
420 encode_eopm(coder
, (uint32_t)(coder
->uncomp_size
));
422 // Flush the remaining bytes from the range encoder.
423 rc_flush(&coder
->rc
);
425 // Copy the remaining bytes to the output buffer. If there
426 // isn't enough output space, we will copy out the remaining
427 // bytes on the next call to this function.
428 if (rc_encode(&coder
->rc
, out
, out_pos
, out_size
)) {
429 // This cannot happen with LZMA2.
430 assert(limit
== UINT32_MAX
);
432 coder
->is_flushed
= true;
436 return LZMA_STREAM_END
;
441 lzma_encode(void *coder
, lzma_mf
*restrict mf
,
442 uint8_t *restrict out
, size_t *restrict out_pos
,
445 // Plain LZMA has no support for sync-flushing.
446 if (unlikely(mf
->action
== LZMA_SYNC_FLUSH
))
447 return LZMA_OPTIONS_ERROR
;
449 return lzma_lzma_encode(coder
, mf
, out
, out_pos
, out_size
, UINT32_MAX
);
454 lzma_lzma_set_out_limit(
455 void *coder_ptr
, uint64_t *uncomp_size
, uint64_t out_limit
)
457 // Minimum output size is 5 bytes but that cannot hold any output
458 // so we use 6 bytes.
460 return LZMA_BUF_ERROR
;
462 lzma_lzma1_encoder
*coder
= coder_ptr
;
463 coder
->out_limit
= out_limit
;
464 coder
->uncomp_size_ptr
= uncomp_size
;
465 coder
->use_eopm
= false;
475 is_options_valid(const lzma_options_lzma
*options
)
477 // Validate some of the options. LZ encoder validates nice_len too
478 // but we need a valid value here earlier.
479 return is_lclppb_valid(options
)
480 && options
->nice_len
>= MATCH_LEN_MIN
481 && options
->nice_len
<= MATCH_LEN_MAX
482 && (options
->mode
== LZMA_MODE_FAST
483 || options
->mode
== LZMA_MODE_NORMAL
);
488 set_lz_options(lzma_lz_options
*lz_options
, const lzma_options_lzma
*options
)
490 // LZ encoder initialization does the validation for these so we
491 // don't need to validate here.
492 lz_options
->before_size
= OPTS
;
493 lz_options
->dict_size
= options
->dict_size
;
494 lz_options
->after_size
= LOOP_INPUT_MAX
;
495 lz_options
->match_len_max
= MATCH_LEN_MAX
;
496 lz_options
->nice_len
= my_max(mf_get_hash_bytes(options
->mf
),
498 lz_options
->match_finder
= options
->mf
;
499 lz_options
->depth
= options
->depth
;
500 lz_options
->preset_dict
= options
->preset_dict
;
501 lz_options
->preset_dict_size
= options
->preset_dict_size
;
507 length_encoder_reset(lzma_length_encoder
*lencoder
,
508 const uint32_t num_pos_states
, const bool fast_mode
)
510 bit_reset(lencoder
->choice
);
511 bit_reset(lencoder
->choice2
);
513 for (size_t pos_state
= 0; pos_state
< num_pos_states
; ++pos_state
) {
514 bittree_reset(lencoder
->low
[pos_state
], LEN_LOW_BITS
);
515 bittree_reset(lencoder
->mid
[pos_state
], LEN_MID_BITS
);
518 bittree_reset(lencoder
->high
, LEN_HIGH_BITS
);
521 for (uint32_t pos_state
= 0; pos_state
< num_pos_states
;
523 length_update_prices(lencoder
, pos_state
);
530 lzma_lzma_encoder_reset(lzma_lzma1_encoder
*coder
,
531 const lzma_options_lzma
*options
)
533 if (!is_options_valid(options
))
534 return LZMA_OPTIONS_ERROR
;
536 coder
->pos_mask
= (1U << options
->pb
) - 1;
537 coder
->literal_context_bits
= options
->lc
;
538 coder
->literal_pos_mask
= (1U << options
->lp
) - 1;
541 rc_reset(&coder
->rc
);
544 coder
->state
= STATE_LIT_LIT
;
545 for (size_t i
= 0; i
< REPS
; ++i
)
548 literal_init(coder
->literal
, options
->lc
, options
->lp
);
551 for (size_t i
= 0; i
< STATES
; ++i
) {
552 for (size_t j
= 0; j
<= coder
->pos_mask
; ++j
) {
553 bit_reset(coder
->is_match
[i
][j
]);
554 bit_reset(coder
->is_rep0_long
[i
][j
]);
557 bit_reset(coder
->is_rep
[i
]);
558 bit_reset(coder
->is_rep0
[i
]);
559 bit_reset(coder
->is_rep1
[i
]);
560 bit_reset(coder
->is_rep2
[i
]);
563 for (size_t i
= 0; i
< FULL_DISTANCES
- DIST_MODEL_END
; ++i
)
564 bit_reset(coder
->dist_special
[i
]);
567 for (size_t i
= 0; i
< DIST_STATES
; ++i
)
568 bittree_reset(coder
->dist_slot
[i
], DIST_SLOT_BITS
);
570 bittree_reset(coder
->dist_align
, ALIGN_BITS
);
573 length_encoder_reset(&coder
->match_len_encoder
,
574 1U << options
->pb
, coder
->fast_mode
);
576 length_encoder_reset(&coder
->rep_len_encoder
,
577 1U << options
->pb
, coder
->fast_mode
);
579 // Price counts are incremented every time appropriate probabilities
580 // are changed. price counts are set to zero when the price tables
581 // are updated, which is done when the appropriate price counts have
582 // big enough value, and lzma_mf.read_ahead == 0 which happens at
583 // least every OPTS (a few thousand) possible price count increments.
585 // By resetting price counts to UINT32_MAX / 2, we make sure that the
586 // price tables will be initialized before they will be used (since
587 // the value is definitely big enough), and that it is OK to increment
588 // price counts without risk of integer overflow (since UINT32_MAX / 2
589 // is small enough). The current code doesn't increment price counts
590 // before initializing price tables, but it maybe done in future if
591 // we add support for saving the state between LZMA2 chunks.
592 coder
->match_price_count
= UINT32_MAX
/ 2;
593 coder
->align_price_count
= UINT32_MAX
/ 2;
595 coder
->opts_end_index
= 0;
596 coder
->opts_current_index
= 0;
603 lzma_lzma_encoder_create(void **coder_ptr
, const lzma_allocator
*allocator
,
604 lzma_vli id
, const lzma_options_lzma
*options
,
605 lzma_lz_options
*lz_options
)
607 assert(id
== LZMA_FILTER_LZMA1
|| id
== LZMA_FILTER_LZMA1EXT
608 || id
== LZMA_FILTER_LZMA2
);
610 // Allocate lzma_lzma1_encoder if it wasn't already allocated.
611 if (*coder_ptr
== NULL
) {
612 *coder_ptr
= lzma_alloc(sizeof(lzma_lzma1_encoder
), allocator
);
613 if (*coder_ptr
== NULL
)
614 return LZMA_MEM_ERROR
;
617 lzma_lzma1_encoder
*coder
= *coder_ptr
;
619 // Set compression mode. Note that we haven't validated the options
620 // yet. Invalid options will get rejected by lzma_lzma_encoder_reset()
621 // call at the end of this function.
622 switch (options
->mode
) {
624 coder
->fast_mode
= true;
627 case LZMA_MODE_NORMAL
: {
628 coder
->fast_mode
= false;
630 // Set dist_table_size.
631 // Round the dictionary size up to next 2^n.
633 // Currently the maximum encoder dictionary size
634 // is 1.5 GiB due to lz_encoder.c and here we need
635 // to be below 2 GiB to make the rounded up value
636 // fit in an uint32_t and avoid an infite while-loop
637 // (and undefined behavior due to a too large shift).
638 // So do the same check as in LZ encoder,
639 // limiting to 1.5 GiB.
640 if (options
->dict_size
> (UINT32_C(1) << 30)
641 + (UINT32_C(1) << 29))
642 return LZMA_OPTIONS_ERROR
;
644 uint32_t log_size
= 0;
645 while ((UINT32_C(1) << log_size
) < options
->dict_size
)
648 coder
->dist_table_size
= log_size
* 2;
650 // Length encoders' price table size
651 const uint32_t nice_len
= my_max(
652 mf_get_hash_bytes(options
->mf
),
655 coder
->match_len_encoder
.table_size
656 = nice_len
+ 1 - MATCH_LEN_MIN
;
657 coder
->rep_len_encoder
.table_size
658 = nice_len
+ 1 - MATCH_LEN_MIN
;
663 return LZMA_OPTIONS_ERROR
;
666 // We don't need to write the first byte as literal if there is
667 // a non-empty preset dictionary. encode_init() wouldn't even work
668 // if there is a non-empty preset dictionary, because encode_init()
669 // assumes that position is zero and previous byte is also zero.
670 coder
->is_initialized
= options
->preset_dict
!= NULL
671 && options
->preset_dict_size
> 0;
672 coder
->is_flushed
= false;
673 coder
->uncomp_size
= 0;
674 coder
->uncomp_size_ptr
= NULL
;
676 // Output size limitting is disabled by default.
677 coder
->out_limit
= 0;
679 // Determine if end marker is wanted:
680 // - It is never used with LZMA2.
681 // - It is always used with LZMA_FILTER_LZMA1 (unless
682 // lzma_lzma_set_out_limit() is called later).
683 // - LZMA_FILTER_LZMA1EXT has a flag for it in the options.
684 coder
->use_eopm
= (id
== LZMA_FILTER_LZMA1
);
685 if (id
== LZMA_FILTER_LZMA1EXT
) {
686 // Check if unsupported flags are present.
687 if (options
->ext_flags
& ~LZMA_LZMA1EXT_ALLOW_EOPM
)
688 return LZMA_OPTIONS_ERROR
;
690 coder
->use_eopm
= (options
->ext_flags
691 & LZMA_LZMA1EXT_ALLOW_EOPM
) != 0;
693 // TODO? As long as there are no filters that change the size
694 // of the data, it is enough to look at lzma_stream.total_in
695 // after encoding has been finished to know the uncompressed
696 // size of the LZMA1 stream. But in the future there could be
697 // filters that change the size of the data and then total_in
698 // doesn't work as the LZMA1 stream size might be different
699 // due to another filter in the chain. The problem is simple
700 // to solve: Add another flag to ext_flags and then set
701 // coder->uncomp_size_ptr to the address stored in
702 // lzma_options_lzma.reserved_ptr2 (or _ptr1).
705 set_lz_options(lz_options
, options
);
707 return lzma_lzma_encoder_reset(coder
, options
);
712 lzma_encoder_init(lzma_lz_encoder
*lz
, const lzma_allocator
*allocator
,
713 lzma_vli id
, const void *options
, lzma_lz_options
*lz_options
)
715 lz
->code
= &lzma_encode
;
716 lz
->set_out_limit
= &lzma_lzma_set_out_limit
;
717 return lzma_lzma_encoder_create(
718 &lz
->coder
, allocator
, id
, options
, lz_options
);
723 lzma_lzma_encoder_init(lzma_next_coder
*next
, const lzma_allocator
*allocator
,
724 const lzma_filter_info
*filters
)
726 return lzma_lz_encoder_init(
727 next
, allocator
, filters
, &lzma_encoder_init
);
732 lzma_lzma_encoder_memusage(const void *options
)
734 if (!is_options_valid(options
))
737 lzma_lz_options lz_options
;
738 set_lz_options(&lz_options
, options
);
740 const uint64_t lz_memusage
= lzma_lz_encoder_memusage(&lz_options
);
741 if (lz_memusage
== UINT64_MAX
)
744 return (uint64_t)(sizeof(lzma_lzma1_encoder
)) + lz_memusage
;
749 lzma_lzma_lclppb_encode(const lzma_options_lzma
*options
, uint8_t *byte
)
751 if (!is_lclppb_valid(options
))
754 *byte
= (options
->pb
* 5 + options
->lp
) * 9 + options
->lc
;
755 assert(*byte
<= (4 * 5 + 4) * 9 + 8);
761 #ifdef HAVE_ENCODER_LZMA1
763 lzma_lzma_props_encode(const void *options
, uint8_t *out
)
766 return LZMA_PROG_ERROR
;
768 const lzma_options_lzma
*const opt
= options
;
770 if (lzma_lzma_lclppb_encode(opt
, out
))
771 return LZMA_PROG_ERROR
;
773 write32le(out
+ 1, opt
->dict_size
);
780 extern LZMA_API(lzma_bool
)
781 lzma_mode_is_supported(lzma_mode mode
)
783 return mode
== LZMA_MODE_FAST
|| mode
== LZMA_MODE_NORMAL
;