1 ///////////////////////////////////////////////////////////////////////////////
4 /// \brief LZ out window
6 // Authors: Igor Pavlov
9 // This file has been put into the public domain.
10 // You can do whatever you want with this file.
12 ///////////////////////////////////////////////////////////////////////////////
14 // liblzma supports multiple LZ77-based filters. The LZ part is shared
15 // between these filters. The LZ code takes care of dictionary handling
16 // and passing the data between filters in the chain. The filter-specific
17 // part decodes from the input buffer to the dictionary.
20 #include "lz_decoder.h"
24 /// Dictionary (history buffer)
27 /// The actual LZ-based decoder e.g. LZMA
30 /// Next filter in the chain, if any. Note that LZMA and LZMA2 are
31 /// only allowed as the last filter, but the long-range filter in
32 /// future can be in the middle of the chain.
35 /// True if the next filter in the chain has returned LZMA_STREAM_END.
38 /// True if the LZ decoder (e.g. LZMA) has detected end of payload
39 /// marker. This may become true before next_finished becomes true.
42 /// Temporary buffer needed when the LZ-based filter is not the last
43 /// filter in the chain. The output of the next filter is first
44 /// decoded into buffer[], which is then used as input for the actual
49 uint8_t buffer
[LZMA_BUFFER_SIZE
];
55 lz_decoder_reset(lzma_coder
*coder
)
59 coder
->dict
.buf
[coder
->dict
.size
- 1] = '\0';
60 coder
->dict
.need_reset
= false;
66 decode_buffer(lzma_coder
*coder
,
67 const uint8_t *restrict in
, size_t *restrict in_pos
,
68 size_t in_size
, uint8_t *restrict out
,
69 size_t *restrict out_pos
, size_t out_size
)
72 // Wrap the dictionary if needed.
73 if (coder
->dict
.pos
== coder
->dict
.size
)
76 // Store the current dictionary position. It is needed to know
77 // where to start copying to the out[] buffer.
78 const size_t dict_start
= coder
->dict
.pos
;
80 // Calculate how much we allow coder->lz.code() to decode.
81 // It must not decode past the end of the dictionary
82 // buffer, and we don't want it to decode more than is
83 // actually needed to fill the out[] buffer.
84 coder
->dict
.limit
= coder
->dict
.pos
85 + my_min(out_size
- *out_pos
,
86 coder
->dict
.size
- coder
->dict
.pos
);
88 // Call the coder->lz.code() to do the actual decoding.
89 const lzma_ret ret
= coder
->lz
.code(
90 coder
->lz
.coder
, &coder
->dict
,
93 // Copy the decoded data from the dictionary to the out[]
94 // buffer. Do it conditionally because out can be NULL
95 // (in which case copy_size is always 0). Calling memcpy()
96 // with a null-pointer is undefined even if the third
98 const size_t copy_size
= coder
->dict
.pos
- dict_start
;
99 assert(copy_size
<= out_size
- *out_pos
);
102 memcpy(out
+ *out_pos
, coder
->dict
.buf
+ dict_start
,
105 *out_pos
+= copy_size
;
107 // Reset the dictionary if so requested by coder->lz.code().
108 if (coder
->dict
.need_reset
) {
109 lz_decoder_reset(coder
);
111 // Since we reset dictionary, we don't check if
112 // dictionary became full.
113 if (ret
!= LZMA_OK
|| *out_pos
== out_size
)
116 // Return if everything got decoded or an error
117 // occurred, or if there's no more data to decode.
119 // Note that detecting if there's something to decode
120 // is done by looking if dictionary become full
121 // instead of looking if *in_pos == in_size. This
122 // is because it is possible that all the input was
123 // consumed already but some data is pending to be
124 // written to the dictionary.
125 if (ret
!= LZMA_OK
|| *out_pos
== out_size
126 || coder
->dict
.pos
< coder
->dict
.size
)
134 lz_decode(void *coder_ptr
, const lzma_allocator
*allocator
,
135 const uint8_t *restrict in
, size_t *restrict in_pos
,
136 size_t in_size
, uint8_t *restrict out
,
137 size_t *restrict out_pos
, size_t out_size
,
140 lzma_coder
*coder
= coder_ptr
;
142 if (coder
->next
.code
== NULL
)
143 return decode_buffer(coder
, in
, in_pos
, in_size
,
144 out
, out_pos
, out_size
);
146 // We aren't the last coder in the chain, we need to decode
147 // our input to a temporary buffer.
148 while (*out_pos
< out_size
) {
149 // Fill the temporary buffer if it is empty.
150 if (!coder
->next_finished
151 && coder
->temp
.pos
== coder
->temp
.size
) {
153 coder
->temp
.size
= 0;
155 const lzma_ret ret
= coder
->next
.code(
157 allocator
, in
, in_pos
, in_size
,
158 coder
->temp
.buffer
, &coder
->temp
.size
,
159 LZMA_BUFFER_SIZE
, action
);
161 if (ret
== LZMA_STREAM_END
)
162 coder
->next_finished
= true;
163 else if (ret
!= LZMA_OK
|| coder
->temp
.size
== 0)
167 if (coder
->this_finished
) {
168 if (coder
->temp
.size
!= 0)
169 return LZMA_DATA_ERROR
;
171 if (coder
->next_finished
)
172 return LZMA_STREAM_END
;
177 const lzma_ret ret
= decode_buffer(coder
, coder
->temp
.buffer
,
178 &coder
->temp
.pos
, coder
->temp
.size
,
179 out
, out_pos
, out_size
);
181 if (ret
== LZMA_STREAM_END
)
182 coder
->this_finished
= true;
183 else if (ret
!= LZMA_OK
)
185 else if (coder
->next_finished
&& *out_pos
< out_size
)
186 return LZMA_DATA_ERROR
;
194 lz_decoder_end(void *coder_ptr
, const lzma_allocator
*allocator
)
196 lzma_coder
*coder
= coder_ptr
;
198 lzma_next_end(&coder
->next
, allocator
);
199 lzma_free(coder
->dict
.buf
, allocator
);
201 if (coder
->lz
.end
!= NULL
)
202 coder
->lz
.end(coder
->lz
.coder
, allocator
);
204 lzma_free(coder
->lz
.coder
, allocator
);
206 lzma_free(coder
, allocator
);
212 lzma_lz_decoder_init(lzma_next_coder
*next
, const lzma_allocator
*allocator
,
213 const lzma_filter_info
*filters
,
214 lzma_ret (*lz_init
)(lzma_lz_decoder
*lz
,
215 const lzma_allocator
*allocator
,
216 lzma_vli id
, const void *options
,
217 lzma_lz_options
*lz_options
))
219 // Allocate the base structure if it isn't already allocated.
220 lzma_coder
*coder
= next
->coder
;
222 coder
= lzma_alloc(sizeof(lzma_coder
), allocator
);
224 return LZMA_MEM_ERROR
;
227 next
->code
= &lz_decode
;
228 next
->end
= &lz_decoder_end
;
230 coder
->dict
.buf
= NULL
;
231 coder
->dict
.size
= 0;
232 coder
->lz
= LZMA_LZ_DECODER_INIT
;
233 coder
->next
= LZMA_NEXT_CODER_INIT
;
236 // Allocate and initialize the LZ-based decoder. It will also give
237 // us the dictionary size.
238 lzma_lz_options lz_options
;
239 return_if_error(lz_init(&coder
->lz
, allocator
,
240 filters
[0].id
, filters
[0].options
, &lz_options
));
242 // If the dictionary size is very small, increase it to 4096 bytes.
243 // This is to prevent constant wrapping of the dictionary, which
244 // would slow things down. The downside is that since we don't check
245 // separately for the real dictionary size, we may happily accept
247 if (lz_options
.dict_size
< 4096)
248 lz_options
.dict_size
= 4096;
250 // Make dictionary size a multiple of 16. Some LZ-based decoders like
251 // LZMA use the lowest bits lzma_dict.pos to know the alignment of the
252 // data. Aligned buffer is also good when memcpying from the
253 // dictionary to the output buffer, since applications are
254 // recommended to give aligned buffers to liblzma.
256 // Avoid integer overflow.
257 if (lz_options
.dict_size
> SIZE_MAX
- 15)
258 return LZMA_MEM_ERROR
;
260 lz_options
.dict_size
= (lz_options
.dict_size
+ 15) & ~((size_t)(15));
262 // Allocate and initialize the dictionary.
263 if (coder
->dict
.size
!= lz_options
.dict_size
) {
264 lzma_free(coder
->dict
.buf
, allocator
);
266 = lzma_alloc(lz_options
.dict_size
, allocator
);
267 if (coder
->dict
.buf
== NULL
)
268 return LZMA_MEM_ERROR
;
270 coder
->dict
.size
= lz_options
.dict_size
;
273 lz_decoder_reset(next
->coder
);
275 // Use the preset dictionary if it was given to us.
276 if (lz_options
.preset_dict
!= NULL
277 && lz_options
.preset_dict_size
> 0) {
278 // If the preset dictionary is bigger than the actual
279 // dictionary, copy only the tail.
280 const size_t copy_size
= my_min(lz_options
.preset_dict_size
,
281 lz_options
.dict_size
);
282 const size_t offset
= lz_options
.preset_dict_size
- copy_size
;
283 memcpy(coder
->dict
.buf
, lz_options
.preset_dict
+ offset
,
285 coder
->dict
.pos
= copy_size
;
286 coder
->dict
.full
= copy_size
;
289 // Miscellaneous initializations
290 coder
->next_finished
= false;
291 coder
->this_finished
= false;
293 coder
->temp
.size
= 0;
295 // Initialize the next filter in the chain, if any.
296 return lzma_next_filter_init(&coder
->next
, allocator
, filters
+ 1);
301 lzma_lz_decoder_memusage(size_t dictionary_size
)
303 return sizeof(lzma_coder
) + (uint64_t)(dictionary_size
);