1 // SPDX-License-Identifier: 0BSD
3 ///////////////////////////////////////////////////////////////////////////////
6 /// \brief Optimized comparison of two buffers
8 // Author: Lasse Collin
10 ///////////////////////////////////////////////////////////////////////////////
12 #ifndef LZMA_MEMCMPLEN_H
13 #define LZMA_MEMCMPLEN_H
17 #ifdef HAVE_IMMINTRIN_H
18 # include <immintrin.h>
21 // Only include <intrin.h> if it is needed. The header is only needed
22 // on Windows when using an MSVC compatible compiler. The Intel compiler
23 // can use the intrinsics without the header file.
24 #if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
25 && defined(_MSC_VER) \
27 || defined(_M_ARM64) || defined(_M_ARM64EC)) \
28 && !defined(__INTEL_COMPILER)
33 /// Find out how many equal bytes the two buffers have.
35 /// \param buf1 First buffer
36 /// \param buf2 Second buffer
37 /// \param len How many bytes have already been compared and will
38 /// be assumed to match
39 /// \param limit How many bytes to compare at most, including the
40 /// already-compared bytes. This must be significantly
41 /// smaller than UINT32_MAX to avoid integer overflows.
42 /// Up to LZMA_MEMCMPLEN_EXTRA bytes may be read past
43 /// the specified limit from both buf1 and buf2.
45 /// \return Number of equal bytes in the buffers is returned.
46 /// This is always at least len and at most limit.
48 /// \note LZMA_MEMCMPLEN_EXTRA defines how many extra bytes may be read.
49 /// It's rounded up to 2^n. This extra amount needs to be
50 /// allocated in the buffers being used. It needs to be
51 /// initialized too to keep Valgrind quiet.
52 static lzma_always_inline
uint32_t
53 lzma_memcmplen(const uint8_t *buf1
, const uint8_t *buf2
,
54 uint32_t len
, uint32_t limit
)
57 assert(limit
<= UINT32_MAX
/ 2);
59 #if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
60 && (((TUKLIB_GNUC_REQ(3, 4) || defined(__clang__)) \
61 && (defined(__x86_64__) \
62 || defined(__aarch64__))) \
63 || (defined(__INTEL_COMPILER) && defined(__x86_64__)) \
64 || (defined(__INTEL_COMPILER) && defined(_M_X64)) \
65 || (defined(_MSC_VER) && (defined(_M_X64) \
66 || defined(_M_ARM64) || defined(_M_ARM64EC))))
67 // This is only for x86-64 and ARM64 for now. This might be fine on
68 // other 64-bit processors too. On big endian one should use xor
69 // instead of subtraction and switch to __builtin_clzll().
71 // Reasons to use subtraction instead of xor:
73 // - On some x86-64 processors (Intel Sandy Bridge to Tiger Lake),
74 // sub+jz and sub+jnz can be fused but xor+jz or xor+jnz cannot.
75 // Thus using subtraction has potential to be a tiny amount faster
76 // since the code checks if the quotient is non-zero.
78 // - Some processors (Intel Pentium 4) used to have more ALU
79 // resources for add/sub instructions than and/or/xor.
81 // The processor info is based on Agner Fog's microarchitecture.pdf
82 // version 2023-05-26. https://www.agner.org/optimize/
83 #define LZMA_MEMCMPLEN_EXTRA 8
85 const uint64_t x
= read64ne(buf1
+ len
) - read64ne(buf2
+ len
);
87 // MSVC or Intel C compiler on Windows
88 # if defined(_MSC_VER) || defined(__INTEL_COMPILER)
90 _BitScanForward64(&tmp
, x
);
91 len
+= (uint32_t)tmp
>> 3;
92 // GCC, Clang, or Intel C compiler
94 len
+= (uint32_t)__builtin_ctzll(x
) >> 3;
96 return my_min(len
, limit
);
104 #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
105 && defined(HAVE__MM_MOVEMASK_EPI8) \
106 && (defined(__SSE2__) \
107 || (defined(_MSC_VER) && defined(_M_IX86_FP) \
109 // NOTE: This will use 128-bit unaligned access which
110 // TUKLIB_FAST_UNALIGNED_ACCESS wasn't meant to permit,
111 // but it's convenient here since this is x86-only.
113 // SSE2 version for 32-bit and 64-bit x86. On x86-64 the above
114 // version is sometimes significantly faster and sometimes
115 // slightly slower than this SSE2 version, so this SSE2
116 // version isn't used on x86-64.
117 # define LZMA_MEMCMPLEN_EXTRA 16
118 while (len
< limit
) {
119 const uint32_t x
= 0xFFFF ^ (uint32_t)_mm_movemask_epi8(
121 _mm_loadu_si128((const __m128i
*)(buf1
+ len
)),
122 _mm_loadu_si128((const __m128i
*)(buf2
+ len
))));
126 return my_min(len
, limit
);
134 #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && !defined(WORDS_BIGENDIAN)
135 // Generic 32-bit little endian method
136 # define LZMA_MEMCMPLEN_EXTRA 4
137 while (len
< limit
) {
138 uint32_t x
= read32ne(buf1
+ len
) - read32ne(buf2
+ len
);
140 if ((x
& 0xFFFF) == 0) {
148 return my_min(len
, limit
);
156 #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && defined(WORDS_BIGENDIAN)
157 // Generic 32-bit big endian method
158 # define LZMA_MEMCMPLEN_EXTRA 4
159 while (len
< limit
) {
160 uint32_t x
= read32ne(buf1
+ len
) ^ read32ne(buf2
+ len
);
162 if ((x
& 0xFFFF0000) == 0) {
167 if ((x
& 0xFF000000) == 0)
170 return my_min(len
, limit
);
179 // Simple portable version that doesn't use unaligned access.
180 # define LZMA_MEMCMPLEN_EXTRA 0
181 while (len
< limit
&& buf1
[len
] == buf2
[len
])