Fix version.sh compatiblity with Solaris
[xz/debian.git] / src / liblzma / simple / simple_coder.c
blob5cbfa822704753198fc0b3f5169d8afb297401ba
1 // SPDX-License-Identifier: 0BSD
3 ///////////////////////////////////////////////////////////////////////////////
4 //
5 /// \file simple_coder.c
6 /// \brief Wrapper for simple filters
7 ///
8 /// Simple filters don't change the size of the data i.e. number of bytes
9 /// in equals the number of bytes out.
11 // Author: Lasse Collin
13 ///////////////////////////////////////////////////////////////////////////////
15 #include "simple_private.h"
18 /// Copied or encodes/decodes more data to out[].
19 static lzma_ret
20 copy_or_code(lzma_simple_coder *coder, const lzma_allocator *allocator,
21 const uint8_t *restrict in, size_t *restrict in_pos,
22 size_t in_size, uint8_t *restrict out,
23 size_t *restrict out_pos, size_t out_size, lzma_action action)
25 assert(!coder->end_was_reached);
27 if (coder->next.code == NULL) {
28 lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size);
30 // Check if end of stream was reached.
31 if (coder->is_encoder && action == LZMA_FINISH
32 && *in_pos == in_size)
33 coder->end_was_reached = true;
35 } else {
36 // Call the next coder in the chain to provide us some data.
37 const lzma_ret ret = coder->next.code(
38 coder->next.coder, allocator,
39 in, in_pos, in_size,
40 out, out_pos, out_size, action);
42 if (ret == LZMA_STREAM_END) {
43 assert(!coder->is_encoder
44 || action == LZMA_FINISH);
45 coder->end_was_reached = true;
47 } else if (ret != LZMA_OK) {
48 return ret;
52 return LZMA_OK;
56 static size_t
57 call_filter(lzma_simple_coder *coder, uint8_t *buffer, size_t size)
59 const size_t filtered = coder->filter(coder->simple,
60 coder->now_pos, coder->is_encoder,
61 buffer, size);
62 coder->now_pos += filtered;
63 return filtered;
67 static lzma_ret
68 simple_code(void *coder_ptr, const lzma_allocator *allocator,
69 const uint8_t *restrict in, size_t *restrict in_pos,
70 size_t in_size, uint8_t *restrict out,
71 size_t *restrict out_pos, size_t out_size, lzma_action action)
73 lzma_simple_coder *coder = coder_ptr;
75 // TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it
76 // in cases when the filter is able to filter everything. With most
77 // simple filters it can be done at offset that is a multiple of 2,
78 // 4, or 16. With x86 filter, it needs good luck, and thus cannot
79 // be made to work predictably.
80 if (action == LZMA_SYNC_FLUSH)
81 return LZMA_OPTIONS_ERROR;
83 // Flush already filtered data from coder->buffer[] to out[].
84 if (coder->pos < coder->filtered) {
85 lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
86 out, out_pos, out_size);
88 // If we couldn't flush all the filtered data, return to
89 // application immediately.
90 if (coder->pos < coder->filtered)
91 return LZMA_OK;
93 if (coder->end_was_reached) {
94 assert(coder->filtered == coder->size);
95 return LZMA_STREAM_END;
99 // If we get here, there is no filtered data left in the buffer.
100 coder->filtered = 0;
102 assert(!coder->end_was_reached);
104 // If there is more output space left than there is unfiltered data
105 // in coder->buffer[], flush coder->buffer[] to out[], and copy/code
106 // more data to out[] hopefully filling it completely. Then filter
107 // the data in out[]. This step is where most of the data gets
108 // filtered if the buffer sizes used by the application are reasonable.
109 const size_t out_avail = out_size - *out_pos;
110 const size_t buf_avail = coder->size - coder->pos;
111 if (out_avail > buf_avail || buf_avail == 0) {
112 // Store the old position so that we know from which byte
113 // to start filtering.
114 const size_t out_start = *out_pos;
116 // Flush data from coder->buffer[] to out[], but don't reset
117 // coder->pos and coder->size yet. This way the coder can be
118 // restarted if the next filter in the chain returns e.g.
119 // LZMA_MEM_ERROR.
121 // Do the memcpy() conditionally because out can be NULL
122 // (in which case buf_avail is always 0). Calling memcpy()
123 // with a null-pointer is undefined even if the third
124 // argument is 0.
125 if (buf_avail > 0)
126 memcpy(out + *out_pos, coder->buffer + coder->pos,
127 buf_avail);
129 *out_pos += buf_avail;
131 // Copy/Encode/Decode more data to out[].
133 const lzma_ret ret = copy_or_code(coder, allocator,
134 in, in_pos, in_size,
135 out, out_pos, out_size, action);
136 assert(ret != LZMA_STREAM_END);
137 if (ret != LZMA_OK)
138 return ret;
141 // Filter out[] unless there is nothing to filter.
142 // This way we avoid null pointer + 0 (undefined behavior)
143 // when out == NULL.
144 const size_t size = *out_pos - out_start;
145 const size_t filtered = size == 0 ? 0 : call_filter(
146 coder, out + out_start, size);
148 const size_t unfiltered = size - filtered;
149 assert(unfiltered <= coder->allocated / 2);
151 // Now we can update coder->pos and coder->size, because
152 // the next coder in the chain (if any) was successful.
153 coder->pos = 0;
154 coder->size = unfiltered;
156 if (coder->end_was_reached) {
157 // The last byte has been copied to out[] already.
158 // They are left as is.
159 coder->size = 0;
161 } else if (unfiltered > 0) {
162 // There is unfiltered data left in out[]. Copy it to
163 // coder->buffer[] and rewind *out_pos appropriately.
164 *out_pos -= unfiltered;
165 memcpy(coder->buffer, out + *out_pos, unfiltered);
167 } else if (coder->pos > 0) {
168 memmove(coder->buffer, coder->buffer + coder->pos, buf_avail);
169 coder->size -= coder->pos;
170 coder->pos = 0;
173 assert(coder->pos == 0);
175 // If coder->buffer[] isn't empty, try to fill it by copying/decoding
176 // more data. Then filter coder->buffer[] and copy the successfully
177 // filtered data to out[]. It is probable, that some filtered and
178 // unfiltered data will be left to coder->buffer[].
179 if (coder->size > 0) {
181 const lzma_ret ret = copy_or_code(coder, allocator,
182 in, in_pos, in_size,
183 coder->buffer, &coder->size,
184 coder->allocated, action);
185 assert(ret != LZMA_STREAM_END);
186 if (ret != LZMA_OK)
187 return ret;
190 coder->filtered = call_filter(
191 coder, coder->buffer, coder->size);
193 // Everything is considered to be filtered if coder->buffer[]
194 // contains the last bytes of the data.
195 if (coder->end_was_reached)
196 coder->filtered = coder->size;
198 // Flush as much as possible.
199 lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
200 out, out_pos, out_size);
203 // Check if we got everything done.
204 if (coder->end_was_reached && coder->pos == coder->size)
205 return LZMA_STREAM_END;
207 return LZMA_OK;
211 static void
212 simple_coder_end(void *coder_ptr, const lzma_allocator *allocator)
214 lzma_simple_coder *coder = coder_ptr;
215 lzma_next_end(&coder->next, allocator);
216 lzma_free(coder->simple, allocator);
217 lzma_free(coder, allocator);
218 return;
222 static lzma_ret
223 simple_coder_update(void *coder_ptr, const lzma_allocator *allocator,
224 const lzma_filter *filters_null lzma_attribute((__unused__)),
225 const lzma_filter *reversed_filters)
227 lzma_simple_coder *coder = coder_ptr;
229 // No update support, just call the next filter in the chain.
230 return lzma_next_filter_update(
231 &coder->next, allocator, reversed_filters + 1);
235 extern lzma_ret
236 lzma_simple_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
237 const lzma_filter_info *filters,
238 size_t (*filter)(void *simple, uint32_t now_pos,
239 bool is_encoder, uint8_t *buffer, size_t size),
240 size_t simple_size, size_t unfiltered_max,
241 uint32_t alignment, bool is_encoder)
243 // Allocate memory for the lzma_simple_coder structure if needed.
244 lzma_simple_coder *coder = next->coder;
245 if (coder == NULL) {
246 // Here we allocate space also for the temporary buffer. We
247 // need twice the size of unfiltered_max, because then it
248 // is always possible to filter at least unfiltered_max bytes
249 // more data in coder->buffer[] if it can be filled completely.
250 coder = lzma_alloc(sizeof(lzma_simple_coder)
251 + 2 * unfiltered_max, allocator);
252 if (coder == NULL)
253 return LZMA_MEM_ERROR;
255 next->coder = coder;
256 next->code = &simple_code;
257 next->end = &simple_coder_end;
258 next->update = &simple_coder_update;
260 coder->next = LZMA_NEXT_CODER_INIT;
261 coder->filter = filter;
262 coder->allocated = 2 * unfiltered_max;
264 // Allocate memory for filter-specific data structure.
265 if (simple_size > 0) {
266 coder->simple = lzma_alloc(simple_size, allocator);
267 if (coder->simple == NULL)
268 return LZMA_MEM_ERROR;
269 } else {
270 coder->simple = NULL;
274 if (filters[0].options != NULL) {
275 const lzma_options_bcj *simple = filters[0].options;
276 coder->now_pos = simple->start_offset;
277 if (coder->now_pos & (alignment - 1))
278 return LZMA_OPTIONS_ERROR;
279 } else {
280 coder->now_pos = 0;
283 // Reset variables.
284 coder->is_encoder = is_encoder;
285 coder->end_was_reached = false;
286 coder->pos = 0;
287 coder->filtered = 0;
288 coder->size = 0;
290 return lzma_next_filter_init(&coder->next, allocator, filters + 1);