1 ///////////////////////////////////////////////////////////////////////////////
3 /// \file stream_decoder_mt.c
4 /// \brief Multithreaded .xz Stream decoder
6 // Authors: Sebastian Andrzej Siewior
9 // This file has been put into the public domain.
10 // You can do whatever you want with this file.
12 ///////////////////////////////////////////////////////////////////////////////
15 #include "block_decoder.h"
16 #include "stream_decoder.h"
23 /// Main thread may change this to THR_RUN or THR_EXIT.
26 /// Decoding is in progress.
27 /// Main thread may change this to THR_STOP or THR_EXIT.
28 /// The worker thread may change this to THR_IDLE.
31 /// The main thread wants the thread to stop whatever it was doing
32 /// but not exit. Main thread may change this to THR_EXIT.
33 /// The worker thread may change this to THR_IDLE.
36 /// The main thread wants the thread to exit.
43 /// Partial updates (storing of worker thread progress
44 /// to lzma_outbuf) are disabled.
47 /// Main thread requests partial updates to be enabled but
48 /// no partial update has been done by the worker thread yet.
50 /// Changing from PARTIAL_DISABLED to PARTIAL_START requires
51 /// use of the worker-thread mutex. Other transitions don't
55 /// Partial updates are enabled and the worker thread has done
56 /// at least one partial update.
59 } partial_update_mode
;
62 struct worker_thread
{
63 /// Worker state is protected with our mutex.
66 /// Input buffer that will contain the whole Block except Block Header.
69 /// Amount of memory allocated for "in"
72 /// Number of bytes written to "in" by the main thread
75 /// Number of bytes consumed from "in" by the worker thread.
78 /// Amount of uncompressed data that has been decoded. This local
79 /// copy is needed because updating outbuf->pos requires locking
80 /// the main mutex (coder->mutex).
83 /// Pointer to the main structure is needed to (1) lock the main
84 /// mutex (coder->mutex) when updating outbuf->pos and (2) when
85 /// putting this thread back to the stack of free threads.
86 struct lzma_stream_coder
*coder
;
88 /// The allocator is set by the main thread. Since a copy of the
89 /// pointer is kept here, the application must not change the
90 /// allocator before calling lzma_end().
91 const lzma_allocator
*allocator
;
93 /// Output queue buffer to which the uncompressed data is written.
96 /// Amount of compressed data that has already been decompressed.
97 /// This is updated from in_pos when our mutex is locked.
98 /// This is size_t, not uint64_t, because per-thread progress
99 /// is limited to sizes of allocated buffers.
102 /// Like progress_in but for uncompressed data.
105 /// Updating outbuf->pos requires locking the main mutex
106 /// (coder->mutex). Since the main thread will only read output
107 /// from the oldest outbuf in the queue, only the worker thread
108 /// that is associated with the oldest outbuf needs to update its
109 /// outbuf->pos. This avoids useless mutex contention that would
110 /// happen if all worker threads were frequently locking the main
111 /// mutex to update their outbuf->pos.
113 /// Only when partial_update is something else than PARTIAL_DISABLED,
114 /// this worker thread will update outbuf->pos after each call to
115 /// the Block decoder.
116 partial_update_mode partial_update
;
119 lzma_next_coder block_decoder
;
121 /// Thread-specific Block options are needed because the Block
122 /// decoder modifies the struct given to it at initialization.
123 lzma_block block_options
;
125 /// Filter chain memory usage
126 uint64_t mem_filters
;
128 /// Next structure in the stack of free worker threads.
129 struct worker_thread
*next
;
131 mythread_mutex mutex
;
134 /// The ID of this thread is used to join the thread
135 /// when it's not needed anymore.
140 struct lzma_stream_coder
{
147 SEQ_BLOCK_DIRECT_INIT
,
148 SEQ_BLOCK_DIRECT_RUN
,
149 SEQ_INDEX_WAIT_OUTPUT
,
157 lzma_next_coder block_decoder
;
159 /// Every Block Header will be decoded into this structure.
160 /// This is also used to initialize a Block decoder when in
161 /// direct mode. In threaded mode, a thread-specific copy will
162 /// be made for decoder initialization because the Block decoder
163 /// will modify the structure given to it.
164 lzma_block block_options
;
166 /// Buffer to hold a filter chain for Block Header decoding and
167 /// initialization. These are freed after successful Block decoder
168 /// initialization or at stream_decoder_mt_end(). The thread-specific
169 /// copy of block_options won't hold a pointer to filters[] after
171 lzma_filter filters
[LZMA_FILTERS_MAX
+ 1];
173 /// Stream Flags from Stream Header
174 lzma_stream_flags stream_flags
;
176 /// Index is hashed so that it can be compared to the sizes of Blocks
177 /// with O(1) memory usage.
178 lzma_index_hash
*index_hash
;
181 /// Maximum wait time if cannot use all the input and cannot
182 /// fill the output buffer. This is in milliseconds.
186 /// Error code from a worker thread.
189 lzma_ret thread_error
;
191 /// Error code to return after pending output has been copied out. If
192 /// set in read_output_and_wait(), this is a mirror of thread_error.
193 /// If set in stream_decode_mt() then it's, for example, error that
194 /// occurred when decoding Block Header.
195 lzma_ret pending_error
;
197 /// Number of threads that will be created at maximum.
198 uint32_t threads_max
;
200 /// Number of thread structures that have been initialized from
201 /// "threads", and thus the number of worker threads actually
203 uint32_t threads_initialized
;
205 /// Array of allocated thread-specific structures. When no threads
206 /// are in use (direct mode) this is NULL. In threaded mode this
207 /// points to an array of threads_max number of worker_thread structs.
208 struct worker_thread
*threads
;
210 /// Stack of free threads. When a thread finishes, it puts itself
211 /// back into this stack. This starts as empty because threads
212 /// are created only when actually needed.
215 struct worker_thread
*threads_free
;
217 /// The most recent worker thread to which the main thread writes
218 /// the new input from the application.
219 struct worker_thread
*thr
;
221 /// Output buffer queue for decompressed data from the worker threads
223 /// \note Use mutex with operations that need it.
226 mythread_mutex mutex
;
230 /// Memory usage that will not be exceeded in multi-threaded mode.
231 /// Single-threaded mode can exceed this even by a large amount.
232 uint64_t memlimit_threading
;
234 /// Memory usage limit that should never be exceeded.
235 /// LZMA_MEMLIMIT_ERROR will be returned if decoding isn't possible
236 /// even in single-threaded mode without exceeding this limit.
237 uint64_t memlimit_stop
;
239 /// Amount of memory in use by the direct mode decoder
240 /// (coder->block_decoder). In threaded mode this is 0.
241 uint64_t mem_direct_mode
;
243 /// Amount of memory needed by the running worker threads.
244 /// This doesn't include the memory needed by the output buffer.
249 /// Amount of memory used by the idle (cached) threads.
255 /// Amount of memory needed for the filter chain of the next Block.
256 uint64_t mem_next_filters
;
258 /// Amount of memory needed for the thread-specific input buffer
259 /// for the next Block.
260 uint64_t mem_next_in
;
262 /// Amount of memory actually needed to decode the next Block
263 /// in threaded mode. This is
264 /// mem_next_filters + mem_next_in + memory needed for lzma_outbuf.
265 uint64_t mem_next_block
;
268 /// Amount of compressed data in Stream Header + Blocks that have
269 /// already been finished.
272 uint64_t progress_in
;
274 /// Amount of uncompressed data in Blocks that have already
278 uint64_t progress_out
;
281 /// If true, LZMA_NO_CHECK is returned if the Stream has
282 /// no integrity check.
285 /// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has
286 /// an integrity check that isn't supported by this liblzma build.
287 bool tell_unsupported_check
;
289 /// If true, LZMA_GET_CHECK is returned after decoding Stream Header.
292 /// If true, we will tell the Block decoder to skip calculating
293 /// and verifying the integrity check.
296 /// If true, we will decode concatenated Streams that possibly have
297 /// Stream Padding between or after them. LZMA_STREAM_END is returned
298 /// once the application isn't giving us any new input (LZMA_FINISH),
299 /// and we aren't in the middle of a Stream, and possible
300 /// Stream Padding is a multiple of four bytes.
303 /// If true, we will return any errors immediately instead of first
304 /// producing all output before the location of the error.
308 /// When decoding concatenated Streams, this is true as long as we
309 /// are decoding the first Stream. This is needed to avoid misleading
310 /// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic
314 /// This is used to track if the previous call to stream_decode_mt()
315 /// had output space (*out_pos < out_size) and managed to fill the
316 /// output buffer (*out_pos == out_size). This may be set to true
317 /// in read_output_and_wait(). This is read and then reset to false
318 /// at the beginning of stream_decode_mt().
320 /// This is needed to support applications that call lzma_code() in
321 /// such a way that more input is provided only when lzma_code()
322 /// didn't fill the output buffer completely. Basically, this makes
323 /// it easier to convert such applications from single-threaded
324 /// decoder to multi-threaded decoder.
327 /// Write position in buffer[] and position in Stream Padding
330 /// Buffer to hold Stream Header, Block Header, and Stream Footer.
331 /// Block Header has biggest maximum size.
332 uint8_t buffer
[LZMA_BLOCK_HEADER_SIZE_MAX
];
336 /// Enables updating of outbuf->pos. This is a callback function that is
337 /// used with lzma_outq_enable_partial_output().
339 worker_enable_partial_update(void *thr_ptr
)
341 struct worker_thread
*thr
= thr_ptr
;
343 mythread_sync(thr
->mutex
) {
344 thr
->partial_update
= PARTIAL_START
;
345 mythread_cond_signal(&thr
->cond
);
350 /// Things do to at THR_STOP or when finishing a Block.
351 /// This is called with thr->mutex locked.
353 worker_stop(struct worker_thread
*thr
)
355 // Update memory usage counters.
356 thr
->coder
->mem_in_use
-= thr
->in_size
;
357 thr
->in_size
= 0; // thr->in was freed above.
359 thr
->coder
->mem_in_use
-= thr
->mem_filters
;
360 thr
->coder
->mem_cached
+= thr
->mem_filters
;
362 // Put this thread to the stack of free threads.
363 thr
->next
= thr
->coder
->threads_free
;
364 thr
->coder
->threads_free
= thr
;
366 mythread_cond_signal(&thr
->coder
->cond
);
371 static MYTHREAD_RET_TYPE
372 worker_decoder(void *thr_ptr
)
374 struct worker_thread
*thr
= thr_ptr
;
376 partial_update_mode partial_update
;
381 mythread_mutex_lock(&thr
->mutex
);
384 if (thr
->state
== THR_IDLE
) {
385 mythread_cond_wait(&thr
->cond
, &thr
->mutex
);
386 goto next_loop_unlocked
;
389 if (thr
->state
== THR_EXIT
) {
390 mythread_mutex_unlock(&thr
->mutex
);
392 lzma_free(thr
->in
, thr
->allocator
);
393 lzma_next_end(&thr
->block_decoder
, thr
->allocator
);
395 mythread_mutex_destroy(&thr
->mutex
);
396 mythread_cond_destroy(&thr
->cond
);
398 return MYTHREAD_RET_VALUE
;
401 if (thr
->state
== THR_STOP
) {
402 thr
->state
= THR_IDLE
;
403 mythread_mutex_unlock(&thr
->mutex
);
405 mythread_sync(thr
->coder
->mutex
) {
412 assert(thr
->state
== THR_RUN
);
414 // Update progress info for get_progress().
415 thr
->progress_in
= thr
->in_pos
;
416 thr
->progress_out
= thr
->out_pos
;
418 // If we don't have any new input, wait for a signal from the main
419 // thread except if partial output has just been enabled. In that
420 // case we will do one normal run so that the partial output info
421 // gets passed to the main thread. The call to block_decoder.code()
422 // is useless but harmless as it can occur only once per Block.
423 in_filled
= thr
->in_filled
;
424 partial_update
= thr
->partial_update
;
426 if (in_filled
== thr
->in_pos
&& partial_update
!= PARTIAL_START
) {
427 mythread_cond_wait(&thr
->cond
, &thr
->mutex
);
428 goto next_loop_unlocked
;
431 mythread_mutex_unlock(&thr
->mutex
);
433 // Pass the input in small chunks to the Block decoder.
434 // This way we react reasonably fast if we are told to stop/exit,
435 // and (when partial update is enabled) we tell about our progress
436 // to the main thread frequently enough.
437 const size_t chunk_size
= 16384;
438 if ((in_filled
- thr
->in_pos
) > chunk_size
)
439 in_filled
= thr
->in_pos
+ chunk_size
;
441 ret
= thr
->block_decoder
.code(
442 thr
->block_decoder
.coder
, thr
->allocator
,
443 thr
->in
, &thr
->in_pos
, in_filled
,
444 thr
->outbuf
->buf
, &thr
->out_pos
,
445 thr
->outbuf
->allocated
, LZMA_RUN
);
447 if (ret
== LZMA_OK
) {
448 if (partial_update
!= PARTIAL_DISABLED
) {
449 // The main thread uses thr->mutex to change from
450 // PARTIAL_DISABLED to PARTIAL_START. The main thread
451 // doesn't care about this variable after that so we
452 // can safely change it here to PARTIAL_ENABLED
454 thr
->partial_update
= PARTIAL_ENABLED
;
456 // The main thread is reading decompressed data
457 // from thr->outbuf. Tell the main thread about
460 // NOTE: It's possible that we consumed input without
461 // producing any new output so it's possible that
462 // only in_pos has changed. In case of PARTIAL_START
463 // it is possible that neither in_pos nor out_pos has
465 mythread_sync(thr
->coder
->mutex
) {
466 thr
->outbuf
->pos
= thr
->out_pos
;
467 thr
->outbuf
->decoder_in_pos
= thr
->in_pos
;
468 mythread_cond_signal(&thr
->coder
->cond
);
475 // Either we finished successfully (LZMA_STREAM_END) or an error
476 // occurred. Both cases are handled almost identically. The error
477 // case requires updating thr->coder->thread_error.
479 // The sizes are in the Block Header and the Block decoder
480 // checks that they match, thus we know these:
481 assert(ret
!= LZMA_STREAM_END
|| thr
->in_pos
== thr
->in_size
);
482 assert(ret
!= LZMA_STREAM_END
483 || thr
->out_pos
== thr
->block_options
.uncompressed_size
);
485 // Free the input buffer. Don't update in_size as we need
486 // it later to update thr->coder->mem_in_use.
487 lzma_free(thr
->in
, thr
->allocator
);
490 mythread_sync(thr
->mutex
) {
491 if (thr
->state
!= THR_EXIT
)
492 thr
->state
= THR_IDLE
;
495 mythread_sync(thr
->coder
->mutex
) {
496 // Move our progress info to the main thread.
497 thr
->coder
->progress_in
+= thr
->in_pos
;
498 thr
->coder
->progress_out
+= thr
->out_pos
;
499 thr
->progress_in
= 0;
500 thr
->progress_out
= 0;
502 // Mark the outbuf as finished.
503 thr
->outbuf
->pos
= thr
->out_pos
;
504 thr
->outbuf
->decoder_in_pos
= thr
->in_pos
;
505 thr
->outbuf
->finished
= true;
506 thr
->outbuf
->finish_ret
= ret
;
509 // If an error occurred, tell it to the main thread.
510 if (ret
!= LZMA_STREAM_END
511 && thr
->coder
->thread_error
== LZMA_OK
)
512 thr
->coder
->thread_error
= ret
;
521 /// Tells the worker threads to exit and waits for them to terminate.
523 threads_end(struct lzma_stream_coder
*coder
, const lzma_allocator
*allocator
)
525 for (uint32_t i
= 0; i
< coder
->threads_initialized
; ++i
) {
526 mythread_sync(coder
->threads
[i
].mutex
) {
527 coder
->threads
[i
].state
= THR_EXIT
;
528 mythread_cond_signal(&coder
->threads
[i
].cond
);
532 for (uint32_t i
= 0; i
< coder
->threads_initialized
; ++i
)
533 mythread_join(coder
->threads
[i
].thread_id
);
535 lzma_free(coder
->threads
, allocator
);
536 coder
->threads_initialized
= 0;
537 coder
->threads
= NULL
;
538 coder
->threads_free
= NULL
;
540 // The threads don't update these when they exit. Do it here.
541 coder
->mem_in_use
= 0;
542 coder
->mem_cached
= 0;
549 threads_stop(struct lzma_stream_coder
*coder
)
551 for (uint32_t i
= 0; i
< coder
->threads_initialized
; ++i
) {
552 mythread_sync(coder
->threads
[i
].mutex
) {
553 // The state must be changed conditionally because
554 // THR_IDLE -> THR_STOP is not a valid state change.
555 if (coder
->threads
[i
].state
!= THR_IDLE
) {
556 coder
->threads
[i
].state
= THR_STOP
;
557 mythread_cond_signal(&coder
->threads
[i
].cond
);
566 /// Initialize a new worker_thread structure and create a new thread.
568 initialize_new_thread(struct lzma_stream_coder
*coder
,
569 const lzma_allocator
*allocator
)
571 // Allocate the coder->threads array if needed. It's done here instead
572 // of when initializing the decoder because we don't need this if we
573 // use the direct mode (we may even free coder->threads in the middle
574 // of the file if we switch from threaded to direct mode).
575 if (coder
->threads
== NULL
) {
576 coder
->threads
= lzma_alloc(
577 coder
->threads_max
* sizeof(struct worker_thread
),
580 if (coder
->threads
== NULL
)
581 return LZMA_MEM_ERROR
;
584 // Pick a free structure.
585 assert(coder
->threads_initialized
< coder
->threads_max
);
586 struct worker_thread
*thr
587 = &coder
->threads
[coder
->threads_initialized
];
589 if (mythread_mutex_init(&thr
->mutex
))
592 if (mythread_cond_init(&thr
->cond
))
595 thr
->state
= THR_IDLE
;
598 thr
->allocator
= allocator
;
601 thr
->block_decoder
= LZMA_NEXT_CODER_INIT
;
602 thr
->mem_filters
= 0;
604 if (mythread_create(&thr
->thread_id
, worker_decoder
, thr
))
607 ++coder
->threads_initialized
;
613 mythread_cond_destroy(&thr
->cond
);
616 mythread_mutex_destroy(&thr
->mutex
);
619 return LZMA_MEM_ERROR
;
624 get_thread(struct lzma_stream_coder
*coder
, const lzma_allocator
*allocator
)
626 // If there is a free structure on the stack, use it.
627 mythread_sync(coder
->mutex
) {
628 if (coder
->threads_free
!= NULL
) {
629 coder
->thr
= coder
->threads_free
;
630 coder
->threads_free
= coder
->threads_free
->next
;
632 // The thread is no longer in the cache so substract
633 // it from the cached memory usage. Don't add it
634 // to mem_in_use though; the caller will handle it
635 // since it knows how much memory it will actually
636 // use (the filter chain might change).
637 coder
->mem_cached
-= coder
->thr
->mem_filters
;
641 if (coder
->thr
== NULL
) {
642 assert(coder
->threads_initialized
< coder
->threads_max
);
644 // Initialize a new thread.
645 return_if_error(initialize_new_thread(coder
, allocator
));
648 coder
->thr
->in_filled
= 0;
649 coder
->thr
->in_pos
= 0;
650 coder
->thr
->out_pos
= 0;
652 coder
->thr
->progress_in
= 0;
653 coder
->thr
->progress_out
= 0;
655 coder
->thr
->partial_update
= PARTIAL_DISABLED
;
662 read_output_and_wait(struct lzma_stream_coder
*coder
,
663 const lzma_allocator
*allocator
,
664 uint8_t *restrict out
, size_t *restrict out_pos
,
666 bool *input_is_possible
,
667 bool waiting_allowed
,
668 mythread_condtime
*wait_abs
, bool *has_blocked
)
670 lzma_ret ret
= LZMA_OK
;
672 mythread_sync(coder
->mutex
) {
674 // Get as much output from the queue as is possible
676 const size_t out_start
= *out_pos
;
678 ret
= lzma_outq_read(&coder
->outq
, allocator
,
679 out
, out_pos
, out_size
,
682 // If a Block was finished, tell the worker
683 // thread of the next Block (if it is still
684 // running) to start telling the main thread
685 // when new output is available.
686 if (ret
== LZMA_STREAM_END
)
687 lzma_outq_enable_partial_output(
689 &worker_enable_partial_update
);
691 // Loop until a Block wasn't finished.
692 // It's important to loop around even if
693 // *out_pos == out_size because there could
694 // be an empty Block that will return
695 // LZMA_STREAM_END without needing any
697 } while (ret
== LZMA_STREAM_END
);
699 // Check if lzma_outq_read reported an error from
700 // the Block decoder.
704 // If the output buffer is now full but it wasn't full
705 // when this function was called, set out_was_filled.
706 // This way the next call to stream_decode_mt() knows
707 // that some output was produced and no output space
708 // remained in the previous call to stream_decode_mt().
709 if (*out_pos
== out_size
&& *out_pos
!= out_start
)
710 coder
->out_was_filled
= true;
712 // Check if any thread has indicated an error.
713 if (coder
->thread_error
!= LZMA_OK
) {
714 // If LZMA_FAIL_FAST was used, report errors
715 // from worker threads immediately.
716 if (coder
->fail_fast
) {
717 ret
= coder
->thread_error
;
721 // Otherwise set pending_error. The value we
722 // set here will not actually get used other
723 // than working as a flag that an error has
724 // occurred. This is because in SEQ_ERROR
725 // all output before the error will be read
726 // first by calling this function, and once we
727 // reach the location of the (first) error the
728 // error code from the above lzma_outq_read()
729 // will be returned to the application.
731 // Use LZMA_PROG_ERROR since the value should
732 // never leak to the application. It's
733 // possible that pending_error has already
734 // been set but that doesn't matter: if we get
735 // here, pending_error only works as a flag.
736 coder
->pending_error
= LZMA_PROG_ERROR
;
739 // Check if decoding of the next Block can be started.
740 // The memusage of the active threads must be low
741 // enough, there must be a free buffer slot in the
742 // output queue, and there must be a free thread
743 // (that can be either created or an existing one
746 // NOTE: This is checked after reading the output
747 // above because reading the output can free a slot in
748 // the output queue and also reduce active memusage.
750 // NOTE: If output queue is empty, then input will
751 // always be possible.
752 if (input_is_possible
!= NULL
753 && coder
->memlimit_threading
755 - coder
->outq
.mem_in_use
756 >= coder
->mem_next_block
757 && lzma_outq_has_buf(&coder
->outq
)
758 && (coder
->threads_initialized
760 || coder
->threads_free
762 *input_is_possible
= true;
766 // If the caller doesn't want us to block, return now.
767 if (!waiting_allowed
)
770 // This check is needed only when input_is_possible
771 // is NULL. We must return if we aren't waiting for
772 // input to become possible and there is no more
773 // output coming from the queue.
774 if (lzma_outq_is_empty(&coder
->outq
)) {
775 assert(input_is_possible
== NULL
);
779 // If there is more data available from the queue,
780 // our out buffer must be full and we need to return
781 // so that the application can provide more output
784 // NOTE: In general lzma_outq_is_readable() can return
785 // true also when there are no more bytes available.
786 // This can happen when a Block has finished without
787 // providing any new output. We know that this is not
788 // the case because in the beginning of this loop we
789 // tried to read as much as possible even when we had
790 // no output space left and the mutex has been locked
791 // all the time (so worker threads cannot have changed
792 // anything). Thus there must be actual pending output
794 if (lzma_outq_is_readable(&coder
->outq
)) {
795 assert(*out_pos
== out_size
);
799 // If the application stops providing more input
800 // in the middle of a Block, there will eventually
801 // be one worker thread left that is stuck waiting for
802 // more input (that might never arrive) and a matching
803 // outbuf which the worker thread cannot finish due
804 // to lack of input. We must detect this situation,
805 // otherwise we would end up waiting indefinitely
806 // (if no timeout is in use) or keep returning
807 // LZMA_TIMED_OUT while making no progress. Thus, the
808 // application would never get LZMA_BUF_ERROR from
809 // lzma_code() which would tell the application that
810 // no more progress is possible. No LZMA_BUF_ERROR
811 // means that, for example, truncated .xz files could
812 // cause an infinite loop.
814 // A worker thread doing partial updates will
815 // store not only the output position in outbuf->pos
816 // but also the matching input position in
817 // outbuf->decoder_in_pos. Here we check if that
818 // input position matches the amount of input that
819 // the worker thread has been given (in_filled).
820 // If so, we must return and not wait as no more
821 // output will be coming without first getting more
822 // input to the worker thread. If the application
823 // keeps calling lzma_code() without providing more
824 // input, it will eventually get LZMA_BUF_ERROR.
826 // NOTE: We can read partial_update and in_filled
827 // without thr->mutex as only the main thread
828 // modifies these variables. decoder_in_pos requires
829 // coder->mutex which we are already holding.
830 if (coder
->thr
!= NULL
&& coder
->thr
->partial_update
831 != PARTIAL_DISABLED
) {
832 // There is exactly one outbuf in the queue.
833 assert(coder
->thr
->outbuf
== coder
->outq
.head
);
834 assert(coder
->thr
->outbuf
== coder
->outq
.tail
);
836 if (coder
->thr
->outbuf
->decoder_in_pos
837 == coder
->thr
->in_filled
)
841 // Wait for input or output to become possible.
842 if (coder
->timeout
!= 0) {
843 // See the comment in stream_encoder_mt.c
844 // about why mythread_condtime_set() is used
848 // In contrast to the encoder, this calls
849 // _condtime_set while the mutex is locked.
852 mythread_condtime_set(wait_abs
,
857 if (mythread_cond_timedwait(&coder
->cond
,
860 ret
= LZMA_TIMED_OUT
;
864 mythread_cond_wait(&coder
->cond
,
867 } while (ret
== LZMA_OK
);
870 // If we are returning an error, then the application cannot get
871 // more output from us and thus keeping the threads running is
872 // useless and waste of CPU time.
873 if (ret
!= LZMA_OK
&& ret
!= LZMA_TIMED_OUT
)
881 decode_block_header(struct lzma_stream_coder
*coder
,
882 const lzma_allocator
*allocator
, const uint8_t *restrict in
,
883 size_t *restrict in_pos
, size_t in_size
)
885 if (*in_pos
>= in_size
)
888 if (coder
->pos
== 0) {
889 // Detect if it's Index.
890 if (in
[*in_pos
] == INDEX_INDICATOR
)
891 return LZMA_INDEX_DETECTED
;
893 // Calculate the size of the Block Header. Note that
894 // Block Header decoder wants to see this byte too
895 // so don't advance *in_pos.
896 coder
->block_options
.header_size
897 = lzma_block_header_size_decode(
901 // Copy the Block Header to the internal buffer.
902 lzma_bufcpy(in
, in_pos
, in_size
, coder
->buffer
, &coder
->pos
,
903 coder
->block_options
.header_size
);
905 // Return if we didn't get the whole Block Header yet.
906 if (coder
->pos
< coder
->block_options
.header_size
)
911 // Version 1 is needed to support the .ignore_check option.
912 coder
->block_options
.version
= 1;
914 // Block Header decoder will initialize all members of this array
915 // so we don't need to do it here.
916 coder
->block_options
.filters
= coder
->filters
;
918 // Decode the Block Header.
919 return_if_error(lzma_block_header_decode(&coder
->block_options
,
920 allocator
, coder
->buffer
));
922 // If LZMA_IGNORE_CHECK was used, this flag needs to be set.
923 // It has to be set after lzma_block_header_decode() because
924 // it always resets this to false.
925 coder
->block_options
.ignore_check
= coder
->ignore_check
;
927 // coder->block_options is ready now.
928 return LZMA_STREAM_END
;
932 /// Get the size of the Compressed Data + Block Padding + Check.
934 comp_blk_size(const struct lzma_stream_coder
*coder
)
936 return vli_ceil4(coder
->block_options
.compressed_size
)
937 + lzma_check_size(coder
->stream_flags
.check
);
941 /// Returns true if the size (compressed or uncompressed) is such that
942 /// threaded decompression cannot be used. Sizes that are too big compared
943 /// to SIZE_MAX must be rejected to avoid integer overflows and truncations
944 /// when lzma_vli is assigned to a size_t.
946 is_direct_mode_needed(lzma_vli size
)
948 return size
== LZMA_VLI_UNKNOWN
|| size
> SIZE_MAX
/ 3;
953 stream_decoder_reset(struct lzma_stream_coder
*coder
,
954 const lzma_allocator
*allocator
)
956 // Initialize the Index hash used to verify the Index.
957 coder
->index_hash
= lzma_index_hash_init(coder
->index_hash
, allocator
);
958 if (coder
->index_hash
== NULL
)
959 return LZMA_MEM_ERROR
;
961 // Reset the rest of the variables.
962 coder
->sequence
= SEQ_STREAM_HEADER
;
970 stream_decode_mt(void *coder_ptr
, const lzma_allocator
*allocator
,
971 const uint8_t *restrict in
, size_t *restrict in_pos
,
973 uint8_t *restrict out
, size_t *restrict out_pos
,
974 size_t out_size
, lzma_action action
)
976 struct lzma_stream_coder
*coder
= coder_ptr
;
978 mythread_condtime wait_abs
;
979 bool has_blocked
= false;
981 // Determine if in SEQ_BLOCK_HEADER and SEQ_BLOCK_THR_RUN we should
982 // tell read_output_and_wait() to wait until it can fill the output
983 // buffer (or a timeout occurs). Two conditions must be met:
985 // (1) If the caller provided no new input. The reason for this
986 // can be, for example, the end of the file or that there is
987 // a pause in the input stream and more input is available
988 // a little later. In this situation we should wait for output
989 // because otherwise we would end up in a busy-waiting loop where
990 // we make no progress and the application just calls us again
991 // without providing any new input. This would then result in
992 // LZMA_BUF_ERROR even though more output would be available
993 // once the worker threads decode more data.
995 // (2) Even if (1) is true, we will not wait if the previous call to
996 // this function managed to produce some output and the output
997 // buffer became full. This is for compatibility with applications
998 // that call lzma_code() in such a way that new input is provided
999 // only when the output buffer didn't become full. Without this
1000 // trick such applications would have bad performance (bad
1001 // parallelization due to decoder not getting input fast enough).
1003 // NOTE: Such loops might require that timeout is disabled (0)
1004 // if they assume that output-not-full implies that all input has
1005 // been consumed. If and only if timeout is enabled, we may return
1006 // when output isn't full *and* not all input has been consumed.
1008 // However, if LZMA_FINISH is used, the above is ignored and we always
1009 // wait (timeout can still cause us to return) because we know that
1010 // we won't get any more input. This matters if the input file is
1011 // truncated and we are doing single-shot decoding, that is,
1012 // timeout = 0 and LZMA_FINISH is used on the first call to
1013 // lzma_code() and the output buffer is known to be big enough
1014 // to hold all uncompressed data:
1016 // - If LZMA_FINISH wasn't handled specially, we could return
1017 // LZMA_OK before providing all output that is possible with the
1018 // truncated input. The rest would be available if lzma_code() was
1019 // called again but then it's not single-shot decoding anymore.
1021 // - By handling LZMA_FINISH specially here, the first call will
1022 // produce all the output, matching the behavior of the
1023 // single-threaded decoder.
1025 // So it's a very specific corner case but also easy to avoid. Note
1026 // that this special handling of LZMA_FINISH has no effect for
1027 // single-shot decoding when the input file is valid (not truncated);
1028 // premature LZMA_OK wouldn't be possible as long as timeout = 0.
1029 const bool waiting_allowed
= action
== LZMA_FINISH
1030 || (*in_pos
== in_size
&& !coder
->out_was_filled
);
1031 coder
->out_was_filled
= false;
1034 switch (coder
->sequence
) {
1035 case SEQ_STREAM_HEADER
: {
1036 // Copy the Stream Header to the internal buffer.
1037 const size_t in_old
= *in_pos
;
1038 lzma_bufcpy(in
, in_pos
, in_size
, coder
->buffer
, &coder
->pos
,
1039 LZMA_STREAM_HEADER_SIZE
);
1040 coder
->progress_in
+= *in_pos
- in_old
;
1042 // Return if we didn't get the whole Stream Header yet.
1043 if (coder
->pos
< LZMA_STREAM_HEADER_SIZE
)
1048 // Decode the Stream Header.
1049 const lzma_ret ret
= lzma_stream_header_decode(
1050 &coder
->stream_flags
, coder
->buffer
);
1052 return ret
== LZMA_FORMAT_ERROR
&& !coder
->first_stream
1053 ? LZMA_DATA_ERROR
: ret
;
1055 // If we are decoding concatenated Streams, and the later
1056 // Streams have invalid Header Magic Bytes, we give
1057 // LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR.
1058 coder
->first_stream
= false;
1060 // Copy the type of the Check so that Block Header and Block
1062 coder
->block_options
.check
= coder
->stream_flags
.check
;
1064 // Even if we return LZMA_*_CHECK below, we want
1065 // to continue from Block Header decoding.
1066 coder
->sequence
= SEQ_BLOCK_HEADER
;
1068 // Detect if there's no integrity check or if it is
1069 // unsupported if those were requested by the application.
1070 if (coder
->tell_no_check
&& coder
->stream_flags
.check
1072 return LZMA_NO_CHECK
;
1074 if (coder
->tell_unsupported_check
1075 && !lzma_check_is_supported(
1076 coder
->stream_flags
.check
))
1077 return LZMA_UNSUPPORTED_CHECK
;
1079 if (coder
->tell_any_check
)
1080 return LZMA_GET_CHECK
;
1085 case SEQ_BLOCK_HEADER
: {
1086 const size_t in_old
= *in_pos
;
1087 const lzma_ret ret
= decode_block_header(coder
, allocator
,
1088 in
, in_pos
, in_size
);
1089 coder
->progress_in
+= *in_pos
- in_old
;
1091 if (ret
== LZMA_OK
) {
1092 // We didn't decode the whole Block Header yet.
1094 // Read output from the queue before returning. This
1095 // is important because it is possible that the
1096 // application doesn't have any new input available
1097 // immediately. If we didn't try to copy output from
1098 // the output queue here, lzma_code() could end up
1099 // returning LZMA_BUF_ERROR even though queued output
1102 // If the lzma_code() call provided at least one input
1103 // byte, only copy as much data from the output queue
1104 // as is available immediately. This way the
1105 // application will be able to provide more input
1108 // On the other hand, if lzma_code() was called with
1109 // an empty input buffer(*), treat it specially: try
1110 // to fill the output buffer even if it requires
1111 // waiting for the worker threads to provide output
1112 // (timeout, if specified, can still cause us to
1115 // - This way the application will be able to get all
1116 // data that can be decoded from the input provided
1119 // - We avoid both premature LZMA_BUF_ERROR and
1120 // busy-waiting where the application repeatedly
1121 // calls lzma_code() which immediately returns
1122 // LZMA_OK without providing new data.
1124 // - If the queue becomes empty, we won't wait
1125 // anything and will return LZMA_OK immediately
1126 // (coder->timeout is completely ignored).
1128 // (*) See the comment at the beginning of this
1129 // function how waiting_allowed is determined
1130 // and why there is an exception to the rule
1131 // of "called with an empty input buffer".
1132 assert(*in_pos
== in_size
);
1134 // If LZMA_FINISH was used we know that we won't get
1135 // more input, so the file must be truncated if we
1136 // get here. If worker threads don't detect any
1137 // errors, eventually there will be no more output
1138 // while we keep returning LZMA_OK which gets
1139 // converted to LZMA_BUF_ERROR in lzma_code().
1141 // If fail-fast is enabled then we will return
1142 // immediately using LZMA_DATA_ERROR instead of
1143 // LZMA_OK or LZMA_BUF_ERROR. Rationale for the
1146 // - Worker threads may have a large amount of
1147 // not-yet-decoded input data and we don't
1148 // know for sure if all data is valid. Bad
1149 // data there would result in LZMA_DATA_ERROR
1150 // when fail-fast isn't used.
1152 // - Immediate LZMA_BUF_ERROR would be a bit weird
1153 // considering the older liblzma code. lzma_code()
1154 // even has an assertion to prevent coders from
1155 // returning LZMA_BUF_ERROR directly.
1157 // The downside of this is that with fail-fast apps
1158 // cannot always distinguish between corrupt and
1160 if (action
== LZMA_FINISH
&& coder
->fail_fast
) {
1161 // We won't produce any more output. Stop
1162 // the unfinished worker threads so they
1163 // won't waste CPU time.
1164 threads_stop(coder
);
1165 return LZMA_DATA_ERROR
;
1168 // read_output_and_wait() will call threads_stop()
1169 // if needed so with that we can use return_if_error.
1170 return_if_error(read_output_and_wait(coder
, allocator
,
1171 out
, out_pos
, out_size
,
1172 NULL
, waiting_allowed
,
1173 &wait_abs
, &has_blocked
));
1175 if (coder
->pending_error
!= LZMA_OK
) {
1176 coder
->sequence
= SEQ_ERROR
;
1183 if (ret
== LZMA_INDEX_DETECTED
) {
1184 coder
->sequence
= SEQ_INDEX_WAIT_OUTPUT
;
1188 // See if an error occurred.
1189 if (ret
!= LZMA_STREAM_END
) {
1190 // NOTE: Here and in all other places where
1191 // pending_error is set, it may overwrite the value
1192 // (LZMA_PROG_ERROR) set by read_output_and_wait().
1193 // That function might overwrite value set here too.
1194 // These are fine because when read_output_and_wait()
1195 // sets pending_error, it actually works as a flag
1196 // variable only ("some error has occurred") and the
1197 // actual value of pending_error is not used in
1198 // SEQ_ERROR. In such cases SEQ_ERROR will eventually
1199 // get the correct error code from the return value of
1200 // a later read_output_and_wait() call.
1201 coder
->pending_error
= ret
;
1202 coder
->sequence
= SEQ_ERROR
;
1206 // Calculate the memory usage of the filters / Block decoder.
1207 coder
->mem_next_filters
= lzma_raw_decoder_memusage(
1210 if (coder
->mem_next_filters
== UINT64_MAX
) {
1211 // One or more unknown Filter IDs.
1212 coder
->pending_error
= LZMA_OPTIONS_ERROR
;
1213 coder
->sequence
= SEQ_ERROR
;
1217 coder
->sequence
= SEQ_BLOCK_INIT
;
1222 case SEQ_BLOCK_INIT
: {
1223 // Check if decoding is possible at all with the current
1224 // memlimit_stop which we must never exceed.
1226 // This needs to be the first thing in SEQ_BLOCK_INIT
1227 // to make it possible to restart decoding after increasing
1228 // memlimit_stop with lzma_memlimit_set().
1229 if (coder
->mem_next_filters
> coder
->memlimit_stop
) {
1230 // Flush pending output before returning
1231 // LZMA_MEMLIMIT_ERROR. If the application doesn't
1232 // want to increase the limit, at least it will get
1233 // all the output possible so far.
1234 return_if_error(read_output_and_wait(coder
, allocator
,
1235 out
, out_pos
, out_size
,
1236 NULL
, true, &wait_abs
, &has_blocked
));
1238 if (!lzma_outq_is_empty(&coder
->outq
))
1241 return LZMA_MEMLIMIT_ERROR
;
1244 // Check if the size information is available in Block Header.
1245 // If it is, check if the sizes are small enough that we don't
1246 // need to worry *too* much about integer overflows later in
1247 // the code. If these conditions are not met, we must use the
1248 // single-threaded direct mode.
1249 if (is_direct_mode_needed(coder
->block_options
.compressed_size
)
1250 || is_direct_mode_needed(
1251 coder
->block_options
.uncompressed_size
)) {
1252 coder
->sequence
= SEQ_BLOCK_DIRECT_INIT
;
1256 // Calculate the amount of memory needed for the input and
1257 // output buffers in threaded mode.
1259 // These cannot overflow because we already checked that
1260 // the sizes are small enough using is_direct_mode_needed().
1261 coder
->mem_next_in
= comp_blk_size(coder
);
1262 const uint64_t mem_buffers
= coder
->mem_next_in
1263 + lzma_outq_outbuf_memusage(
1264 coder
->block_options
.uncompressed_size
);
1266 // Add the amount needed by the filters.
1267 // Avoid integer overflows.
1268 if (UINT64_MAX
- mem_buffers
< coder
->mem_next_filters
) {
1269 // Use direct mode if the memusage would overflow.
1270 // This is a theoretical case that shouldn't happen
1271 // in practice unless the input file is weird (broken
1273 coder
->sequence
= SEQ_BLOCK_DIRECT_INIT
;
1277 // Amount of memory needed to decode this Block in
1279 coder
->mem_next_block
= coder
->mem_next_filters
+ mem_buffers
;
1281 // If this alone would exceed memlimit_threading, then we must
1282 // use the single-threaded direct mode.
1283 if (coder
->mem_next_block
> coder
->memlimit_threading
) {
1284 coder
->sequence
= SEQ_BLOCK_DIRECT_INIT
;
1288 // Use the threaded mode. Free the direct mode decoder in
1289 // case it has been initialized.
1290 lzma_next_end(&coder
->block_decoder
, allocator
);
1291 coder
->mem_direct_mode
= 0;
1293 // Since we already know what the sizes are supposed to be,
1294 // we can already add them to the Index hash. The Block
1295 // decoder will verify the values while decoding.
1296 const lzma_ret ret
= lzma_index_hash_append(coder
->index_hash
,
1297 lzma_block_unpadded_size(
1298 &coder
->block_options
),
1299 coder
->block_options
.uncompressed_size
);
1300 if (ret
!= LZMA_OK
) {
1301 coder
->pending_error
= ret
;
1302 coder
->sequence
= SEQ_ERROR
;
1306 coder
->sequence
= SEQ_BLOCK_THR_INIT
;
1311 case SEQ_BLOCK_THR_INIT
: {
1312 // We need to wait for a multiple conditions to become true
1313 // until we can initialize the Block decoder and let a worker
1314 // thread decode it:
1316 // - Wait for the memory usage of the active threads to drop
1317 // so that starting the decoding of this Block won't make
1318 // us go over memlimit_threading.
1320 // - Wait for at least one free output queue slot.
1322 // - Wait for a free worker thread.
1324 // While we wait, we must copy decompressed data to the out
1325 // buffer and catch possible decoder errors.
1327 // read_output_and_wait() does all the above.
1328 bool block_can_start
= false;
1330 return_if_error(read_output_and_wait(coder
, allocator
,
1331 out
, out_pos
, out_size
,
1332 &block_can_start
, true,
1333 &wait_abs
, &has_blocked
));
1335 if (coder
->pending_error
!= LZMA_OK
) {
1336 coder
->sequence
= SEQ_ERROR
;
1340 if (!block_can_start
) {
1341 // It's not a timeout because return_if_error handles
1342 // it already. Output queue cannot be empty either
1343 // because in that case block_can_start would have
1344 // been true. Thus the output buffer must be full and
1345 // the queue isn't empty.
1346 assert(*out_pos
== out_size
);
1347 assert(!lzma_outq_is_empty(&coder
->outq
));
1351 // We know that we can start decoding this Block without
1352 // exceeding memlimit_threading. However, to stay below
1353 // memlimit_threading may require freeing some of the
1356 // Get a local copy of variables that require locking the
1357 // mutex. It is fine if the worker threads modify the real
1358 // values after we read these as those changes can only be
1359 // towards more favorable conditions (less memory in use,
1362 // These are initalized to silence warnings.
1363 uint64_t mem_in_use
= 0;
1364 uint64_t mem_cached
= 0;
1365 struct worker_thread
*thr
= NULL
;
1367 mythread_sync(coder
->mutex
) {
1368 mem_in_use
= coder
->mem_in_use
;
1369 mem_cached
= coder
->mem_cached
;
1370 thr
= coder
->threads_free
;
1373 // The maximum amount of memory that can be held by other
1374 // threads and cached buffers while allowing us to start
1375 // decoding the next Block.
1376 const uint64_t mem_max
= coder
->memlimit_threading
1377 - coder
->mem_next_block
;
1379 // If the existing allocations are so large that starting
1380 // to decode this Block might exceed memlimit_threads,
1381 // try to free memory from the output queue cache first.
1383 // NOTE: This math assumes the worst case. It's possible
1384 // that the limit wouldn't be exceeded if the existing cached
1385 // allocations are reused.
1386 if (mem_in_use
+ mem_cached
+ coder
->outq
.mem_allocated
1388 // Clear the outq cache except leave one buffer in
1389 // the cache if its size is correct. That way we
1390 // don't free and almost immediately reallocate
1391 // an identical buffer.
1392 lzma_outq_clear_cache2(&coder
->outq
, allocator
,
1393 coder
->block_options
.uncompressed_size
);
1396 // If there is at least one worker_thread in the cache and
1397 // the existing allocations are so large that starting to
1398 // decode this Block might exceed memlimit_threads, free
1399 // memory by freeing cached Block decoders.
1401 // NOTE: The comparison is different here than above.
1402 // Here we don't care about cached buffers in outq anymore
1403 // and only look at memory actually in use. This is because
1404 // if there is something in outq cache, it's a single buffer
1405 // that can be used as is. We ensured this in the above
1407 uint64_t mem_freed
= 0;
1408 if (thr
!= NULL
&& mem_in_use
+ mem_cached
1409 + coder
->outq
.mem_in_use
> mem_max
) {
1410 // Don't free the first Block decoder if its memory
1411 // usage isn't greater than what this Block will need.
1412 // Typically the same filter chain is used for all
1413 // Blocks so this way the allocations can be reused
1414 // when get_thread() picks the first worker_thread
1416 if (thr
->mem_filters
<= coder
->mem_next_filters
)
1419 while (thr
!= NULL
) {
1420 lzma_next_end(&thr
->block_decoder
, allocator
);
1421 mem_freed
+= thr
->mem_filters
;
1422 thr
->mem_filters
= 0;
1427 // Update the memory usage counters. Note that coder->mem_*
1428 // may have changed since we read them so we must substract
1429 // or add the changes.
1430 mythread_sync(coder
->mutex
) {
1431 coder
->mem_cached
-= mem_freed
;
1433 // Memory needed for the filters and the input buffer.
1434 // The output queue takes care of its own counter so
1435 // we don't touch it here.
1437 // NOTE: After this, coder->mem_in_use +
1438 // coder->mem_cached might count the same thing twice.
1439 // If so, this will get corrected in get_thread() when
1440 // a worker_thread is picked from coder->free_threads
1441 // and its memory usage is substracted from mem_cached.
1442 coder
->mem_in_use
+= coder
->mem_next_in
1443 + coder
->mem_next_filters
;
1446 // Allocate memory for the output buffer in the output queue.
1447 lzma_ret ret
= lzma_outq_prealloc_buf(
1448 &coder
->outq
, allocator
,
1449 coder
->block_options
.uncompressed_size
);
1450 if (ret
!= LZMA_OK
) {
1451 threads_stop(coder
);
1455 // Set up coder->thr.
1456 ret
= get_thread(coder
, allocator
);
1457 if (ret
!= LZMA_OK
) {
1458 threads_stop(coder
);
1462 // The new Block decoder memory usage is already counted in
1463 // coder->mem_in_use. Store it in the thread too.
1464 coder
->thr
->mem_filters
= coder
->mem_next_filters
;
1466 // Initialize the Block decoder.
1467 coder
->thr
->block_options
= coder
->block_options
;
1468 ret
= lzma_block_decoder_init(
1469 &coder
->thr
->block_decoder
, allocator
,
1470 &coder
->thr
->block_options
);
1472 // Free the allocated filter options since they are needed
1473 // only to initialize the Block decoder.
1474 lzma_filters_free(coder
->filters
, allocator
);
1475 coder
->thr
->block_options
.filters
= NULL
;
1477 // Check if memory usage calculation and Block encoder
1478 // initialization succeeded.
1479 if (ret
!= LZMA_OK
) {
1480 coder
->pending_error
= ret
;
1481 coder
->sequence
= SEQ_ERROR
;
1485 // Allocate the input buffer.
1486 coder
->thr
->in_size
= coder
->mem_next_in
;
1487 coder
->thr
->in
= lzma_alloc(coder
->thr
->in_size
, allocator
);
1488 if (coder
->thr
->in
== NULL
) {
1489 threads_stop(coder
);
1490 return LZMA_MEM_ERROR
;
1493 // Get the preallocated output buffer.
1494 coder
->thr
->outbuf
= lzma_outq_get_buf(
1495 &coder
->outq
, coder
->thr
);
1497 // Start the decoder.
1498 mythread_sync(coder
->thr
->mutex
) {
1499 assert(coder
->thr
->state
== THR_IDLE
);
1500 coder
->thr
->state
= THR_RUN
;
1501 mythread_cond_signal(&coder
->thr
->cond
);
1504 // Enable output from the thread that holds the oldest output
1505 // buffer in the output queue (if such a thread exists).
1506 mythread_sync(coder
->mutex
) {
1507 lzma_outq_enable_partial_output(&coder
->outq
,
1508 &worker_enable_partial_update
);
1511 coder
->sequence
= SEQ_BLOCK_THR_RUN
;
1516 case SEQ_BLOCK_THR_RUN
: {
1517 if (action
== LZMA_FINISH
&& coder
->fail_fast
) {
1518 // We know that we won't get more input and that
1519 // the caller wants fail-fast behavior. If we see
1520 // that we don't have enough input to finish this
1521 // Block, return LZMA_DATA_ERROR immediately.
1522 // See SEQ_BLOCK_HEADER for the error code rationale.
1523 const size_t in_avail
= in_size
- *in_pos
;
1524 const size_t in_needed
= coder
->thr
->in_size
1525 - coder
->thr
->in_filled
;
1526 if (in_avail
< in_needed
) {
1527 threads_stop(coder
);
1528 return LZMA_DATA_ERROR
;
1532 // Copy input to the worker thread.
1533 size_t cur_in_filled
= coder
->thr
->in_filled
;
1534 lzma_bufcpy(in
, in_pos
, in_size
, coder
->thr
->in
,
1535 &cur_in_filled
, coder
->thr
->in_size
);
1537 // Tell the thread how much we copied.
1538 mythread_sync(coder
->thr
->mutex
) {
1539 coder
->thr
->in_filled
= cur_in_filled
;
1541 // NOTE: Most of the time we are copying input faster
1542 // than the thread can decode so most of the time
1543 // calling mythread_cond_signal() is useless but
1544 // we cannot make it conditional because thr->in_pos
1545 // is updated without a mutex. And the overhead should
1546 // be very much negligible anyway.
1547 mythread_cond_signal(&coder
->thr
->cond
);
1550 // Read output from the output queue. Just like in
1551 // SEQ_BLOCK_HEADER, we wait to fill the output buffer
1552 // only if waiting_allowed was set to true in the beginning
1553 // of this function (see the comment there).
1554 return_if_error(read_output_and_wait(coder
, allocator
,
1555 out
, out_pos
, out_size
,
1556 NULL
, waiting_allowed
,
1557 &wait_abs
, &has_blocked
));
1559 if (coder
->pending_error
!= LZMA_OK
) {
1560 coder
->sequence
= SEQ_ERROR
;
1564 // Return if the input didn't contain the whole Block.
1565 if (coder
->thr
->in_filled
< coder
->thr
->in_size
) {
1566 assert(*in_pos
== in_size
);
1570 // The whole Block has been copied to the thread-specific
1571 // buffer. Continue from the next Block Header or Index.
1573 coder
->sequence
= SEQ_BLOCK_HEADER
;
1577 case SEQ_BLOCK_DIRECT_INIT
: {
1578 // Wait for the threads to finish and that all decoded data
1579 // has been copied to the output. That is, wait until the
1580 // output queue becomes empty.
1582 // NOTE: No need to check for coder->pending_error as
1583 // we aren't consuming any input until the queue is empty
1584 // and if there is a pending error, read_output_and_wait()
1585 // will eventually return it before the queue is empty.
1586 return_if_error(read_output_and_wait(coder
, allocator
,
1587 out
, out_pos
, out_size
,
1588 NULL
, true, &wait_abs
, &has_blocked
));
1589 if (!lzma_outq_is_empty(&coder
->outq
))
1592 // Free the cached output buffers.
1593 lzma_outq_clear_cache(&coder
->outq
, allocator
);
1595 // Get rid of the worker threads, including the coder->threads
1597 threads_end(coder
, allocator
);
1599 // Initialize the Block decoder.
1600 const lzma_ret ret
= lzma_block_decoder_init(
1601 &coder
->block_decoder
, allocator
,
1602 &coder
->block_options
);
1604 // Free the allocated filter options since they are needed
1605 // only to initialize the Block decoder.
1606 lzma_filters_free(coder
->filters
, allocator
);
1607 coder
->block_options
.filters
= NULL
;
1609 // Check if Block decoder initialization succeeded.
1613 // Make the memory usage visible to _memconfig().
1614 coder
->mem_direct_mode
= coder
->mem_next_filters
;
1616 coder
->sequence
= SEQ_BLOCK_DIRECT_RUN
;
1621 case SEQ_BLOCK_DIRECT_RUN
: {
1622 const size_t in_old
= *in_pos
;
1623 const size_t out_old
= *out_pos
;
1624 const lzma_ret ret
= coder
->block_decoder
.code(
1625 coder
->block_decoder
.coder
, allocator
,
1626 in
, in_pos
, in_size
, out
, out_pos
, out_size
,
1628 coder
->progress_in
+= *in_pos
- in_old
;
1629 coder
->progress_out
+= *out_pos
- out_old
;
1631 if (ret
!= LZMA_STREAM_END
)
1634 // Block decoded successfully. Add the new size pair to
1636 return_if_error(lzma_index_hash_append(coder
->index_hash
,
1637 lzma_block_unpadded_size(
1638 &coder
->block_options
),
1639 coder
->block_options
.uncompressed_size
));
1641 coder
->sequence
= SEQ_BLOCK_HEADER
;
1645 case SEQ_INDEX_WAIT_OUTPUT
:
1646 // Flush the output from all worker threads so that we can
1647 // decode the Index without thinking about threading.
1648 return_if_error(read_output_and_wait(coder
, allocator
,
1649 out
, out_pos
, out_size
,
1650 NULL
, true, &wait_abs
, &has_blocked
));
1652 if (!lzma_outq_is_empty(&coder
->outq
))
1655 coder
->sequence
= SEQ_INDEX_DECODE
;
1659 case SEQ_INDEX_DECODE
: {
1660 // If we don't have any input, don't call
1661 // lzma_index_hash_decode() since it would return
1662 // LZMA_BUF_ERROR, which we must not do here.
1663 if (*in_pos
>= in_size
)
1666 // Decode the Index and compare it to the hash calculated
1667 // from the sizes of the Blocks (if any).
1668 const size_t in_old
= *in_pos
;
1669 const lzma_ret ret
= lzma_index_hash_decode(coder
->index_hash
,
1670 in
, in_pos
, in_size
);
1671 coder
->progress_in
+= *in_pos
- in_old
;
1672 if (ret
!= LZMA_STREAM_END
)
1675 coder
->sequence
= SEQ_STREAM_FOOTER
;
1680 case SEQ_STREAM_FOOTER
: {
1681 // Copy the Stream Footer to the internal buffer.
1682 const size_t in_old
= *in_pos
;
1683 lzma_bufcpy(in
, in_pos
, in_size
, coder
->buffer
, &coder
->pos
,
1684 LZMA_STREAM_HEADER_SIZE
);
1685 coder
->progress_in
+= *in_pos
- in_old
;
1687 // Return if we didn't get the whole Stream Footer yet.
1688 if (coder
->pos
< LZMA_STREAM_HEADER_SIZE
)
1693 // Decode the Stream Footer. The decoder gives
1694 // LZMA_FORMAT_ERROR if the magic bytes don't match,
1695 // so convert that return code to LZMA_DATA_ERROR.
1696 lzma_stream_flags footer_flags
;
1697 const lzma_ret ret
= lzma_stream_footer_decode(
1698 &footer_flags
, coder
->buffer
);
1700 return ret
== LZMA_FORMAT_ERROR
1701 ? LZMA_DATA_ERROR
: ret
;
1703 // Check that Index Size stored in the Stream Footer matches
1704 // the real size of the Index field.
1705 if (lzma_index_hash_size(coder
->index_hash
)
1706 != footer_flags
.backward_size
)
1707 return LZMA_DATA_ERROR
;
1709 // Compare that the Stream Flags fields are identical in
1710 // both Stream Header and Stream Footer.
1711 return_if_error(lzma_stream_flags_compare(
1712 &coder
->stream_flags
, &footer_flags
));
1714 if (!coder
->concatenated
)
1715 return LZMA_STREAM_END
;
1717 coder
->sequence
= SEQ_STREAM_PADDING
;
1722 case SEQ_STREAM_PADDING
:
1723 assert(coder
->concatenated
);
1725 // Skip over possible Stream Padding.
1727 if (*in_pos
>= in_size
) {
1728 // Unless LZMA_FINISH was used, we cannot
1729 // know if there's more input coming later.
1730 if (action
!= LZMA_FINISH
)
1733 // Stream Padding must be a multiple of
1735 return coder
->pos
== 0
1740 // If the byte is not zero, it probably indicates
1741 // beginning of a new Stream (or the file is corrupt).
1742 if (in
[*in_pos
] != 0x00)
1746 ++coder
->progress_in
;
1747 coder
->pos
= (coder
->pos
+ 1) & 3;
1750 // Stream Padding must be a multiple of four bytes (empty
1751 // Stream Padding is OK).
1752 if (coder
->pos
!= 0) {
1754 ++coder
->progress_in
;
1755 return LZMA_DATA_ERROR
;
1758 // Prepare to decode the next Stream.
1759 return_if_error(stream_decoder_reset(coder
, allocator
));
1763 if (!coder
->fail_fast
) {
1764 // Let the application get all data before the point
1765 // where the error was detected. This matches the
1766 // behavior of single-threaded use.
1768 // FIXME? Some errors (LZMA_MEM_ERROR) don't get here,
1769 // they are returned immediately. Thus in rare cases
1770 // the output will be less than in the single-threaded
1771 // mode. Maybe this doesn't matter much in practice.
1772 return_if_error(read_output_and_wait(coder
, allocator
,
1773 out
, out_pos
, out_size
,
1774 NULL
, true, &wait_abs
, &has_blocked
));
1776 // We get here only if the error happened in the main
1777 // thread, for example, unsupported Block Header.
1778 if (!lzma_outq_is_empty(&coder
->outq
))
1782 // We only get here if no errors were detected by the worker
1783 // threads. Errors from worker threads would have already been
1784 // returned by the call to read_output_and_wait() above.
1785 return coder
->pending_error
;
1789 return LZMA_PROG_ERROR
;
1797 stream_decoder_mt_end(void *coder_ptr
, const lzma_allocator
*allocator
)
1799 struct lzma_stream_coder
*coder
= coder_ptr
;
1801 threads_end(coder
, allocator
);
1802 lzma_outq_end(&coder
->outq
, allocator
);
1804 lzma_next_end(&coder
->block_decoder
, allocator
);
1805 lzma_filters_free(coder
->filters
, allocator
);
1806 lzma_index_hash_end(coder
->index_hash
, allocator
);
1808 lzma_free(coder
, allocator
);
1814 stream_decoder_mt_get_check(const void *coder_ptr
)
1816 const struct lzma_stream_coder
*coder
= coder_ptr
;
1817 return coder
->stream_flags
.check
;
1822 stream_decoder_mt_memconfig(void *coder_ptr
, uint64_t *memusage
,
1823 uint64_t *old_memlimit
, uint64_t new_memlimit
)
1825 // NOTE: This function gets/sets memlimit_stop. For now,
1826 // memlimit_threading cannot be modified after initialization.
1828 // *memusage will include cached memory too. Excluding cached memory
1829 // would be misleading and it wouldn't help the applications to
1830 // know how much memory is actually needed to decompress the file
1831 // because the higher the number of threads and the memlimits are
1832 // the more memory the decoder may use.
1834 // Setting a new limit includes the cached memory too and too low
1835 // limits will be rejected. Alternative could be to free the cached
1836 // memory immediately if that helps to bring the limit down but
1837 // the current way is the simplest. It's unlikely that limit needs
1838 // to be lowered in the middle of a file anyway; the typical reason
1839 // to want a new limit is to increase after LZMA_MEMLIMIT_ERROR
1840 // and even such use isn't common.
1841 struct lzma_stream_coder
*coder
= coder_ptr
;
1843 mythread_sync(coder
->mutex
) {
1844 *memusage
= coder
->mem_direct_mode
1847 + coder
->outq
.mem_allocated
;
1850 // If no filter chains are allocated, *memusage may be zero.
1851 // Always return at least LZMA_MEMUSAGE_BASE.
1852 if (*memusage
< LZMA_MEMUSAGE_BASE
)
1853 *memusage
= LZMA_MEMUSAGE_BASE
;
1855 *old_memlimit
= coder
->memlimit_stop
;
1857 if (new_memlimit
!= 0) {
1858 if (new_memlimit
< *memusage
)
1859 return LZMA_MEMLIMIT_ERROR
;
1861 coder
->memlimit_stop
= new_memlimit
;
1869 stream_decoder_mt_get_progress(void *coder_ptr
,
1870 uint64_t *progress_in
, uint64_t *progress_out
)
1872 struct lzma_stream_coder
*coder
= coder_ptr
;
1874 // Lock coder->mutex to prevent finishing threads from moving their
1875 // progress info from the worker_thread structure to lzma_stream_coder.
1876 mythread_sync(coder
->mutex
) {
1877 *progress_in
= coder
->progress_in
;
1878 *progress_out
= coder
->progress_out
;
1880 for (size_t i
= 0; i
< coder
->threads_initialized
; ++i
) {
1881 mythread_sync(coder
->threads
[i
].mutex
) {
1882 *progress_in
+= coder
->threads
[i
].progress_in
;
1883 *progress_out
+= coder
->threads
[i
]
1894 stream_decoder_mt_init(lzma_next_coder
*next
, const lzma_allocator
*allocator
,
1895 const lzma_mt
*options
)
1897 struct lzma_stream_coder
*coder
;
1899 if (options
->threads
== 0 || options
->threads
> LZMA_THREADS_MAX
)
1900 return LZMA_OPTIONS_ERROR
;
1902 if (options
->flags
& ~LZMA_SUPPORTED_FLAGS
)
1903 return LZMA_OPTIONS_ERROR
;
1905 lzma_next_coder_init(&stream_decoder_mt_init
, next
, allocator
);
1907 coder
= next
->coder
;
1909 coder
= lzma_alloc(sizeof(struct lzma_stream_coder
), allocator
);
1911 return LZMA_MEM_ERROR
;
1913 next
->coder
= coder
;
1915 if (mythread_mutex_init(&coder
->mutex
)) {
1916 lzma_free(coder
, allocator
);
1917 return LZMA_MEM_ERROR
;
1920 if (mythread_cond_init(&coder
->cond
)) {
1921 mythread_mutex_destroy(&coder
->mutex
);
1922 lzma_free(coder
, allocator
);
1923 return LZMA_MEM_ERROR
;
1926 next
->code
= &stream_decode_mt
;
1927 next
->end
= &stream_decoder_mt_end
;
1928 next
->get_check
= &stream_decoder_mt_get_check
;
1929 next
->memconfig
= &stream_decoder_mt_memconfig
;
1930 next
->get_progress
= &stream_decoder_mt_get_progress
;
1932 coder
->filters
[0].id
= LZMA_VLI_UNKNOWN
;
1933 memzero(&coder
->outq
, sizeof(coder
->outq
));
1935 coder
->block_decoder
= LZMA_NEXT_CODER_INIT
;
1936 coder
->mem_direct_mode
= 0;
1938 coder
->index_hash
= NULL
;
1939 coder
->threads
= NULL
;
1940 coder
->threads_free
= NULL
;
1941 coder
->threads_initialized
= 0;
1944 // Cleanup old filter chain if one remains after unfinished decoding
1945 // of a previous Stream.
1946 lzma_filters_free(coder
->filters
, allocator
);
1948 // By allocating threads from scratch we can start memory-usage
1949 // accounting from scratch, too. Changes in filter and block sizes may
1950 // affect number of threads.
1952 // FIXME? Reusing should be easy but unlike the single-threaded
1953 // decoder, with some types of input file combinations reusing
1954 // could leave quite a lot of memory allocated but unused (first
1955 // file could allocate a lot, the next files could use fewer
1956 // threads and some of the allocations from the first file would not
1957 // get freed unless memlimit_threading forces us to clear caches).
1959 // NOTE: The direct mode decoder isn't freed here if one exists.
1960 // It will be reused or freed as needed in the main loop.
1961 threads_end(coder
, allocator
);
1963 // All memusage counters start at 0 (including mem_direct_mode).
1964 // The little extra that is needed for the structs in this file
1965 // get accounted well enough by the filter chain memory usage
1966 // which adds LZMA_MEMUSAGE_BASE for each chain. However,
1967 // stream_decoder_mt_memconfig() has to handle this specially so that
1968 // it will never return less than LZMA_MEMUSAGE_BASE as memory usage.
1969 coder
->mem_in_use
= 0;
1970 coder
->mem_cached
= 0;
1971 coder
->mem_next_block
= 0;
1973 coder
->progress_in
= 0;
1974 coder
->progress_out
= 0;
1976 coder
->sequence
= SEQ_STREAM_HEADER
;
1977 coder
->thread_error
= LZMA_OK
;
1978 coder
->pending_error
= LZMA_OK
;
1981 coder
->timeout
= options
->timeout
;
1983 coder
->memlimit_threading
= my_max(1, options
->memlimit_threading
);
1984 coder
->memlimit_stop
= my_max(1, options
->memlimit_stop
);
1985 if (coder
->memlimit_threading
> coder
->memlimit_stop
)
1986 coder
->memlimit_threading
= coder
->memlimit_stop
;
1988 coder
->tell_no_check
= (options
->flags
& LZMA_TELL_NO_CHECK
) != 0;
1989 coder
->tell_unsupported_check
1990 = (options
->flags
& LZMA_TELL_UNSUPPORTED_CHECK
) != 0;
1991 coder
->tell_any_check
= (options
->flags
& LZMA_TELL_ANY_CHECK
) != 0;
1992 coder
->ignore_check
= (options
->flags
& LZMA_IGNORE_CHECK
) != 0;
1993 coder
->concatenated
= (options
->flags
& LZMA_CONCATENATED
) != 0;
1994 coder
->fail_fast
= (options
->flags
& LZMA_FAIL_FAST
) != 0;
1996 coder
->first_stream
= true;
1997 coder
->out_was_filled
= false;
2000 coder
->threads_max
= options
->threads
;
2002 return_if_error(lzma_outq_init(&coder
->outq
, allocator
,
2003 coder
->threads_max
));
2005 return stream_decoder_reset(coder
, allocator
);
2009 extern LZMA_API(lzma_ret
)
2010 lzma_stream_decoder_mt(lzma_stream
*strm
, const lzma_mt
*options
)
2012 lzma_next_strm_init(stream_decoder_mt_init
, strm
, options
);
2014 strm
->internal
->supported_actions
[LZMA_RUN
] = true;
2015 strm
->internal
->supported_actions
[LZMA_FINISH
] = true;