1 // SPDX-License-Identifier: 0BSD
3 ///////////////////////////////////////////////////////////////////////////////
5 /// \file block_buffer_encoder.c
6 /// \brief Single-call .xz Block encoder
8 // Author: Lasse Collin
10 ///////////////////////////////////////////////////////////////////////////////
12 #include "block_buffer_encoder.h"
13 #include "block_encoder.h"
14 #include "filter_encoder.h"
15 #include "lzma2_encoder.h"
19 /// Estimate the maximum size of the Block Header and Check fields for
20 /// a Block that uses LZMA2 uncompressed chunks. We could use
21 /// lzma_block_header_size() but this is simpler.
23 /// Block Header Size + Block Flags + Compressed Size
24 /// + Uncompressed Size + Filter Flags for LZMA2 + CRC32 + Check
25 /// and round up to the next multiple of four to take Header Padding
27 #define HEADERS_BOUND ((1 + 1 + 2 * LZMA_VLI_BYTES_MAX + 3 + 4 \
28 + LZMA_CHECK_SIZE_MAX + 3) & ~3)
32 lzma2_bound(uint64_t uncompressed_size
)
34 // Prevent integer overflow in overhead calculation.
35 if (uncompressed_size
> COMPRESSED_SIZE_MAX
)
38 // Calculate the exact overhead of the LZMA2 headers: Round
39 // uncompressed_size up to the next multiple of LZMA2_CHUNK_MAX,
40 // multiply by the size of per-chunk header, and add one byte for
42 const uint64_t overhead
= ((uncompressed_size
+ LZMA2_CHUNK_MAX
- 1)
44 * LZMA2_HEADER_UNCOMPRESSED
+ 1;
46 // Catch the possible integer overflow.
47 if (COMPRESSED_SIZE_MAX
- overhead
< uncompressed_size
)
50 return uncompressed_size
+ overhead
;
55 lzma_block_buffer_bound64(uint64_t uncompressed_size
)
57 // If the data doesn't compress, we always use uncompressed
59 uint64_t lzma2_size
= lzma2_bound(uncompressed_size
);
63 // Take Block Padding into account.
64 lzma2_size
= (lzma2_size
+ 3) & ~UINT64_C(3);
66 // No risk of integer overflow because lzma2_bound() already takes
67 // into account the size of the headers in the Block.
68 return HEADERS_BOUND
+ lzma2_size
;
72 extern LZMA_API(size_t)
73 lzma_block_buffer_bound(size_t uncompressed_size
)
75 uint64_t ret
= lzma_block_buffer_bound64(uncompressed_size
);
77 #if SIZE_MAX < UINT64_MAX
78 // Catch the possible integer overflow on 32-bit systems.
88 block_encode_uncompressed(lzma_block
*block
, const uint8_t *in
, size_t in_size
,
89 uint8_t *out
, size_t *out_pos
, size_t out_size
)
91 // Use LZMA2 uncompressed chunks. We wouldn't need a dictionary at
92 // all, but LZMA2 always requires a dictionary, so use the minimum
93 // value to minimize memory usage of the decoder.
94 lzma_options_lzma lzma2
= {
95 .dict_size
= LZMA_DICT_SIZE_MIN
,
98 lzma_filter filters
[2];
99 filters
[0].id
= LZMA_FILTER_LZMA2
;
100 filters
[0].options
= &lzma2
;
101 filters
[1].id
= LZMA_VLI_UNKNOWN
;
103 // Set the above filter options to *block temporarily so that we can
104 // encode the Block Header.
105 lzma_filter
*filters_orig
= block
->filters
;
106 block
->filters
= filters
;
108 if (lzma_block_header_size(block
) != LZMA_OK
) {
109 block
->filters
= filters_orig
;
110 return LZMA_PROG_ERROR
;
113 // Check that there's enough output space. The caller has already
114 // set block->compressed_size to what lzma2_bound() has returned,
115 // so we can reuse that value. We know that compressed_size is a
116 // known valid VLI and header_size is a small value so their sum
117 // will never overflow.
118 assert(block
->compressed_size
== lzma2_bound(in_size
));
119 if (out_size
- *out_pos
120 < block
->header_size
+ block
->compressed_size
) {
121 block
->filters
= filters_orig
;
122 return LZMA_BUF_ERROR
;
125 if (lzma_block_header_encode(block
, out
+ *out_pos
) != LZMA_OK
) {
126 block
->filters
= filters_orig
;
127 return LZMA_PROG_ERROR
;
130 block
->filters
= filters_orig
;
131 *out_pos
+= block
->header_size
;
133 // Encode the data using LZMA2 uncompressed chunks.
135 uint8_t control
= 0x01; // Dictionary reset
137 while (in_pos
< in_size
) {
138 // Control byte: Indicate uncompressed chunk, of which
139 // the first resets the dictionary.
140 out
[(*out_pos
)++] = control
;
141 control
= 0x02; // No dictionary reset
143 // Size of the uncompressed chunk
144 const size_t copy_size
145 = my_min(in_size
- in_pos
, LZMA2_CHUNK_MAX
);
146 out
[(*out_pos
)++] = (copy_size
- 1) >> 8;
147 out
[(*out_pos
)++] = (copy_size
- 1) & 0xFF;
150 assert(*out_pos
+ copy_size
<= out_size
);
151 memcpy(out
+ *out_pos
, in
+ in_pos
, copy_size
);
154 *out_pos
+= copy_size
;
158 out
[(*out_pos
)++] = 0x00;
159 assert(*out_pos
<= out_size
);
166 block_encode_normal(lzma_block
*block
, const lzma_allocator
*allocator
,
167 const uint8_t *in
, size_t in_size
,
168 uint8_t *out
, size_t *out_pos
, size_t out_size
)
170 // Find out the size of the Block Header.
171 return_if_error(lzma_block_header_size(block
));
173 // Reserve space for the Block Header and skip it for now.
174 if (out_size
- *out_pos
<= block
->header_size
)
175 return LZMA_BUF_ERROR
;
177 const size_t out_start
= *out_pos
;
178 *out_pos
+= block
->header_size
;
180 // Limit out_size so that we stop encoding if the output would grow
181 // bigger than what uncompressed Block would be.
182 if (out_size
- *out_pos
> block
->compressed_size
)
183 out_size
= *out_pos
+ block
->compressed_size
;
185 // TODO: In many common cases this could be optimized to use
186 // significantly less memory.
187 lzma_next_coder raw_encoder
= LZMA_NEXT_CODER_INIT
;
188 lzma_ret ret
= lzma_raw_encoder_init(
189 &raw_encoder
, allocator
, block
->filters
);
191 if (ret
== LZMA_OK
) {
193 ret
= raw_encoder
.code(raw_encoder
.coder
, allocator
,
194 in
, &in_pos
, in_size
, out
, out_pos
, out_size
,
198 // NOTE: This needs to be run even if lzma_raw_encoder_init() failed.
199 lzma_next_end(&raw_encoder
, allocator
);
201 if (ret
== LZMA_STREAM_END
) {
202 // Compression was successful. Write the Block Header.
203 block
->compressed_size
204 = *out_pos
- (out_start
+ block
->header_size
);
205 ret
= lzma_block_header_encode(block
, out
+ out_start
);
207 ret
= LZMA_PROG_ERROR
;
209 } else if (ret
== LZMA_OK
) {
210 // Output buffer became full.
211 ret
= LZMA_BUF_ERROR
;
214 // Reset *out_pos if something went wrong.
216 *out_pos
= out_start
;
223 block_buffer_encode(lzma_block
*block
, const lzma_allocator
*allocator
,
224 const uint8_t *in
, size_t in_size
,
225 uint8_t *out
, size_t *out_pos
, size_t out_size
,
226 bool try_to_compress
)
228 // Validate the arguments.
229 if (block
== NULL
|| (in
== NULL
&& in_size
!= 0) || out
== NULL
230 || out_pos
== NULL
|| *out_pos
> out_size
)
231 return LZMA_PROG_ERROR
;
233 // The contents of the structure may depend on the version so
234 // check the version before validating the contents of *block.
235 if (block
->version
> 1)
236 return LZMA_OPTIONS_ERROR
;
238 if ((unsigned int)(block
->check
) > LZMA_CHECK_ID_MAX
239 || (try_to_compress
&& block
->filters
== NULL
))
240 return LZMA_PROG_ERROR
;
242 if (!lzma_check_is_supported(block
->check
))
243 return LZMA_UNSUPPORTED_CHECK
;
245 // Size of a Block has to be a multiple of four, so limit the size
246 // here already. This way we don't need to check it again when adding
248 out_size
-= (out_size
- *out_pos
) & 3;
250 // Get the size of the Check field.
251 const size_t check_size
= lzma_check_size(block
->check
);
252 assert(check_size
!= UINT32_MAX
);
254 // Reserve space for the Check field.
255 if (out_size
- *out_pos
<= check_size
)
256 return LZMA_BUF_ERROR
;
258 out_size
-= check_size
;
260 // Initialize block->uncompressed_size and calculate the worst-case
261 // value for block->compressed_size.
262 block
->uncompressed_size
= in_size
;
263 block
->compressed_size
= lzma2_bound(in_size
);
264 if (block
->compressed_size
== 0)
265 return LZMA_DATA_ERROR
;
267 // Do the actual compression.
268 lzma_ret ret
= LZMA_BUF_ERROR
;
270 ret
= block_encode_normal(block
, allocator
,
271 in
, in_size
, out
, out_pos
, out_size
);
273 if (ret
!= LZMA_OK
) {
274 // If the error was something else than output buffer
275 // becoming full, return the error now.
276 if (ret
!= LZMA_BUF_ERROR
)
279 // The data was incompressible (at least with the options
280 // given to us) or the output buffer was too small. Use the
281 // uncompressed chunks of LZMA2 to wrap the data into a valid
282 // Block. If we haven't been given enough output space, even
284 return_if_error(block_encode_uncompressed(block
, in
, in_size
,
285 out
, out_pos
, out_size
));
288 assert(*out_pos
<= out_size
);
290 // Block Padding. No buffer overflow here, because we already adjusted
291 // out_size so that (out_size - out_start) is a multiple of four.
292 // Thus, if the buffer is full, the loop body can never run.
293 for (size_t i
= (size_t)(block
->compressed_size
); i
& 3; ++i
) {
294 assert(*out_pos
< out_size
);
295 out
[(*out_pos
)++] = 0x00;
298 // If there's no Check field, we are done now.
299 if (check_size
> 0) {
300 // Calculate the integrity check. We reserved space for
301 // the Check field earlier so we don't need to check for
302 // available output space here.
303 lzma_check_state check
;
304 lzma_check_init(&check
, block
->check
);
305 lzma_check_update(&check
, block
->check
, in
, in_size
);
306 lzma_check_finish(&check
, block
->check
);
308 memcpy(block
->raw_check
, check
.buffer
.u8
, check_size
);
309 memcpy(out
+ *out_pos
, check
.buffer
.u8
, check_size
);
310 *out_pos
+= check_size
;
317 extern LZMA_API(lzma_ret
)
318 lzma_block_buffer_encode(lzma_block
*block
, const lzma_allocator
*allocator
,
319 const uint8_t *in
, size_t in_size
,
320 uint8_t *out
, size_t *out_pos
, size_t out_size
)
322 return block_buffer_encode(block
, allocator
,
323 in
, in_size
, out
, out_pos
, out_size
, true);
327 #ifdef HAVE_SYMBOL_VERSIONS_LINUX
328 // This is for compatibility with binaries linked against liblzma that
329 // has been patched with xz-5.2.2-compat-libs.patch from RHEL/CentOS 7.
330 LZMA_SYMVER_API("lzma_block_uncomp_encode@XZ_5.2.2",
331 lzma_ret
, lzma_block_uncomp_encode_522
)(lzma_block
*block
,
332 const uint8_t *in
, size_t in_size
,
333 uint8_t *out
, size_t *out_pos
, size_t out_size
)
334 lzma_nothrow lzma_attr_warn_unused_result
335 __attribute__((__alias__("lzma_block_uncomp_encode_52")));
337 LZMA_SYMVER_API("lzma_block_uncomp_encode@@XZ_5.2",
338 lzma_ret
, lzma_block_uncomp_encode_52
)(lzma_block
*block
,
339 const uint8_t *in
, size_t in_size
,
340 uint8_t *out
, size_t *out_pos
, size_t out_size
)
341 lzma_nothrow lzma_attr_warn_unused_result
;
343 #define lzma_block_uncomp_encode lzma_block_uncomp_encode_52
345 extern LZMA_API(lzma_ret
)
346 lzma_block_uncomp_encode(lzma_block
*block
,
347 const uint8_t *in
, size_t in_size
,
348 uint8_t *out
, size_t *out_pos
, size_t out_size
)
350 // It won't allocate any memory from heap so no need
351 // for lzma_allocator.
352 return block_buffer_encode(block
, NULL
,
353 in
, in_size
, out
, out_pos
, out_size
, false);