liblzma: Fix a typo in a comment
[xz/debian.git] / src / liblzma / check / sha256.c
blobc067a3a693fa4af49025f6de4361c790a2b0fae1
1 // SPDX-License-Identifier: 0BSD
3 ///////////////////////////////////////////////////////////////////////////////
4 //
5 /// \file sha256.c
6 /// \brief SHA-256
7 //
8 // The C code is based on the public domain SHA-256 code found from
9 // Crypto++ Library 5.5.1 released in 2007: https://www.cryptopp.com/
10 // A few minor tweaks have been made in liblzma.
12 // Authors: Wei Dai
13 // Lasse Collin
15 ///////////////////////////////////////////////////////////////////////////////
17 #include "check.h"
19 // Rotate a uint32_t. GCC can optimize this to a rotate instruction
20 // at least on x86.
21 static inline uint32_t
22 rotr_32(uint32_t num, unsigned amount)
24 return (num >> amount) | (num << (32 - amount));
27 #define blk0(i) (W[i] = conv32be(data[i]))
28 #define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \
29 + s0(W[(i - 15) & 15]))
31 #define Ch(x, y, z) (z ^ (x & (y ^ z)))
32 #define Maj(x, y, z) ((x & (y ^ z)) + (y & z))
34 #define a(i) T[(0 - i) & 7]
35 #define b(i) T[(1 - i) & 7]
36 #define c(i) T[(2 - i) & 7]
37 #define d(i) T[(3 - i) & 7]
38 #define e(i) T[(4 - i) & 7]
39 #define f(i) T[(5 - i) & 7]
40 #define g(i) T[(6 - i) & 7]
41 #define h(i) T[(7 - i) & 7]
43 #define R(i, j, blk) \
44 h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + SHA256_K[i + j] + blk; \
45 d(i) += h(i); \
46 h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))
47 #define R0(i) R(i, 0, blk0(i))
48 #define R2(i) R(i, j, blk2(i))
50 #define S0(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 9), 11), 2)
51 #define S1(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 14), 5), 6)
52 #define s0(x) (rotr_32(x ^ rotr_32(x, 11), 7) ^ (x >> 3))
53 #define s1(x) (rotr_32(x ^ rotr_32(x, 2), 17) ^ (x >> 10))
56 static const uint32_t SHA256_K[64] = {
57 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
58 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
59 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
60 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
61 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
62 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
63 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
64 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
65 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
66 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
67 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
68 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
69 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
70 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
71 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
72 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
76 static void
77 transform(uint32_t state[8], const uint32_t data[16])
79 uint32_t W[16];
80 uint32_t T[8];
82 // Copy state[] to working vars.
83 memcpy(T, state, sizeof(T));
85 // The first 16 operations unrolled
86 R0( 0); R0( 1); R0( 2); R0( 3);
87 R0( 4); R0( 5); R0( 6); R0( 7);
88 R0( 8); R0( 9); R0(10); R0(11);
89 R0(12); R0(13); R0(14); R0(15);
91 // The remaining 48 operations partially unrolled
92 for (unsigned int j = 16; j < 64; j += 16) {
93 R2( 0); R2( 1); R2( 2); R2( 3);
94 R2( 4); R2( 5); R2( 6); R2( 7);
95 R2( 8); R2( 9); R2(10); R2(11);
96 R2(12); R2(13); R2(14); R2(15);
99 // Add the working vars back into state[].
100 state[0] += a(0);
101 state[1] += b(0);
102 state[2] += c(0);
103 state[3] += d(0);
104 state[4] += e(0);
105 state[5] += f(0);
106 state[6] += g(0);
107 state[7] += h(0);
111 static void
112 process(lzma_check_state *check)
114 transform(check->state.sha256.state, check->buffer.u32);
115 return;
119 extern void
120 lzma_sha256_init(lzma_check_state *check)
122 static const uint32_t s[8] = {
123 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
124 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
127 memcpy(check->state.sha256.state, s, sizeof(s));
128 check->state.sha256.size = 0;
130 return;
134 extern void
135 lzma_sha256_update(const uint8_t *buf, size_t size, lzma_check_state *check)
137 // Copy the input data into a properly aligned temporary buffer.
138 // This way we can be called with arbitrarily sized buffers
139 // (no need to be multiple of 64 bytes), and the code works also
140 // on architectures that don't allow unaligned memory access.
141 while (size > 0) {
142 const size_t copy_start = check->state.sha256.size & 0x3F;
143 size_t copy_size = 64 - copy_start;
144 if (copy_size > size)
145 copy_size = size;
147 memcpy(check->buffer.u8 + copy_start, buf, copy_size);
149 buf += copy_size;
150 size -= copy_size;
151 check->state.sha256.size += copy_size;
153 if ((check->state.sha256.size & 0x3F) == 0)
154 process(check);
157 return;
161 extern void
162 lzma_sha256_finish(lzma_check_state *check)
164 // Add padding as described in RFC 3174 (it describes SHA-1 but
165 // the same padding style is used for SHA-256 too).
166 size_t pos = check->state.sha256.size & 0x3F;
167 check->buffer.u8[pos++] = 0x80;
169 while (pos != 64 - 8) {
170 if (pos == 64) {
171 process(check);
172 pos = 0;
175 check->buffer.u8[pos++] = 0x00;
178 // Convert the message size from bytes to bits.
179 check->state.sha256.size *= 8;
181 check->buffer.u64[(64 - 8) / 8] = conv64be(check->state.sha256.size);
183 process(check);
185 for (size_t i = 0; i < 8; ++i)
186 check->buffer.u32[i] = conv32be(check->state.sha256.state[i]);
188 return;