liblzma: Fix a typo in a comment
[xz/debian.git] / src / liblzma / rangecoder / range_encoder.h
blob8f62a47ac0a6367523faf29e163741a36c3dec76
1 // SPDX-License-Identifier: 0BSD
3 ///////////////////////////////////////////////////////////////////////////////
4 //
5 /// \file range_encoder.h
6 /// \brief Range Encoder
7 ///
8 // Authors: Igor Pavlov
9 // Lasse Collin
11 ///////////////////////////////////////////////////////////////////////////////
13 #ifndef LZMA_RANGE_ENCODER_H
14 #define LZMA_RANGE_ENCODER_H
16 #include "range_common.h"
17 #include "price.h"
20 /// Maximum number of symbols that can be put pending into lzma_range_encoder
21 /// structure between calls to lzma_rc_encode(). For LZMA, 48+5 is enough
22 /// (match with big distance and length followed by range encoder flush).
23 #define RC_SYMBOLS_MAX 53
26 typedef struct {
27 uint64_t low;
28 uint64_t cache_size;
29 uint32_t range;
30 uint8_t cache;
32 /// Number of bytes written out by rc_encode() -> rc_shift_low()
33 uint64_t out_total;
35 /// Number of symbols in the tables
36 size_t count;
38 /// rc_encode()'s position in the tables
39 size_t pos;
41 /// Symbols to encode
42 enum {
43 RC_BIT_0,
44 RC_BIT_1,
45 RC_DIRECT_0,
46 RC_DIRECT_1,
47 RC_FLUSH,
48 } symbols[RC_SYMBOLS_MAX];
50 /// Probabilities associated with RC_BIT_0 or RC_BIT_1
51 probability *probs[RC_SYMBOLS_MAX];
53 } lzma_range_encoder;
56 static inline void
57 rc_reset(lzma_range_encoder *rc)
59 rc->low = 0;
60 rc->cache_size = 1;
61 rc->range = UINT32_MAX;
62 rc->cache = 0;
63 rc->out_total = 0;
64 rc->count = 0;
65 rc->pos = 0;
69 static inline void
70 rc_forget(lzma_range_encoder *rc)
72 // This must not be called when rc_encode() is partially done.
73 assert(rc->pos == 0);
74 rc->count = 0;
78 static inline void
79 rc_bit(lzma_range_encoder *rc, probability *prob, uint32_t bit)
81 rc->symbols[rc->count] = bit;
82 rc->probs[rc->count] = prob;
83 ++rc->count;
87 static inline void
88 rc_bittree(lzma_range_encoder *rc, probability *probs,
89 uint32_t bit_count, uint32_t symbol)
91 uint32_t model_index = 1;
93 do {
94 const uint32_t bit = (symbol >> --bit_count) & 1;
95 rc_bit(rc, &probs[model_index], bit);
96 model_index = (model_index << 1) + bit;
97 } while (bit_count != 0);
101 static inline void
102 rc_bittree_reverse(lzma_range_encoder *rc, probability *probs,
103 uint32_t bit_count, uint32_t symbol)
105 uint32_t model_index = 1;
107 do {
108 const uint32_t bit = symbol & 1;
109 symbol >>= 1;
110 rc_bit(rc, &probs[model_index], bit);
111 model_index = (model_index << 1) + bit;
112 } while (--bit_count != 0);
116 static inline void
117 rc_direct(lzma_range_encoder *rc,
118 uint32_t value, uint32_t bit_count)
120 do {
121 rc->symbols[rc->count++]
122 = RC_DIRECT_0 + ((value >> --bit_count) & 1);
123 } while (bit_count != 0);
127 static inline void
128 rc_flush(lzma_range_encoder *rc)
130 for (size_t i = 0; i < 5; ++i)
131 rc->symbols[rc->count++] = RC_FLUSH;
135 static inline bool
136 rc_shift_low(lzma_range_encoder *rc,
137 uint8_t *out, size_t *out_pos, size_t out_size)
139 if ((uint32_t)(rc->low) < (uint32_t)(0xFF000000)
140 || (uint32_t)(rc->low >> 32) != 0) {
141 do {
142 if (*out_pos == out_size)
143 return true;
145 out[*out_pos] = rc->cache + (uint8_t)(rc->low >> 32);
146 ++*out_pos;
147 ++rc->out_total;
148 rc->cache = 0xFF;
150 } while (--rc->cache_size != 0);
152 rc->cache = (rc->low >> 24) & 0xFF;
155 ++rc->cache_size;
156 rc->low = (rc->low & 0x00FFFFFF) << RC_SHIFT_BITS;
158 return false;
162 // NOTE: The last two arguments are uint64_t instead of size_t because in
163 // the dummy version these refer to the size of the whole range-encoded
164 // output stream, not just to the currently available output buffer space.
165 static inline bool
166 rc_shift_low_dummy(uint64_t *low, uint64_t *cache_size, uint8_t *cache,
167 uint64_t *out_pos, uint64_t out_size)
169 if ((uint32_t)(*low) < (uint32_t)(0xFF000000)
170 || (uint32_t)(*low >> 32) != 0) {
171 do {
172 if (*out_pos == out_size)
173 return true;
175 ++*out_pos;
176 *cache = 0xFF;
178 } while (--*cache_size != 0);
180 *cache = (*low >> 24) & 0xFF;
183 ++*cache_size;
184 *low = (*low & 0x00FFFFFF) << RC_SHIFT_BITS;
186 return false;
190 static inline bool
191 rc_encode(lzma_range_encoder *rc,
192 uint8_t *out, size_t *out_pos, size_t out_size)
194 assert(rc->count <= RC_SYMBOLS_MAX);
196 while (rc->pos < rc->count) {
197 // Normalize
198 if (rc->range < RC_TOP_VALUE) {
199 if (rc_shift_low(rc, out, out_pos, out_size))
200 return true;
202 rc->range <<= RC_SHIFT_BITS;
205 // Encode a bit
206 switch (rc->symbols[rc->pos]) {
207 case RC_BIT_0: {
208 probability prob = *rc->probs[rc->pos];
209 rc->range = (rc->range >> RC_BIT_MODEL_TOTAL_BITS)
210 * prob;
211 prob += (RC_BIT_MODEL_TOTAL - prob) >> RC_MOVE_BITS;
212 *rc->probs[rc->pos] = prob;
213 break;
216 case RC_BIT_1: {
217 probability prob = *rc->probs[rc->pos];
218 const uint32_t bound = prob * (rc->range
219 >> RC_BIT_MODEL_TOTAL_BITS);
220 rc->low += bound;
221 rc->range -= bound;
222 prob -= prob >> RC_MOVE_BITS;
223 *rc->probs[rc->pos] = prob;
224 break;
227 case RC_DIRECT_0:
228 rc->range >>= 1;
229 break;
231 case RC_DIRECT_1:
232 rc->range >>= 1;
233 rc->low += rc->range;
234 break;
236 case RC_FLUSH:
237 // Prevent further normalizations.
238 rc->range = UINT32_MAX;
240 // Flush the last five bytes (see rc_flush()).
241 do {
242 if (rc_shift_low(rc, out, out_pos, out_size))
243 return true;
244 } while (++rc->pos < rc->count);
246 // Reset the range encoder so we are ready to continue
247 // encoding if we weren't finishing the stream.
248 rc_reset(rc);
249 return false;
251 default:
252 assert(0);
253 break;
256 ++rc->pos;
259 rc->count = 0;
260 rc->pos = 0;
262 return false;
266 static inline bool
267 rc_encode_dummy(const lzma_range_encoder *rc, uint64_t out_limit)
269 assert(rc->count <= RC_SYMBOLS_MAX);
271 uint64_t low = rc->low;
272 uint64_t cache_size = rc->cache_size;
273 uint32_t range = rc->range;
274 uint8_t cache = rc->cache;
275 uint64_t out_pos = rc->out_total;
277 size_t pos = rc->pos;
279 while (true) {
280 // Normalize
281 if (range < RC_TOP_VALUE) {
282 if (rc_shift_low_dummy(&low, &cache_size, &cache,
283 &out_pos, out_limit))
284 return true;
286 range <<= RC_SHIFT_BITS;
289 // This check is here because the normalization above must
290 // be done before flushing the last bytes.
291 if (pos == rc->count)
292 break;
294 // Encode a bit
295 switch (rc->symbols[pos]) {
296 case RC_BIT_0: {
297 probability prob = *rc->probs[pos];
298 range = (range >> RC_BIT_MODEL_TOTAL_BITS)
299 * prob;
300 break;
303 case RC_BIT_1: {
304 probability prob = *rc->probs[pos];
305 const uint32_t bound = prob * (range
306 >> RC_BIT_MODEL_TOTAL_BITS);
307 low += bound;
308 range -= bound;
309 break;
312 case RC_DIRECT_0:
313 range >>= 1;
314 break;
316 case RC_DIRECT_1:
317 range >>= 1;
318 low += range;
319 break;
321 case RC_FLUSH:
322 default:
323 assert(0);
324 break;
327 ++pos;
330 // Flush the last bytes. This isn't in rc->symbols[] so we do
331 // it after the above loop to take into account the size of
332 // the flushing that will be done at the end of the stream.
333 for (pos = 0; pos < 5; ++pos) {
334 if (rc_shift_low_dummy(&low, &cache_size,
335 &cache, &out_pos, out_limit))
336 return true;
339 return false;
343 static inline uint64_t
344 rc_pending(const lzma_range_encoder *rc)
346 return rc->cache_size + 5 - 1;
349 #endif