Tests: Fix memory leaks in test_block_header.
[xz/debian.git] / src / liblzma / common / stream_decoder_mt.c
blobb8ba4d390d801c1630a6710695ba98c47b7e22c5
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file stream_decoder_mt.c
4 /// \brief Multithreaded .xz Stream decoder
5 //
6 // Authors: Sebastian Andrzej Siewior
7 // Lasse Collin
8 //
9 // This file has been put into the public domain.
10 // You can do whatever you want with this file.
12 ///////////////////////////////////////////////////////////////////////////////
14 #include "common.h"
15 #include "block_decoder.h"
16 #include "stream_decoder.h"
17 #include "index.h"
18 #include "outqueue.h"
21 typedef enum {
22 /// Waiting for work.
23 /// Main thread may change this to THR_RUN or THR_EXIT.
24 THR_IDLE,
26 /// Decoding is in progress.
27 /// Main thread may change this to THR_STOP or THR_EXIT.
28 /// The worker thread may change this to THR_IDLE.
29 THR_RUN,
31 /// The main thread wants the thread to stop whatever it was doing
32 /// but not exit. Main thread may change this to THR_EXIT.
33 /// The worker thread may change this to THR_IDLE.
34 THR_STOP,
36 /// The main thread wants the thread to exit.
37 THR_EXIT,
39 } worker_state;
42 typedef enum {
43 /// Partial updates (storing of worker thread progress
44 /// to lzma_outbuf) are disabled.
45 PARTIAL_DISABLED,
47 /// Main thread requests partial updates to be enabled but
48 /// no partial update has been done by the worker thread yet.
49 ///
50 /// Changing from PARTIAL_DISABLED to PARTIAL_START requires
51 /// use of the worker-thread mutex. Other transitions don't
52 /// need a mutex.
53 PARTIAL_START,
55 /// Partial updates are enabled and the worker thread has done
56 /// at least one partial update.
57 PARTIAL_ENABLED,
59 } partial_update_mode;
62 struct worker_thread {
63 /// Worker state is protected with our mutex.
64 worker_state state;
66 /// Input buffer that will contain the whole Block except Block Header.
67 uint8_t *in;
69 /// Amount of memory allocated for "in"
70 size_t in_size;
72 /// Number of bytes written to "in" by the main thread
73 size_t in_filled;
75 /// Number of bytes consumed from "in" by the worker thread.
76 size_t in_pos;
78 /// Amount of uncompressed data that has been decoded. This local
79 /// copy is needed because updating outbuf->pos requires locking
80 /// the main mutex (coder->mutex).
81 size_t out_pos;
83 /// Pointer to the main structure is needed to (1) lock the main
84 /// mutex (coder->mutex) when updating outbuf->pos and (2) when
85 /// putting this thread back to the stack of free threads.
86 struct lzma_stream_coder *coder;
88 /// The allocator is set by the main thread. Since a copy of the
89 /// pointer is kept here, the application must not change the
90 /// allocator before calling lzma_end().
91 const lzma_allocator *allocator;
93 /// Output queue buffer to which the uncompressed data is written.
94 lzma_outbuf *outbuf;
96 /// Amount of compressed data that has already been decompressed.
97 /// This is updated from in_pos when our mutex is locked.
98 /// This is size_t, not uint64_t, because per-thread progress
99 /// is limited to sizes of allocated buffers.
100 size_t progress_in;
102 /// Like progress_in but for uncompressed data.
103 size_t progress_out;
105 /// Updating outbuf->pos requires locking the main mutex
106 /// (coder->mutex). Since the main thread will only read output
107 /// from the oldest outbuf in the queue, only the worker thread
108 /// that is associated with the oldest outbuf needs to update its
109 /// outbuf->pos. This avoids useless mutex contention that would
110 /// happen if all worker threads were frequently locking the main
111 /// mutex to update their outbuf->pos.
113 /// Only when partial_update is something else than PARTIAL_DISABLED,
114 /// this worker thread will update outbuf->pos after each call to
115 /// the Block decoder.
116 partial_update_mode partial_update;
118 /// Block decoder
119 lzma_next_coder block_decoder;
121 /// Thread-specific Block options are needed because the Block
122 /// decoder modifies the struct given to it at initialization.
123 lzma_block block_options;
125 /// Filter chain memory usage
126 uint64_t mem_filters;
128 /// Next structure in the stack of free worker threads.
129 struct worker_thread *next;
131 mythread_mutex mutex;
132 mythread_cond cond;
134 /// The ID of this thread is used to join the thread
135 /// when it's not needed anymore.
136 mythread thread_id;
140 struct lzma_stream_coder {
141 enum {
142 SEQ_STREAM_HEADER,
143 SEQ_BLOCK_HEADER,
144 SEQ_BLOCK_INIT,
145 SEQ_BLOCK_THR_INIT,
146 SEQ_BLOCK_THR_RUN,
147 SEQ_BLOCK_DIRECT_INIT,
148 SEQ_BLOCK_DIRECT_RUN,
149 SEQ_INDEX_WAIT_OUTPUT,
150 SEQ_INDEX_DECODE,
151 SEQ_STREAM_FOOTER,
152 SEQ_STREAM_PADDING,
153 SEQ_ERROR,
154 } sequence;
156 /// Block decoder
157 lzma_next_coder block_decoder;
159 /// Every Block Header will be decoded into this structure.
160 /// This is also used to initialize a Block decoder when in
161 /// direct mode. In threaded mode, a thread-specific copy will
162 /// be made for decoder initialization because the Block decoder
163 /// will modify the structure given to it.
164 lzma_block block_options;
166 /// Buffer to hold a filter chain for Block Header decoding and
167 /// initialization. These are freed after successful Block decoder
168 /// initialization or at stream_decoder_mt_end(). The thread-specific
169 /// copy of block_options won't hold a pointer to filters[] after
170 /// initialization.
171 lzma_filter filters[LZMA_FILTERS_MAX + 1];
173 /// Stream Flags from Stream Header
174 lzma_stream_flags stream_flags;
176 /// Index is hashed so that it can be compared to the sizes of Blocks
177 /// with O(1) memory usage.
178 lzma_index_hash *index_hash;
181 /// Maximum wait time if cannot use all the input and cannot
182 /// fill the output buffer. This is in milliseconds.
183 uint32_t timeout;
186 /// Error code from a worker thread.
188 /// \note Use mutex.
189 lzma_ret thread_error;
191 /// Error code to return after pending output has been copied out. If
192 /// set in read_output_and_wait(), this is a mirror of thread_error.
193 /// If set in stream_decode_mt() then it's, for example, error that
194 /// occurred when decoding Block Header.
195 lzma_ret pending_error;
197 /// Number of threads that will be created at maximum.
198 uint32_t threads_max;
200 /// Number of thread structures that have been initialized from
201 /// "threads", and thus the number of worker threads actually
202 /// created so far.
203 uint32_t threads_initialized;
205 /// Array of allocated thread-specific structures. When no threads
206 /// are in use (direct mode) this is NULL. In threaded mode this
207 /// points to an array of threads_max number of worker_thread structs.
208 struct worker_thread *threads;
210 /// Stack of free threads. When a thread finishes, it puts itself
211 /// back into this stack. This starts as empty because threads
212 /// are created only when actually needed.
214 /// \note Use mutex.
215 struct worker_thread *threads_free;
217 /// The most recent worker thread to which the main thread writes
218 /// the new input from the application.
219 struct worker_thread *thr;
221 /// Output buffer queue for decompressed data from the worker threads
223 /// \note Use mutex with operations that need it.
224 lzma_outq outq;
226 mythread_mutex mutex;
227 mythread_cond cond;
230 /// Memory usage that will not be exceeded in multi-threaded mode.
231 /// Single-threaded mode can exceed this even by a large amount.
232 uint64_t memlimit_threading;
234 /// Memory usage limit that should never be exceeded.
235 /// LZMA_MEMLIMIT_ERROR will be returned if decoding isn't possible
236 /// even in single-threaded mode without exceeding this limit.
237 uint64_t memlimit_stop;
239 /// Amount of memory in use by the direct mode decoder
240 /// (coder->block_decoder). In threaded mode this is 0.
241 uint64_t mem_direct_mode;
243 /// Amount of memory needed by the running worker threads.
244 /// This doesn't include the memory needed by the output buffer.
246 /// \note Use mutex.
247 uint64_t mem_in_use;
249 /// Amount of memory used by the idle (cached) threads.
251 /// \note Use mutex.
252 uint64_t mem_cached;
255 /// Amount of memory needed for the filter chain of the next Block.
256 uint64_t mem_next_filters;
258 /// Amount of memory needed for the thread-specific input buffer
259 /// for the next Block.
260 uint64_t mem_next_in;
262 /// Amount of memory actually needed to decode the next Block
263 /// in threaded mode. This is
264 /// mem_next_filters + mem_next_in + memory needed for lzma_outbuf.
265 uint64_t mem_next_block;
268 /// Amount of compressed data in Stream Header + Blocks that have
269 /// already been finished.
271 /// \note Use mutex.
272 uint64_t progress_in;
274 /// Amount of uncompressed data in Blocks that have already
275 /// been finished.
277 /// \note Use mutex.
278 uint64_t progress_out;
281 /// If true, LZMA_NO_CHECK is returned if the Stream has
282 /// no integrity check.
283 bool tell_no_check;
285 /// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has
286 /// an integrity check that isn't supported by this liblzma build.
287 bool tell_unsupported_check;
289 /// If true, LZMA_GET_CHECK is returned after decoding Stream Header.
290 bool tell_any_check;
292 /// If true, we will tell the Block decoder to skip calculating
293 /// and verifying the integrity check.
294 bool ignore_check;
296 /// If true, we will decode concatenated Streams that possibly have
297 /// Stream Padding between or after them. LZMA_STREAM_END is returned
298 /// once the application isn't giving us any new input (LZMA_FINISH),
299 /// and we aren't in the middle of a Stream, and possible
300 /// Stream Padding is a multiple of four bytes.
301 bool concatenated;
303 /// If true, we will return any errors immediately instead of first
304 /// producing all output before the location of the error.
305 bool fail_fast;
308 /// When decoding concatenated Streams, this is true as long as we
309 /// are decoding the first Stream. This is needed to avoid misleading
310 /// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic
311 /// bytes.
312 bool first_stream;
314 /// This is used to track if the previous call to stream_decode_mt()
315 /// had output space (*out_pos < out_size) and managed to fill the
316 /// output buffer (*out_pos == out_size). This may be set to true
317 /// in read_output_and_wait(). This is read and then reset to false
318 /// at the beginning of stream_decode_mt().
320 /// This is needed to support applications that call lzma_code() in
321 /// such a way that more input is provided only when lzma_code()
322 /// didn't fill the output buffer completely. Basically, this makes
323 /// it easier to convert such applications from single-threaded
324 /// decoder to multi-threaded decoder.
325 bool out_was_filled;
327 /// Write position in buffer[] and position in Stream Padding
328 size_t pos;
330 /// Buffer to hold Stream Header, Block Header, and Stream Footer.
331 /// Block Header has biggest maximum size.
332 uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX];
336 /// Enables updating of outbuf->pos. This is a callback function that is
337 /// used with lzma_outq_enable_partial_output().
338 static void
339 worker_enable_partial_update(void *thr_ptr)
341 struct worker_thread *thr = thr_ptr;
343 mythread_sync(thr->mutex) {
344 thr->partial_update = PARTIAL_START;
345 mythread_cond_signal(&thr->cond);
350 /// Things do to at THR_STOP or when finishing a Block.
351 /// This is called with thr->mutex locked.
352 static void
353 worker_stop(struct worker_thread *thr)
355 // Update memory usage counters.
356 thr->coder->mem_in_use -= thr->in_size;
357 thr->in_size = 0; // thr->in was freed above.
359 thr->coder->mem_in_use -= thr->mem_filters;
360 thr->coder->mem_cached += thr->mem_filters;
362 // Put this thread to the stack of free threads.
363 thr->next = thr->coder->threads_free;
364 thr->coder->threads_free = thr;
366 mythread_cond_signal(&thr->coder->cond);
367 return;
371 static MYTHREAD_RET_TYPE
372 worker_decoder(void *thr_ptr)
374 struct worker_thread *thr = thr_ptr;
375 size_t in_filled;
376 partial_update_mode partial_update;
377 lzma_ret ret;
379 next_loop_lock:
381 mythread_mutex_lock(&thr->mutex);
382 next_loop_unlocked:
384 if (thr->state == THR_IDLE) {
385 mythread_cond_wait(&thr->cond, &thr->mutex);
386 goto next_loop_unlocked;
389 if (thr->state == THR_EXIT) {
390 mythread_mutex_unlock(&thr->mutex);
392 lzma_free(thr->in, thr->allocator);
393 lzma_next_end(&thr->block_decoder, thr->allocator);
395 mythread_mutex_destroy(&thr->mutex);
396 mythread_cond_destroy(&thr->cond);
398 return MYTHREAD_RET_VALUE;
401 if (thr->state == THR_STOP) {
402 thr->state = THR_IDLE;
403 mythread_mutex_unlock(&thr->mutex);
405 mythread_sync(thr->coder->mutex) {
406 worker_stop(thr);
409 goto next_loop_lock;
412 assert(thr->state == THR_RUN);
414 // Update progress info for get_progress().
415 thr->progress_in = thr->in_pos;
416 thr->progress_out = thr->out_pos;
418 // If we don't have any new input, wait for a signal from the main
419 // thread except if partial output has just been enabled. In that
420 // case we will do one normal run so that the partial output info
421 // gets passed to the main thread. The call to block_decoder.code()
422 // is useless but harmless as it can occur only once per Block.
423 in_filled = thr->in_filled;
424 partial_update = thr->partial_update;
426 if (in_filled == thr->in_pos && partial_update != PARTIAL_START) {
427 mythread_cond_wait(&thr->cond, &thr->mutex);
428 goto next_loop_unlocked;
431 mythread_mutex_unlock(&thr->mutex);
433 // Pass the input in small chunks to the Block decoder.
434 // This way we react reasonably fast if we are told to stop/exit,
435 // and (when partial update is enabled) we tell about our progress
436 // to the main thread frequently enough.
437 const size_t chunk_size = 16384;
438 if ((in_filled - thr->in_pos) > chunk_size)
439 in_filled = thr->in_pos + chunk_size;
441 ret = thr->block_decoder.code(
442 thr->block_decoder.coder, thr->allocator,
443 thr->in, &thr->in_pos, in_filled,
444 thr->outbuf->buf, &thr->out_pos,
445 thr->outbuf->allocated, LZMA_RUN);
447 if (ret == LZMA_OK) {
448 if (partial_update != PARTIAL_DISABLED) {
449 // The main thread uses thr->mutex to change from
450 // PARTIAL_DISABLED to PARTIAL_START. The main thread
451 // doesn't care about this variable after that so we
452 // can safely change it here to PARTIAL_ENABLED
453 // without a mutex.
454 thr->partial_update = PARTIAL_ENABLED;
456 // The main thread is reading decompressed data
457 // from thr->outbuf. Tell the main thread about
458 // our progress.
460 // NOTE: It's possible that we consumed input without
461 // producing any new output so it's possible that
462 // only in_pos has changed. In case of PARTIAL_START
463 // it is possible that neither in_pos nor out_pos has
464 // changed.
465 mythread_sync(thr->coder->mutex) {
466 thr->outbuf->pos = thr->out_pos;
467 thr->outbuf->decoder_in_pos = thr->in_pos;
468 mythread_cond_signal(&thr->coder->cond);
472 goto next_loop_lock;
475 // Either we finished successfully (LZMA_STREAM_END) or an error
476 // occurred. Both cases are handled almost identically. The error
477 // case requires updating thr->coder->thread_error.
479 // The sizes are in the Block Header and the Block decoder
480 // checks that they match, thus we know these:
481 assert(ret != LZMA_STREAM_END || thr->in_pos == thr->in_size);
482 assert(ret != LZMA_STREAM_END
483 || thr->out_pos == thr->block_options.uncompressed_size);
485 // Free the input buffer. Don't update in_size as we need
486 // it later to update thr->coder->mem_in_use.
487 lzma_free(thr->in, thr->allocator);
488 thr->in = NULL;
490 mythread_sync(thr->mutex) {
491 if (thr->state != THR_EXIT)
492 thr->state = THR_IDLE;
495 mythread_sync(thr->coder->mutex) {
496 // Move our progress info to the main thread.
497 thr->coder->progress_in += thr->in_pos;
498 thr->coder->progress_out += thr->out_pos;
499 thr->progress_in = 0;
500 thr->progress_out = 0;
502 // Mark the outbuf as finished.
503 thr->outbuf->pos = thr->out_pos;
504 thr->outbuf->decoder_in_pos = thr->in_pos;
505 thr->outbuf->finished = true;
506 thr->outbuf->finish_ret = ret;
507 thr->outbuf = NULL;
509 // If an error occurred, tell it to the main thread.
510 if (ret != LZMA_STREAM_END
511 && thr->coder->thread_error == LZMA_OK)
512 thr->coder->thread_error = ret;
514 worker_stop(thr);
517 goto next_loop_lock;
521 /// Tells the worker threads to exit and waits for them to terminate.
522 static void
523 threads_end(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
525 for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
526 mythread_sync(coder->threads[i].mutex) {
527 coder->threads[i].state = THR_EXIT;
528 mythread_cond_signal(&coder->threads[i].cond);
532 for (uint32_t i = 0; i < coder->threads_initialized; ++i)
533 mythread_join(coder->threads[i].thread_id);
535 lzma_free(coder->threads, allocator);
536 coder->threads_initialized = 0;
537 coder->threads = NULL;
538 coder->threads_free = NULL;
540 // The threads don't update these when they exit. Do it here.
541 coder->mem_in_use = 0;
542 coder->mem_cached = 0;
544 return;
548 static void
549 threads_stop(struct lzma_stream_coder *coder)
551 for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
552 mythread_sync(coder->threads[i].mutex) {
553 // The state must be changed conditionally because
554 // THR_IDLE -> THR_STOP is not a valid state change.
555 if (coder->threads[i].state != THR_IDLE) {
556 coder->threads[i].state = THR_STOP;
557 mythread_cond_signal(&coder->threads[i].cond);
562 return;
566 /// Initialize a new worker_thread structure and create a new thread.
567 static lzma_ret
568 initialize_new_thread(struct lzma_stream_coder *coder,
569 const lzma_allocator *allocator)
571 // Allocate the coder->threads array if needed. It's done here instead
572 // of when initializing the decoder because we don't need this if we
573 // use the direct mode (we may even free coder->threads in the middle
574 // of the file if we switch from threaded to direct mode).
575 if (coder->threads == NULL) {
576 coder->threads = lzma_alloc(
577 coder->threads_max * sizeof(struct worker_thread),
578 allocator);
580 if (coder->threads == NULL)
581 return LZMA_MEM_ERROR;
584 // Pick a free structure.
585 assert(coder->threads_initialized < coder->threads_max);
586 struct worker_thread *thr
587 = &coder->threads[coder->threads_initialized];
589 if (mythread_mutex_init(&thr->mutex))
590 goto error_mutex;
592 if (mythread_cond_init(&thr->cond))
593 goto error_cond;
595 thr->state = THR_IDLE;
596 thr->in = NULL;
597 thr->in_size = 0;
598 thr->allocator = allocator;
599 thr->coder = coder;
600 thr->outbuf = NULL;
601 thr->block_decoder = LZMA_NEXT_CODER_INIT;
602 thr->mem_filters = 0;
604 if (mythread_create(&thr->thread_id, worker_decoder, thr))
605 goto error_thread;
607 ++coder->threads_initialized;
608 coder->thr = thr;
610 return LZMA_OK;
612 error_thread:
613 mythread_cond_destroy(&thr->cond);
615 error_cond:
616 mythread_mutex_destroy(&thr->mutex);
618 error_mutex:
619 return LZMA_MEM_ERROR;
623 static lzma_ret
624 get_thread(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
626 // If there is a free structure on the stack, use it.
627 mythread_sync(coder->mutex) {
628 if (coder->threads_free != NULL) {
629 coder->thr = coder->threads_free;
630 coder->threads_free = coder->threads_free->next;
632 // The thread is no longer in the cache so substract
633 // it from the cached memory usage. Don't add it
634 // to mem_in_use though; the caller will handle it
635 // since it knows how much memory it will actually
636 // use (the filter chain might change).
637 coder->mem_cached -= coder->thr->mem_filters;
641 if (coder->thr == NULL) {
642 assert(coder->threads_initialized < coder->threads_max);
644 // Initialize a new thread.
645 return_if_error(initialize_new_thread(coder, allocator));
648 coder->thr->in_filled = 0;
649 coder->thr->in_pos = 0;
650 coder->thr->out_pos = 0;
652 coder->thr->progress_in = 0;
653 coder->thr->progress_out = 0;
655 coder->thr->partial_update = PARTIAL_DISABLED;
657 return LZMA_OK;
661 static lzma_ret
662 read_output_and_wait(struct lzma_stream_coder *coder,
663 const lzma_allocator *allocator,
664 uint8_t *restrict out, size_t *restrict out_pos,
665 size_t out_size,
666 bool *input_is_possible,
667 bool waiting_allowed,
668 mythread_condtime *wait_abs, bool *has_blocked)
670 lzma_ret ret = LZMA_OK;
672 mythread_sync(coder->mutex) {
673 do {
674 // Get as much output from the queue as is possible
675 // without blocking.
676 const size_t out_start = *out_pos;
677 do {
678 ret = lzma_outq_read(&coder->outq, allocator,
679 out, out_pos, out_size,
680 NULL, NULL);
682 // If a Block was finished, tell the worker
683 // thread of the next Block (if it is still
684 // running) to start telling the main thread
685 // when new output is available.
686 if (ret == LZMA_STREAM_END)
687 lzma_outq_enable_partial_output(
688 &coder->outq,
689 &worker_enable_partial_update);
691 // Loop until a Block wasn't finished.
692 // It's important to loop around even if
693 // *out_pos == out_size because there could
694 // be an empty Block that will return
695 // LZMA_STREAM_END without needing any
696 // output space.
697 } while (ret == LZMA_STREAM_END);
699 // Check if lzma_outq_read reported an error from
700 // the Block decoder.
701 if (ret != LZMA_OK)
702 break;
704 // If the output buffer is now full but it wasn't full
705 // when this function was called, set out_was_filled.
706 // This way the next call to stream_decode_mt() knows
707 // that some output was produced and no output space
708 // remained in the previous call to stream_decode_mt().
709 if (*out_pos == out_size && *out_pos != out_start)
710 coder->out_was_filled = true;
712 // Check if any thread has indicated an error.
713 if (coder->thread_error != LZMA_OK) {
714 // If LZMA_FAIL_FAST was used, report errors
715 // from worker threads immediately.
716 if (coder->fail_fast) {
717 ret = coder->thread_error;
718 break;
721 // Otherwise set pending_error. The value we
722 // set here will not actually get used other
723 // than working as a flag that an error has
724 // occurred. This is because in SEQ_ERROR
725 // all output before the error will be read
726 // first by calling this function, and once we
727 // reach the location of the (first) error the
728 // error code from the above lzma_outq_read()
729 // will be returned to the application.
731 // Use LZMA_PROG_ERROR since the value should
732 // never leak to the application. It's
733 // possible that pending_error has already
734 // been set but that doesn't matter: if we get
735 // here, pending_error only works as a flag.
736 coder->pending_error = LZMA_PROG_ERROR;
739 // Check if decoding of the next Block can be started.
740 // The memusage of the active threads must be low
741 // enough, there must be a free buffer slot in the
742 // output queue, and there must be a free thread
743 // (that can be either created or an existing one
744 // reused).
746 // NOTE: This is checked after reading the output
747 // above because reading the output can free a slot in
748 // the output queue and also reduce active memusage.
750 // NOTE: If output queue is empty, then input will
751 // always be possible.
752 if (input_is_possible != NULL
753 && coder->memlimit_threading
754 - coder->mem_in_use
755 - coder->outq.mem_in_use
756 >= coder->mem_next_block
757 && lzma_outq_has_buf(&coder->outq)
758 && (coder->threads_initialized
759 < coder->threads_max
760 || coder->threads_free
761 != NULL)) {
762 *input_is_possible = true;
763 break;
766 // If the caller doesn't want us to block, return now.
767 if (!waiting_allowed)
768 break;
770 // This check is needed only when input_is_possible
771 // is NULL. We must return if we aren't waiting for
772 // input to become possible and there is no more
773 // output coming from the queue.
774 if (lzma_outq_is_empty(&coder->outq)) {
775 assert(input_is_possible == NULL);
776 break;
779 // If there is more data available from the queue,
780 // our out buffer must be full and we need to return
781 // so that the application can provide more output
782 // space.
784 // NOTE: In general lzma_outq_is_readable() can return
785 // true also when there are no more bytes available.
786 // This can happen when a Block has finished without
787 // providing any new output. We know that this is not
788 // the case because in the beginning of this loop we
789 // tried to read as much as possible even when we had
790 // no output space left and the mutex has been locked
791 // all the time (so worker threads cannot have changed
792 // anything). Thus there must be actual pending output
793 // in the queue.
794 if (lzma_outq_is_readable(&coder->outq)) {
795 assert(*out_pos == out_size);
796 break;
799 // If the application stops providing more input
800 // in the middle of a Block, there will eventually
801 // be one worker thread left that is stuck waiting for
802 // more input (that might never arrive) and a matching
803 // outbuf which the worker thread cannot finish due
804 // to lack of input. We must detect this situation,
805 // otherwise we would end up waiting indefinitely
806 // (if no timeout is in use) or keep returning
807 // LZMA_TIMED_OUT while making no progress. Thus, the
808 // application would never get LZMA_BUF_ERROR from
809 // lzma_code() which would tell the application that
810 // no more progress is possible. No LZMA_BUF_ERROR
811 // means that, for example, truncated .xz files could
812 // cause an infinite loop.
814 // A worker thread doing partial updates will
815 // store not only the output position in outbuf->pos
816 // but also the matching input position in
817 // outbuf->decoder_in_pos. Here we check if that
818 // input position matches the amount of input that
819 // the worker thread has been given (in_filled).
820 // If so, we must return and not wait as no more
821 // output will be coming without first getting more
822 // input to the worker thread. If the application
823 // keeps calling lzma_code() without providing more
824 // input, it will eventually get LZMA_BUF_ERROR.
826 // NOTE: We can read partial_update and in_filled
827 // without thr->mutex as only the main thread
828 // modifies these variables. decoder_in_pos requires
829 // coder->mutex which we are already holding.
830 if (coder->thr != NULL && coder->thr->partial_update
831 != PARTIAL_DISABLED) {
832 // There is exactly one outbuf in the queue.
833 assert(coder->thr->outbuf == coder->outq.head);
834 assert(coder->thr->outbuf == coder->outq.tail);
836 if (coder->thr->outbuf->decoder_in_pos
837 == coder->thr->in_filled)
838 break;
841 // Wait for input or output to become possible.
842 if (coder->timeout != 0) {
843 // See the comment in stream_encoder_mt.c
844 // about why mythread_condtime_set() is used
845 // like this.
847 // FIXME?
848 // In contrast to the encoder, this calls
849 // _condtime_set while the mutex is locked.
850 if (!*has_blocked) {
851 *has_blocked = true;
852 mythread_condtime_set(wait_abs,
853 &coder->cond,
854 coder->timeout);
857 if (mythread_cond_timedwait(&coder->cond,
858 &coder->mutex,
859 wait_abs) != 0) {
860 ret = LZMA_TIMED_OUT;
861 break;
863 } else {
864 mythread_cond_wait(&coder->cond,
865 &coder->mutex);
867 } while (ret == LZMA_OK);
870 // If we are returning an error, then the application cannot get
871 // more output from us and thus keeping the threads running is
872 // useless and waste of CPU time.
873 if (ret != LZMA_OK && ret != LZMA_TIMED_OUT)
874 threads_stop(coder);
876 return ret;
880 static lzma_ret
881 decode_block_header(struct lzma_stream_coder *coder,
882 const lzma_allocator *allocator, const uint8_t *restrict in,
883 size_t *restrict in_pos, size_t in_size)
885 if (*in_pos >= in_size)
886 return LZMA_OK;
888 if (coder->pos == 0) {
889 // Detect if it's Index.
890 if (in[*in_pos] == INDEX_INDICATOR)
891 return LZMA_INDEX_DETECTED;
893 // Calculate the size of the Block Header. Note that
894 // Block Header decoder wants to see this byte too
895 // so don't advance *in_pos.
896 coder->block_options.header_size
897 = lzma_block_header_size_decode(
898 in[*in_pos]);
901 // Copy the Block Header to the internal buffer.
902 lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
903 coder->block_options.header_size);
905 // Return if we didn't get the whole Block Header yet.
906 if (coder->pos < coder->block_options.header_size)
907 return LZMA_OK;
909 coder->pos = 0;
911 // Version 1 is needed to support the .ignore_check option.
912 coder->block_options.version = 1;
914 // Block Header decoder will initialize all members of this array
915 // so we don't need to do it here.
916 coder->block_options.filters = coder->filters;
918 // Decode the Block Header.
919 return_if_error(lzma_block_header_decode(&coder->block_options,
920 allocator, coder->buffer));
922 // If LZMA_IGNORE_CHECK was used, this flag needs to be set.
923 // It has to be set after lzma_block_header_decode() because
924 // it always resets this to false.
925 coder->block_options.ignore_check = coder->ignore_check;
927 // coder->block_options is ready now.
928 return LZMA_STREAM_END;
932 /// Get the size of the Compressed Data + Block Padding + Check.
933 static size_t
934 comp_blk_size(const struct lzma_stream_coder *coder)
936 return vli_ceil4(coder->block_options.compressed_size)
937 + lzma_check_size(coder->stream_flags.check);
941 /// Returns true if the size (compressed or uncompressed) is such that
942 /// threaded decompression cannot be used. Sizes that are too big compared
943 /// to SIZE_MAX must be rejected to avoid integer overflows and truncations
944 /// when lzma_vli is assigned to a size_t.
945 static bool
946 is_direct_mode_needed(lzma_vli size)
948 return size == LZMA_VLI_UNKNOWN || size > SIZE_MAX / 3;
952 static lzma_ret
953 stream_decoder_reset(struct lzma_stream_coder *coder,
954 const lzma_allocator *allocator)
956 // Initialize the Index hash used to verify the Index.
957 coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator);
958 if (coder->index_hash == NULL)
959 return LZMA_MEM_ERROR;
961 // Reset the rest of the variables.
962 coder->sequence = SEQ_STREAM_HEADER;
963 coder->pos = 0;
965 return LZMA_OK;
969 static lzma_ret
970 stream_decode_mt(void *coder_ptr, const lzma_allocator *allocator,
971 const uint8_t *restrict in, size_t *restrict in_pos,
972 size_t in_size,
973 uint8_t *restrict out, size_t *restrict out_pos,
974 size_t out_size, lzma_action action)
976 struct lzma_stream_coder *coder = coder_ptr;
978 mythread_condtime wait_abs;
979 bool has_blocked = false;
981 // Determine if in SEQ_BLOCK_HEADER and SEQ_BLOCK_THR_RUN we should
982 // tell read_output_and_wait() to wait until it can fill the output
983 // buffer (or a timeout occurs). Two conditions must be met:
985 // (1) If the caller provided no new input. The reason for this
986 // can be, for example, the end of the file or that there is
987 // a pause in the input stream and more input is available
988 // a little later. In this situation we should wait for output
989 // because otherwise we would end up in a busy-waiting loop where
990 // we make no progress and the application just calls us again
991 // without providing any new input. This would then result in
992 // LZMA_BUF_ERROR even though more output would be available
993 // once the worker threads decode more data.
995 // (2) Even if (1) is true, we will not wait if the previous call to
996 // this function managed to produce some output and the output
997 // buffer became full. This is for compatibility with applications
998 // that call lzma_code() in such a way that new input is provided
999 // only when the output buffer didn't become full. Without this
1000 // trick such applications would have bad performance (bad
1001 // parallelization due to decoder not getting input fast enough).
1003 // NOTE: Such loops might require that timeout is disabled (0)
1004 // if they assume that output-not-full implies that all input has
1005 // been consumed. If and only if timeout is enabled, we may return
1006 // when output isn't full *and* not all input has been consumed.
1008 // However, if LZMA_FINISH is used, the above is ignored and we always
1009 // wait (timeout can still cause us to return) because we know that
1010 // we won't get any more input. This matters if the input file is
1011 // truncated and we are doing single-shot decoding, that is,
1012 // timeout = 0 and LZMA_FINISH is used on the first call to
1013 // lzma_code() and the output buffer is known to be big enough
1014 // to hold all uncompressed data:
1016 // - If LZMA_FINISH wasn't handled specially, we could return
1017 // LZMA_OK before providing all output that is possible with the
1018 // truncated input. The rest would be available if lzma_code() was
1019 // called again but then it's not single-shot decoding anymore.
1021 // - By handling LZMA_FINISH specially here, the first call will
1022 // produce all the output, matching the behavior of the
1023 // single-threaded decoder.
1025 // So it's a very specific corner case but also easy to avoid. Note
1026 // that this special handling of LZMA_FINISH has no effect for
1027 // single-shot decoding when the input file is valid (not truncated);
1028 // premature LZMA_OK wouldn't be possible as long as timeout = 0.
1029 const bool waiting_allowed = action == LZMA_FINISH
1030 || (*in_pos == in_size && !coder->out_was_filled);
1031 coder->out_was_filled = false;
1033 while (true)
1034 switch (coder->sequence) {
1035 case SEQ_STREAM_HEADER: {
1036 // Copy the Stream Header to the internal buffer.
1037 const size_t in_old = *in_pos;
1038 lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
1039 LZMA_STREAM_HEADER_SIZE);
1040 coder->progress_in += *in_pos - in_old;
1042 // Return if we didn't get the whole Stream Header yet.
1043 if (coder->pos < LZMA_STREAM_HEADER_SIZE)
1044 return LZMA_OK;
1046 coder->pos = 0;
1048 // Decode the Stream Header.
1049 const lzma_ret ret = lzma_stream_header_decode(
1050 &coder->stream_flags, coder->buffer);
1051 if (ret != LZMA_OK)
1052 return ret == LZMA_FORMAT_ERROR && !coder->first_stream
1053 ? LZMA_DATA_ERROR : ret;
1055 // If we are decoding concatenated Streams, and the later
1056 // Streams have invalid Header Magic Bytes, we give
1057 // LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR.
1058 coder->first_stream = false;
1060 // Copy the type of the Check so that Block Header and Block
1061 // decoders see it.
1062 coder->block_options.check = coder->stream_flags.check;
1064 // Even if we return LZMA_*_CHECK below, we want
1065 // to continue from Block Header decoding.
1066 coder->sequence = SEQ_BLOCK_HEADER;
1068 // Detect if there's no integrity check or if it is
1069 // unsupported if those were requested by the application.
1070 if (coder->tell_no_check && coder->stream_flags.check
1071 == LZMA_CHECK_NONE)
1072 return LZMA_NO_CHECK;
1074 if (coder->tell_unsupported_check
1075 && !lzma_check_is_supported(
1076 coder->stream_flags.check))
1077 return LZMA_UNSUPPORTED_CHECK;
1079 if (coder->tell_any_check)
1080 return LZMA_GET_CHECK;
1083 // Fall through
1085 case SEQ_BLOCK_HEADER: {
1086 const size_t in_old = *in_pos;
1087 const lzma_ret ret = decode_block_header(coder, allocator,
1088 in, in_pos, in_size);
1089 coder->progress_in += *in_pos - in_old;
1091 if (ret == LZMA_OK) {
1092 // We didn't decode the whole Block Header yet.
1094 // Read output from the queue before returning. This
1095 // is important because it is possible that the
1096 // application doesn't have any new input available
1097 // immediately. If we didn't try to copy output from
1098 // the output queue here, lzma_code() could end up
1099 // returning LZMA_BUF_ERROR even though queued output
1100 // is available.
1102 // If the lzma_code() call provided at least one input
1103 // byte, only copy as much data from the output queue
1104 // as is available immediately. This way the
1105 // application will be able to provide more input
1106 // without a delay.
1108 // On the other hand, if lzma_code() was called with
1109 // an empty input buffer(*), treat it specially: try
1110 // to fill the output buffer even if it requires
1111 // waiting for the worker threads to provide output
1112 // (timeout, if specified, can still cause us to
1113 // return).
1115 // - This way the application will be able to get all
1116 // data that can be decoded from the input provided
1117 // so far.
1119 // - We avoid both premature LZMA_BUF_ERROR and
1120 // busy-waiting where the application repeatedly
1121 // calls lzma_code() which immediately returns
1122 // LZMA_OK without providing new data.
1124 // - If the queue becomes empty, we won't wait
1125 // anything and will return LZMA_OK immediately
1126 // (coder->timeout is completely ignored).
1128 // (*) See the comment at the beginning of this
1129 // function how waiting_allowed is determined
1130 // and why there is an exception to the rule
1131 // of "called with an empty input buffer".
1132 assert(*in_pos == in_size);
1134 // If LZMA_FINISH was used we know that we won't get
1135 // more input, so the file must be truncated if we
1136 // get here. If worker threads don't detect any
1137 // errors, eventually there will be no more output
1138 // while we keep returning LZMA_OK which gets
1139 // converted to LZMA_BUF_ERROR in lzma_code().
1141 // If fail-fast is enabled then we will return
1142 // immediately using LZMA_DATA_ERROR instead of
1143 // LZMA_OK or LZMA_BUF_ERROR. Rationale for the
1144 // error code:
1146 // - Worker threads may have a large amount of
1147 // not-yet-decoded input data and we don't
1148 // know for sure if all data is valid. Bad
1149 // data there would result in LZMA_DATA_ERROR
1150 // when fail-fast isn't used.
1152 // - Immediate LZMA_BUF_ERROR would be a bit weird
1153 // considering the older liblzma code. lzma_code()
1154 // even has an assertion to prevent coders from
1155 // returning LZMA_BUF_ERROR directly.
1157 // The downside of this is that with fail-fast apps
1158 // cannot always distinguish between corrupt and
1159 // truncated files.
1160 if (action == LZMA_FINISH && coder->fail_fast) {
1161 // We won't produce any more output. Stop
1162 // the unfinished worker threads so they
1163 // won't waste CPU time.
1164 threads_stop(coder);
1165 return LZMA_DATA_ERROR;
1168 // read_output_and_wait() will call threads_stop()
1169 // if needed so with that we can use return_if_error.
1170 return_if_error(read_output_and_wait(coder, allocator,
1171 out, out_pos, out_size,
1172 NULL, waiting_allowed,
1173 &wait_abs, &has_blocked));
1175 if (coder->pending_error != LZMA_OK) {
1176 coder->sequence = SEQ_ERROR;
1177 break;
1180 return LZMA_OK;
1183 if (ret == LZMA_INDEX_DETECTED) {
1184 coder->sequence = SEQ_INDEX_WAIT_OUTPUT;
1185 break;
1188 // See if an error occurred.
1189 if (ret != LZMA_STREAM_END) {
1190 // NOTE: Here and in all other places where
1191 // pending_error is set, it may overwrite the value
1192 // (LZMA_PROG_ERROR) set by read_output_and_wait().
1193 // That function might overwrite value set here too.
1194 // These are fine because when read_output_and_wait()
1195 // sets pending_error, it actually works as a flag
1196 // variable only ("some error has occurred") and the
1197 // actual value of pending_error is not used in
1198 // SEQ_ERROR. In such cases SEQ_ERROR will eventually
1199 // get the correct error code from the return value of
1200 // a later read_output_and_wait() call.
1201 coder->pending_error = ret;
1202 coder->sequence = SEQ_ERROR;
1203 break;
1206 // Calculate the memory usage of the filters / Block decoder.
1207 coder->mem_next_filters = lzma_raw_decoder_memusage(
1208 coder->filters);
1210 if (coder->mem_next_filters == UINT64_MAX) {
1211 // One or more unknown Filter IDs.
1212 coder->pending_error = LZMA_OPTIONS_ERROR;
1213 coder->sequence = SEQ_ERROR;
1214 break;
1217 coder->sequence = SEQ_BLOCK_INIT;
1220 // Fall through
1222 case SEQ_BLOCK_INIT: {
1223 // Check if decoding is possible at all with the current
1224 // memlimit_stop which we must never exceed.
1226 // This needs to be the first thing in SEQ_BLOCK_INIT
1227 // to make it possible to restart decoding after increasing
1228 // memlimit_stop with lzma_memlimit_set().
1229 if (coder->mem_next_filters > coder->memlimit_stop) {
1230 // Flush pending output before returning
1231 // LZMA_MEMLIMIT_ERROR. If the application doesn't
1232 // want to increase the limit, at least it will get
1233 // all the output possible so far.
1234 return_if_error(read_output_and_wait(coder, allocator,
1235 out, out_pos, out_size,
1236 NULL, true, &wait_abs, &has_blocked));
1238 if (!lzma_outq_is_empty(&coder->outq))
1239 return LZMA_OK;
1241 return LZMA_MEMLIMIT_ERROR;
1244 // Check if the size information is available in Block Header.
1245 // If it is, check if the sizes are small enough that we don't
1246 // need to worry *too* much about integer overflows later in
1247 // the code. If these conditions are not met, we must use the
1248 // single-threaded direct mode.
1249 if (is_direct_mode_needed(coder->block_options.compressed_size)
1250 || is_direct_mode_needed(
1251 coder->block_options.uncompressed_size)) {
1252 coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1253 break;
1256 // Calculate the amount of memory needed for the input and
1257 // output buffers in threaded mode.
1259 // These cannot overflow because we already checked that
1260 // the sizes are small enough using is_direct_mode_needed().
1261 coder->mem_next_in = comp_blk_size(coder);
1262 const uint64_t mem_buffers = coder->mem_next_in
1263 + lzma_outq_outbuf_memusage(
1264 coder->block_options.uncompressed_size);
1266 // Add the amount needed by the filters.
1267 // Avoid integer overflows.
1268 if (UINT64_MAX - mem_buffers < coder->mem_next_filters) {
1269 // Use direct mode if the memusage would overflow.
1270 // This is a theoretical case that shouldn't happen
1271 // in practice unless the input file is weird (broken
1272 // or malicious).
1273 coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1274 break;
1277 // Amount of memory needed to decode this Block in
1278 // threaded mode:
1279 coder->mem_next_block = coder->mem_next_filters + mem_buffers;
1281 // If this alone would exceed memlimit_threading, then we must
1282 // use the single-threaded direct mode.
1283 if (coder->mem_next_block > coder->memlimit_threading) {
1284 coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1285 break;
1288 // Use the threaded mode. Free the direct mode decoder in
1289 // case it has been initialized.
1290 lzma_next_end(&coder->block_decoder, allocator);
1291 coder->mem_direct_mode = 0;
1293 // Since we already know what the sizes are supposed to be,
1294 // we can already add them to the Index hash. The Block
1295 // decoder will verify the values while decoding.
1296 const lzma_ret ret = lzma_index_hash_append(coder->index_hash,
1297 lzma_block_unpadded_size(
1298 &coder->block_options),
1299 coder->block_options.uncompressed_size);
1300 if (ret != LZMA_OK) {
1301 coder->pending_error = ret;
1302 coder->sequence = SEQ_ERROR;
1303 break;
1306 coder->sequence = SEQ_BLOCK_THR_INIT;
1309 // Fall through
1311 case SEQ_BLOCK_THR_INIT: {
1312 // We need to wait for a multiple conditions to become true
1313 // until we can initialize the Block decoder and let a worker
1314 // thread decode it:
1316 // - Wait for the memory usage of the active threads to drop
1317 // so that starting the decoding of this Block won't make
1318 // us go over memlimit_threading.
1320 // - Wait for at least one free output queue slot.
1322 // - Wait for a free worker thread.
1324 // While we wait, we must copy decompressed data to the out
1325 // buffer and catch possible decoder errors.
1327 // read_output_and_wait() does all the above.
1328 bool block_can_start = false;
1330 return_if_error(read_output_and_wait(coder, allocator,
1331 out, out_pos, out_size,
1332 &block_can_start, true,
1333 &wait_abs, &has_blocked));
1335 if (coder->pending_error != LZMA_OK) {
1336 coder->sequence = SEQ_ERROR;
1337 break;
1340 if (!block_can_start) {
1341 // It's not a timeout because return_if_error handles
1342 // it already. Output queue cannot be empty either
1343 // because in that case block_can_start would have
1344 // been true. Thus the output buffer must be full and
1345 // the queue isn't empty.
1346 assert(*out_pos == out_size);
1347 assert(!lzma_outq_is_empty(&coder->outq));
1348 return LZMA_OK;
1351 // We know that we can start decoding this Block without
1352 // exceeding memlimit_threading. However, to stay below
1353 // memlimit_threading may require freeing some of the
1354 // cached memory.
1356 // Get a local copy of variables that require locking the
1357 // mutex. It is fine if the worker threads modify the real
1358 // values after we read these as those changes can only be
1359 // towards more favorable conditions (less memory in use,
1360 // more in cache).
1362 // These are initalized to silence warnings.
1363 uint64_t mem_in_use = 0;
1364 uint64_t mem_cached = 0;
1365 struct worker_thread *thr = NULL;
1367 mythread_sync(coder->mutex) {
1368 mem_in_use = coder->mem_in_use;
1369 mem_cached = coder->mem_cached;
1370 thr = coder->threads_free;
1373 // The maximum amount of memory that can be held by other
1374 // threads and cached buffers while allowing us to start
1375 // decoding the next Block.
1376 const uint64_t mem_max = coder->memlimit_threading
1377 - coder->mem_next_block;
1379 // If the existing allocations are so large that starting
1380 // to decode this Block might exceed memlimit_threads,
1381 // try to free memory from the output queue cache first.
1383 // NOTE: This math assumes the worst case. It's possible
1384 // that the limit wouldn't be exceeded if the existing cached
1385 // allocations are reused.
1386 if (mem_in_use + mem_cached + coder->outq.mem_allocated
1387 > mem_max) {
1388 // Clear the outq cache except leave one buffer in
1389 // the cache if its size is correct. That way we
1390 // don't free and almost immediately reallocate
1391 // an identical buffer.
1392 lzma_outq_clear_cache2(&coder->outq, allocator,
1393 coder->block_options.uncompressed_size);
1396 // If there is at least one worker_thread in the cache and
1397 // the existing allocations are so large that starting to
1398 // decode this Block might exceed memlimit_threads, free
1399 // memory by freeing cached Block decoders.
1401 // NOTE: The comparison is different here than above.
1402 // Here we don't care about cached buffers in outq anymore
1403 // and only look at memory actually in use. This is because
1404 // if there is something in outq cache, it's a single buffer
1405 // that can be used as is. We ensured this in the above
1406 // if-block.
1407 uint64_t mem_freed = 0;
1408 if (thr != NULL && mem_in_use + mem_cached
1409 + coder->outq.mem_in_use > mem_max) {
1410 // Don't free the first Block decoder if its memory
1411 // usage isn't greater than what this Block will need.
1412 // Typically the same filter chain is used for all
1413 // Blocks so this way the allocations can be reused
1414 // when get_thread() picks the first worker_thread
1415 // from the cache.
1416 if (thr->mem_filters <= coder->mem_next_filters)
1417 thr = thr->next;
1419 while (thr != NULL) {
1420 lzma_next_end(&thr->block_decoder, allocator);
1421 mem_freed += thr->mem_filters;
1422 thr->mem_filters = 0;
1423 thr = thr->next;
1427 // Update the memory usage counters. Note that coder->mem_*
1428 // may have changed since we read them so we must substract
1429 // or add the changes.
1430 mythread_sync(coder->mutex) {
1431 coder->mem_cached -= mem_freed;
1433 // Memory needed for the filters and the input buffer.
1434 // The output queue takes care of its own counter so
1435 // we don't touch it here.
1437 // NOTE: After this, coder->mem_in_use +
1438 // coder->mem_cached might count the same thing twice.
1439 // If so, this will get corrected in get_thread() when
1440 // a worker_thread is picked from coder->free_threads
1441 // and its memory usage is substracted from mem_cached.
1442 coder->mem_in_use += coder->mem_next_in
1443 + coder->mem_next_filters;
1446 // Allocate memory for the output buffer in the output queue.
1447 lzma_ret ret = lzma_outq_prealloc_buf(
1448 &coder->outq, allocator,
1449 coder->block_options.uncompressed_size);
1450 if (ret != LZMA_OK) {
1451 threads_stop(coder);
1452 return ret;
1455 // Set up coder->thr.
1456 ret = get_thread(coder, allocator);
1457 if (ret != LZMA_OK) {
1458 threads_stop(coder);
1459 return ret;
1462 // The new Block decoder memory usage is already counted in
1463 // coder->mem_in_use. Store it in the thread too.
1464 coder->thr->mem_filters = coder->mem_next_filters;
1466 // Initialize the Block decoder.
1467 coder->thr->block_options = coder->block_options;
1468 ret = lzma_block_decoder_init(
1469 &coder->thr->block_decoder, allocator,
1470 &coder->thr->block_options);
1472 // Free the allocated filter options since they are needed
1473 // only to initialize the Block decoder.
1474 lzma_filters_free(coder->filters, allocator);
1475 coder->thr->block_options.filters = NULL;
1477 // Check if memory usage calculation and Block encoder
1478 // initialization succeeded.
1479 if (ret != LZMA_OK) {
1480 coder->pending_error = ret;
1481 coder->sequence = SEQ_ERROR;
1482 break;
1485 // Allocate the input buffer.
1486 coder->thr->in_size = coder->mem_next_in;
1487 coder->thr->in = lzma_alloc(coder->thr->in_size, allocator);
1488 if (coder->thr->in == NULL) {
1489 threads_stop(coder);
1490 return LZMA_MEM_ERROR;
1493 // Get the preallocated output buffer.
1494 coder->thr->outbuf = lzma_outq_get_buf(
1495 &coder->outq, coder->thr);
1497 // Start the decoder.
1498 mythread_sync(coder->thr->mutex) {
1499 assert(coder->thr->state == THR_IDLE);
1500 coder->thr->state = THR_RUN;
1501 mythread_cond_signal(&coder->thr->cond);
1504 // Enable output from the thread that holds the oldest output
1505 // buffer in the output queue (if such a thread exists).
1506 mythread_sync(coder->mutex) {
1507 lzma_outq_enable_partial_output(&coder->outq,
1508 &worker_enable_partial_update);
1511 coder->sequence = SEQ_BLOCK_THR_RUN;
1514 // Fall through
1516 case SEQ_BLOCK_THR_RUN: {
1517 if (action == LZMA_FINISH && coder->fail_fast) {
1518 // We know that we won't get more input and that
1519 // the caller wants fail-fast behavior. If we see
1520 // that we don't have enough input to finish this
1521 // Block, return LZMA_DATA_ERROR immediately.
1522 // See SEQ_BLOCK_HEADER for the error code rationale.
1523 const size_t in_avail = in_size - *in_pos;
1524 const size_t in_needed = coder->thr->in_size
1525 - coder->thr->in_filled;
1526 if (in_avail < in_needed) {
1527 threads_stop(coder);
1528 return LZMA_DATA_ERROR;
1532 // Copy input to the worker thread.
1533 size_t cur_in_filled = coder->thr->in_filled;
1534 lzma_bufcpy(in, in_pos, in_size, coder->thr->in,
1535 &cur_in_filled, coder->thr->in_size);
1537 // Tell the thread how much we copied.
1538 mythread_sync(coder->thr->mutex) {
1539 coder->thr->in_filled = cur_in_filled;
1541 // NOTE: Most of the time we are copying input faster
1542 // than the thread can decode so most of the time
1543 // calling mythread_cond_signal() is useless but
1544 // we cannot make it conditional because thr->in_pos
1545 // is updated without a mutex. And the overhead should
1546 // be very much negligible anyway.
1547 mythread_cond_signal(&coder->thr->cond);
1550 // Read output from the output queue. Just like in
1551 // SEQ_BLOCK_HEADER, we wait to fill the output buffer
1552 // only if waiting_allowed was set to true in the beginning
1553 // of this function (see the comment there).
1554 return_if_error(read_output_and_wait(coder, allocator,
1555 out, out_pos, out_size,
1556 NULL, waiting_allowed,
1557 &wait_abs, &has_blocked));
1559 if (coder->pending_error != LZMA_OK) {
1560 coder->sequence = SEQ_ERROR;
1561 break;
1564 // Return if the input didn't contain the whole Block.
1565 if (coder->thr->in_filled < coder->thr->in_size) {
1566 assert(*in_pos == in_size);
1567 return LZMA_OK;
1570 // The whole Block has been copied to the thread-specific
1571 // buffer. Continue from the next Block Header or Index.
1572 coder->thr = NULL;
1573 coder->sequence = SEQ_BLOCK_HEADER;
1574 break;
1577 case SEQ_BLOCK_DIRECT_INIT: {
1578 // Wait for the threads to finish and that all decoded data
1579 // has been copied to the output. That is, wait until the
1580 // output queue becomes empty.
1582 // NOTE: No need to check for coder->pending_error as
1583 // we aren't consuming any input until the queue is empty
1584 // and if there is a pending error, read_output_and_wait()
1585 // will eventually return it before the queue is empty.
1586 return_if_error(read_output_and_wait(coder, allocator,
1587 out, out_pos, out_size,
1588 NULL, true, &wait_abs, &has_blocked));
1589 if (!lzma_outq_is_empty(&coder->outq))
1590 return LZMA_OK;
1592 // Free the cached output buffers.
1593 lzma_outq_clear_cache(&coder->outq, allocator);
1595 // Get rid of the worker threads, including the coder->threads
1596 // array.
1597 threads_end(coder, allocator);
1599 // Initialize the Block decoder.
1600 const lzma_ret ret = lzma_block_decoder_init(
1601 &coder->block_decoder, allocator,
1602 &coder->block_options);
1604 // Free the allocated filter options since they are needed
1605 // only to initialize the Block decoder.
1606 lzma_filters_free(coder->filters, allocator);
1607 coder->block_options.filters = NULL;
1609 // Check if Block decoder initialization succeeded.
1610 if (ret != LZMA_OK)
1611 return ret;
1613 // Make the memory usage visible to _memconfig().
1614 coder->mem_direct_mode = coder->mem_next_filters;
1616 coder->sequence = SEQ_BLOCK_DIRECT_RUN;
1619 // Fall through
1621 case SEQ_BLOCK_DIRECT_RUN: {
1622 const size_t in_old = *in_pos;
1623 const size_t out_old = *out_pos;
1624 const lzma_ret ret = coder->block_decoder.code(
1625 coder->block_decoder.coder, allocator,
1626 in, in_pos, in_size, out, out_pos, out_size,
1627 action);
1628 coder->progress_in += *in_pos - in_old;
1629 coder->progress_out += *out_pos - out_old;
1631 if (ret != LZMA_STREAM_END)
1632 return ret;
1634 // Block decoded successfully. Add the new size pair to
1635 // the Index hash.
1636 return_if_error(lzma_index_hash_append(coder->index_hash,
1637 lzma_block_unpadded_size(
1638 &coder->block_options),
1639 coder->block_options.uncompressed_size));
1641 coder->sequence = SEQ_BLOCK_HEADER;
1642 break;
1645 case SEQ_INDEX_WAIT_OUTPUT:
1646 // Flush the output from all worker threads so that we can
1647 // decode the Index without thinking about threading.
1648 return_if_error(read_output_and_wait(coder, allocator,
1649 out, out_pos, out_size,
1650 NULL, true, &wait_abs, &has_blocked));
1652 if (!lzma_outq_is_empty(&coder->outq))
1653 return LZMA_OK;
1655 coder->sequence = SEQ_INDEX_DECODE;
1657 // Fall through
1659 case SEQ_INDEX_DECODE: {
1660 // If we don't have any input, don't call
1661 // lzma_index_hash_decode() since it would return
1662 // LZMA_BUF_ERROR, which we must not do here.
1663 if (*in_pos >= in_size)
1664 return LZMA_OK;
1666 // Decode the Index and compare it to the hash calculated
1667 // from the sizes of the Blocks (if any).
1668 const size_t in_old = *in_pos;
1669 const lzma_ret ret = lzma_index_hash_decode(coder->index_hash,
1670 in, in_pos, in_size);
1671 coder->progress_in += *in_pos - in_old;
1672 if (ret != LZMA_STREAM_END)
1673 return ret;
1675 coder->sequence = SEQ_STREAM_FOOTER;
1678 // Fall through
1680 case SEQ_STREAM_FOOTER: {
1681 // Copy the Stream Footer to the internal buffer.
1682 const size_t in_old = *in_pos;
1683 lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
1684 LZMA_STREAM_HEADER_SIZE);
1685 coder->progress_in += *in_pos - in_old;
1687 // Return if we didn't get the whole Stream Footer yet.
1688 if (coder->pos < LZMA_STREAM_HEADER_SIZE)
1689 return LZMA_OK;
1691 coder->pos = 0;
1693 // Decode the Stream Footer. The decoder gives
1694 // LZMA_FORMAT_ERROR if the magic bytes don't match,
1695 // so convert that return code to LZMA_DATA_ERROR.
1696 lzma_stream_flags footer_flags;
1697 const lzma_ret ret = lzma_stream_footer_decode(
1698 &footer_flags, coder->buffer);
1699 if (ret != LZMA_OK)
1700 return ret == LZMA_FORMAT_ERROR
1701 ? LZMA_DATA_ERROR : ret;
1703 // Check that Index Size stored in the Stream Footer matches
1704 // the real size of the Index field.
1705 if (lzma_index_hash_size(coder->index_hash)
1706 != footer_flags.backward_size)
1707 return LZMA_DATA_ERROR;
1709 // Compare that the Stream Flags fields are identical in
1710 // both Stream Header and Stream Footer.
1711 return_if_error(lzma_stream_flags_compare(
1712 &coder->stream_flags, &footer_flags));
1714 if (!coder->concatenated)
1715 return LZMA_STREAM_END;
1717 coder->sequence = SEQ_STREAM_PADDING;
1720 // Fall through
1722 case SEQ_STREAM_PADDING:
1723 assert(coder->concatenated);
1725 // Skip over possible Stream Padding.
1726 while (true) {
1727 if (*in_pos >= in_size) {
1728 // Unless LZMA_FINISH was used, we cannot
1729 // know if there's more input coming later.
1730 if (action != LZMA_FINISH)
1731 return LZMA_OK;
1733 // Stream Padding must be a multiple of
1734 // four bytes.
1735 return coder->pos == 0
1736 ? LZMA_STREAM_END
1737 : LZMA_DATA_ERROR;
1740 // If the byte is not zero, it probably indicates
1741 // beginning of a new Stream (or the file is corrupt).
1742 if (in[*in_pos] != 0x00)
1743 break;
1745 ++*in_pos;
1746 ++coder->progress_in;
1747 coder->pos = (coder->pos + 1) & 3;
1750 // Stream Padding must be a multiple of four bytes (empty
1751 // Stream Padding is OK).
1752 if (coder->pos != 0) {
1753 ++*in_pos;
1754 ++coder->progress_in;
1755 return LZMA_DATA_ERROR;
1758 // Prepare to decode the next Stream.
1759 return_if_error(stream_decoder_reset(coder, allocator));
1760 break;
1762 case SEQ_ERROR:
1763 if (!coder->fail_fast) {
1764 // Let the application get all data before the point
1765 // where the error was detected. This matches the
1766 // behavior of single-threaded use.
1768 // FIXME? Some errors (LZMA_MEM_ERROR) don't get here,
1769 // they are returned immediately. Thus in rare cases
1770 // the output will be less than in the single-threaded
1771 // mode. Maybe this doesn't matter much in practice.
1772 return_if_error(read_output_and_wait(coder, allocator,
1773 out, out_pos, out_size,
1774 NULL, true, &wait_abs, &has_blocked));
1776 // We get here only if the error happened in the main
1777 // thread, for example, unsupported Block Header.
1778 if (!lzma_outq_is_empty(&coder->outq))
1779 return LZMA_OK;
1782 // We only get here if no errors were detected by the worker
1783 // threads. Errors from worker threads would have already been
1784 // returned by the call to read_output_and_wait() above.
1785 return coder->pending_error;
1787 default:
1788 assert(0);
1789 return LZMA_PROG_ERROR;
1792 // Never reached
1796 static void
1797 stream_decoder_mt_end(void *coder_ptr, const lzma_allocator *allocator)
1799 struct lzma_stream_coder *coder = coder_ptr;
1801 threads_end(coder, allocator);
1802 lzma_outq_end(&coder->outq, allocator);
1804 lzma_next_end(&coder->block_decoder, allocator);
1805 lzma_filters_free(coder->filters, allocator);
1806 lzma_index_hash_end(coder->index_hash, allocator);
1808 lzma_free(coder, allocator);
1809 return;
1813 static lzma_check
1814 stream_decoder_mt_get_check(const void *coder_ptr)
1816 const struct lzma_stream_coder *coder = coder_ptr;
1817 return coder->stream_flags.check;
1821 static lzma_ret
1822 stream_decoder_mt_memconfig(void *coder_ptr, uint64_t *memusage,
1823 uint64_t *old_memlimit, uint64_t new_memlimit)
1825 // NOTE: This function gets/sets memlimit_stop. For now,
1826 // memlimit_threading cannot be modified after initialization.
1828 // *memusage will include cached memory too. Excluding cached memory
1829 // would be misleading and it wouldn't help the applications to
1830 // know how much memory is actually needed to decompress the file
1831 // because the higher the number of threads and the memlimits are
1832 // the more memory the decoder may use.
1834 // Setting a new limit includes the cached memory too and too low
1835 // limits will be rejected. Alternative could be to free the cached
1836 // memory immediately if that helps to bring the limit down but
1837 // the current way is the simplest. It's unlikely that limit needs
1838 // to be lowered in the middle of a file anyway; the typical reason
1839 // to want a new limit is to increase after LZMA_MEMLIMIT_ERROR
1840 // and even such use isn't common.
1841 struct lzma_stream_coder *coder = coder_ptr;
1843 mythread_sync(coder->mutex) {
1844 *memusage = coder->mem_direct_mode
1845 + coder->mem_in_use
1846 + coder->mem_cached
1847 + coder->outq.mem_allocated;
1850 // If no filter chains are allocated, *memusage may be zero.
1851 // Always return at least LZMA_MEMUSAGE_BASE.
1852 if (*memusage < LZMA_MEMUSAGE_BASE)
1853 *memusage = LZMA_MEMUSAGE_BASE;
1855 *old_memlimit = coder->memlimit_stop;
1857 if (new_memlimit != 0) {
1858 if (new_memlimit < *memusage)
1859 return LZMA_MEMLIMIT_ERROR;
1861 coder->memlimit_stop = new_memlimit;
1864 return LZMA_OK;
1868 static void
1869 stream_decoder_mt_get_progress(void *coder_ptr,
1870 uint64_t *progress_in, uint64_t *progress_out)
1872 struct lzma_stream_coder *coder = coder_ptr;
1874 // Lock coder->mutex to prevent finishing threads from moving their
1875 // progress info from the worker_thread structure to lzma_stream_coder.
1876 mythread_sync(coder->mutex) {
1877 *progress_in = coder->progress_in;
1878 *progress_out = coder->progress_out;
1880 for (size_t i = 0; i < coder->threads_initialized; ++i) {
1881 mythread_sync(coder->threads[i].mutex) {
1882 *progress_in += coder->threads[i].progress_in;
1883 *progress_out += coder->threads[i]
1884 .progress_out;
1889 return;
1893 static lzma_ret
1894 stream_decoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator,
1895 const lzma_mt *options)
1897 struct lzma_stream_coder *coder;
1899 if (options->threads == 0 || options->threads > LZMA_THREADS_MAX)
1900 return LZMA_OPTIONS_ERROR;
1902 if (options->flags & ~LZMA_SUPPORTED_FLAGS)
1903 return LZMA_OPTIONS_ERROR;
1905 lzma_next_coder_init(&stream_decoder_mt_init, next, allocator);
1907 coder = next->coder;
1908 if (!coder) {
1909 coder = lzma_alloc(sizeof(struct lzma_stream_coder), allocator);
1910 if (coder == NULL)
1911 return LZMA_MEM_ERROR;
1913 next->coder = coder;
1915 if (mythread_mutex_init(&coder->mutex)) {
1916 lzma_free(coder, allocator);
1917 return LZMA_MEM_ERROR;
1920 if (mythread_cond_init(&coder->cond)) {
1921 mythread_mutex_destroy(&coder->mutex);
1922 lzma_free(coder, allocator);
1923 return LZMA_MEM_ERROR;
1926 next->code = &stream_decode_mt;
1927 next->end = &stream_decoder_mt_end;
1928 next->get_check = &stream_decoder_mt_get_check;
1929 next->memconfig = &stream_decoder_mt_memconfig;
1930 next->get_progress = &stream_decoder_mt_get_progress;
1932 coder->filters[0].id = LZMA_VLI_UNKNOWN;
1933 memzero(&coder->outq, sizeof(coder->outq));
1935 coder->block_decoder = LZMA_NEXT_CODER_INIT;
1936 coder->mem_direct_mode = 0;
1938 coder->index_hash = NULL;
1939 coder->threads = NULL;
1940 coder->threads_free = NULL;
1941 coder->threads_initialized = 0;
1944 // Cleanup old filter chain if one remains after unfinished decoding
1945 // of a previous Stream.
1946 lzma_filters_free(coder->filters, allocator);
1948 // By allocating threads from scratch we can start memory-usage
1949 // accounting from scratch, too. Changes in filter and block sizes may
1950 // affect number of threads.
1952 // FIXME? Reusing should be easy but unlike the single-threaded
1953 // decoder, with some types of input file combinations reusing
1954 // could leave quite a lot of memory allocated but unused (first
1955 // file could allocate a lot, the next files could use fewer
1956 // threads and some of the allocations from the first file would not
1957 // get freed unless memlimit_threading forces us to clear caches).
1959 // NOTE: The direct mode decoder isn't freed here if one exists.
1960 // It will be reused or freed as needed in the main loop.
1961 threads_end(coder, allocator);
1963 // All memusage counters start at 0 (including mem_direct_mode).
1964 // The little extra that is needed for the structs in this file
1965 // get accounted well enough by the filter chain memory usage
1966 // which adds LZMA_MEMUSAGE_BASE for each chain. However,
1967 // stream_decoder_mt_memconfig() has to handle this specially so that
1968 // it will never return less than LZMA_MEMUSAGE_BASE as memory usage.
1969 coder->mem_in_use = 0;
1970 coder->mem_cached = 0;
1971 coder->mem_next_block = 0;
1973 coder->progress_in = 0;
1974 coder->progress_out = 0;
1976 coder->sequence = SEQ_STREAM_HEADER;
1977 coder->thread_error = LZMA_OK;
1978 coder->pending_error = LZMA_OK;
1979 coder->thr = NULL;
1981 coder->timeout = options->timeout;
1983 coder->memlimit_threading = my_max(1, options->memlimit_threading);
1984 coder->memlimit_stop = my_max(1, options->memlimit_stop);
1985 if (coder->memlimit_threading > coder->memlimit_stop)
1986 coder->memlimit_threading = coder->memlimit_stop;
1988 coder->tell_no_check = (options->flags & LZMA_TELL_NO_CHECK) != 0;
1989 coder->tell_unsupported_check
1990 = (options->flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0;
1991 coder->tell_any_check = (options->flags & LZMA_TELL_ANY_CHECK) != 0;
1992 coder->ignore_check = (options->flags & LZMA_IGNORE_CHECK) != 0;
1993 coder->concatenated = (options->flags & LZMA_CONCATENATED) != 0;
1994 coder->fail_fast = (options->flags & LZMA_FAIL_FAST) != 0;
1996 coder->first_stream = true;
1997 coder->out_was_filled = false;
1998 coder->pos = 0;
2000 coder->threads_max = options->threads;
2002 return_if_error(lzma_outq_init(&coder->outq, allocator,
2003 coder->threads_max));
2005 return stream_decoder_reset(coder, allocator);
2009 extern LZMA_API(lzma_ret)
2010 lzma_stream_decoder_mt(lzma_stream *strm, const lzma_mt *options)
2012 lzma_next_strm_init(stream_decoder_mt_init, strm, options);
2014 strm->internal->supported_actions[LZMA_RUN] = true;
2015 strm->internal->supported_actions[LZMA_FINISH] = true;
2017 return LZMA_OK;