[cleanup] Make more playlist entries lazy (#11763)
[yt-dlp.git] / yt_dlp / extractor / slideslive.py
blobe684ac7b8e083758e3fd3e773f52b22e70c0c497
1 import re
2 import urllib.parse
3 import xml.etree.ElementTree
5 from .common import InfoExtractor
6 from ..utils import (
7 ExtractorError,
8 int_or_none,
9 parse_qs,
10 smuggle_url,
11 traverse_obj,
12 unified_timestamp,
13 update_url_query,
14 url_or_none,
15 xpath_text,
19 class SlidesLiveIE(InfoExtractor):
20 _VALID_URL = r'https?://slideslive\.com/(?:embed/(?:presentation/)?)?(?P<id>[0-9]+)'
21 _TESTS = [{
22 # service_name = yoda, only XML slides info
23 'url': 'https://slideslive.com/38902413/gcc-ia16-backend',
24 'info_dict': {
25 'id': '38902413',
26 'ext': 'mp4',
27 'title': 'GCC IA16 backend',
28 'timestamp': 1697793372,
29 'upload_date': '20231020',
30 'thumbnail': r're:^https?://.*\.jpg',
31 'thumbnails': 'count:42',
32 'chapters': 'count:41',
33 'duration': 1638,
35 'params': {
36 'skip_download': 'm3u8',
38 }, {
39 # service_name = yoda, /v7/ slides
40 'url': 'https://slideslive.com/38935785',
41 'info_dict': {
42 'id': '38935785',
43 'ext': 'mp4',
44 'title': 'Offline Reinforcement Learning: From Algorithms to Practical Challenges',
45 'upload_date': '20231020',
46 'timestamp': 1697807002,
47 'thumbnail': r're:^https?://.*\.(?:jpg|png)',
48 'thumbnails': 'count:640',
49 'chapters': 'count:639',
50 'duration': 9832,
52 'params': {
53 'skip_download': 'm3u8',
55 }, {
56 # service_name = yoda, /v1/ slides
57 'url': 'https://slideslive.com/38973182/how-should-a-machine-learning-researcher-think-about-ai-ethics',
58 'info_dict': {
59 'id': '38973182',
60 'ext': 'mp4',
61 'title': 'How Should a Machine Learning Researcher Think About AI Ethics?',
62 'upload_date': '20231020',
63 'thumbnail': r're:^https?://.*\.jpg',
64 'timestamp': 1697822521,
65 'thumbnails': 'count:3',
66 'chapters': 'count:2',
67 'duration': 5889,
69 'params': {
70 'skip_download': 'm3u8',
72 }, {
73 # formerly youtube, converted to native
74 'url': 'https://slideslive.com/38897546/special-metaprednaska-petra-ludwiga-hodnoty-pro-lepsi-spolecnost',
75 'md5': '8a79b5e3d700837f40bd2afca3c8fa01',
76 'info_dict': {
77 'id': '38897546',
78 'ext': 'mp4',
79 'title': 'SPECIÁL: Meta-přednáška Petra Ludwiga - Hodnoty pro lepší společnost',
80 'thumbnail': r're:^https?://.*\.jpg',
81 'upload_date': '20231029',
82 'timestamp': 1698588144,
83 'thumbnails': 'count:169',
84 'chapters': 'count:168',
85 'duration': 6827,
87 'params': {
88 'skip_download': 'm3u8',
90 }, {
91 # embed-only presentation, only XML slides info
92 'url': 'https://slideslive.com/embed/presentation/38925850',
93 'info_dict': {
94 'id': '38925850',
95 'ext': 'mp4',
96 'title': 'Towards a Deep Network Architecture for Structured Smoothness',
97 'thumbnail': r're:^https?://.*\.jpg',
98 'thumbnails': 'count:8',
99 'timestamp': 1697803109,
100 'upload_date': '20231020',
101 'chapters': 'count:7',
102 'duration': 326,
104 'params': {
105 'skip_download': 'm3u8',
107 }, {
108 # embed-only presentation, only JSON slides info, /v5/ slides (.png)
109 'url': 'https://slideslive.com/38979920/',
110 'info_dict': {
111 'id': '38979920',
112 'ext': 'mp4',
113 'title': 'MoReL: Multi-omics Relational Learning',
114 'thumbnail': r're:^https?://.*\.(?:jpg|png)',
115 'thumbnails': 'count:7',
116 'timestamp': 1697824939,
117 'upload_date': '20231020',
118 'chapters': 'count:6',
119 'duration': 171,
121 'params': {
122 'skip_download': 'm3u8',
124 }, {
125 # /v2/ slides (.jpg)
126 'url': 'https://slideslive.com/38954074',
127 'info_dict': {
128 'id': '38954074',
129 'ext': 'mp4',
130 'title': 'Decentralized Attribution of Generative Models',
131 'thumbnail': r're:^https?://.*\.jpg',
132 'thumbnails': 'count:16',
133 'timestamp': 1697814901,
134 'upload_date': '20231020',
135 'chapters': 'count:15',
136 'duration': 306,
138 'params': {
139 'skip_download': 'm3u8',
141 }, {
142 # /v4/ slides (.png)
143 'url': 'https://slideslive.com/38979570/',
144 'info_dict': {
145 'id': '38979570',
146 'ext': 'mp4',
147 'title': 'Efficient Active Search for Combinatorial Optimization Problems',
148 'thumbnail': r're:^https?://.*\.(?:jpg|png)',
149 'thumbnails': 'count:9',
150 'timestamp': 1697824757,
151 'upload_date': '20231020',
152 'chapters': 'count:8',
153 'duration': 295,
155 'params': {
156 'skip_download': 'm3u8',
158 }, {
159 # /v10/ slides
160 'url': 'https://slideslive.com/embed/presentation/38979880?embed_parent_url=https%3A%2F%2Fedit.videoken.com%2F',
161 'info_dict': {
162 'id': '38979880',
163 'ext': 'mp4',
164 'title': 'The Representation Power of Neural Networks',
165 'timestamp': 1697824919,
166 'thumbnail': r're:^https?://.*\.(?:jpg|png)',
167 'thumbnails': 'count:22',
168 'upload_date': '20231020',
169 'chapters': 'count:21',
170 'duration': 294,
172 'params': {
173 'skip_download': 'm3u8',
175 }, {
176 # /v7/ slides, 2 video slides
177 'url': 'https://slideslive.com/embed/presentation/38979682?embed_container_origin=https%3A%2F%2Fedit.videoken.com',
178 'playlist_count': 3,
179 'info_dict': {
180 'id': '38979682-playlist',
181 'title': 'LoRA: Low-Rank Adaptation of Large Language Models',
183 'playlist': [{
184 'info_dict': {
185 'id': '38979682',
186 'ext': 'mp4',
187 'title': 'LoRA: Low-Rank Adaptation of Large Language Models',
188 'timestamp': 1697824815,
189 'thumbnail': r're:^https?://.*\.(?:jpg|png)',
190 'thumbnails': 'count:30',
191 'upload_date': '20231020',
192 'chapters': 'count:31',
193 'duration': 272,
195 }, {
196 'info_dict': {
197 'id': '38979682-021',
198 'ext': 'mp4',
199 'title': 'LoRA: Low-Rank Adaptation of Large Language Models - Slide 021',
200 'duration': 3,
201 'timestamp': 1697824815,
202 'upload_date': '20231020',
204 }, {
205 'info_dict': {
206 'id': '38979682-024',
207 'ext': 'mp4',
208 'title': 'LoRA: Low-Rank Adaptation of Large Language Models - Slide 024',
209 'duration': 4,
210 'timestamp': 1697824815,
211 'upload_date': '20231020',
214 'params': {
215 'skip_download': 'm3u8',
217 }, {
218 # /v6/ slides, 1 video slide, edit.videoken.com embed
219 'url': 'https://slideslive.com/38979481/',
220 'playlist_count': 2,
221 'info_dict': {
222 'id': '38979481-playlist',
223 'title': 'How to Train Your MAML to Excel in Few-Shot Classification',
225 'playlist': [{
226 'info_dict': {
227 'id': '38979481',
228 'ext': 'mp4',
229 'title': 'How to Train Your MAML to Excel in Few-Shot Classification',
230 'timestamp': 1697824716,
231 'thumbnail': r're:^https?://.*\.(?:jpg|png)',
232 'thumbnails': 'count:43',
233 'upload_date': '20231020',
234 'chapters': 'count:43',
235 'duration': 315,
237 }, {
238 'info_dict': {
239 'id': '38979481-013',
240 'ext': 'mp4',
241 'title': 'How to Train Your MAML to Excel in Few-Shot Classification - Slide 013',
242 'duration': 3,
243 'timestamp': 1697824716,
244 'upload_date': '20231020',
247 'params': {
248 'skip_download': 'm3u8',
250 }, {
251 # /v3/ slides, .jpg and .png, service_name = youtube
252 'url': 'https://slideslive.com/embed/38932460/',
253 'info_dict': {
254 'id': 'RTPdrgkyTiE',
255 'display_id': '38932460',
256 'ext': 'mp4',
257 'title': 'Active Learning for Hierarchical Multi-Label Classification',
258 'description': 'Watch full version of this video at https://slideslive.com/38932460.',
259 'channel': 'SlidesLive Videos - A',
260 'channel_id': 'UC62SdArr41t_-_fX40QCLRw',
261 'channel_url': 'https://www.youtube.com/channel/UC62SdArr41t_-_fX40QCLRw',
262 'uploader': 'SlidesLive Videos - A',
263 'uploader_id': '@slideslivevideos-a6075',
264 'uploader_url': 'https://www.youtube.com/@slideslivevideos-a6075',
265 'upload_date': '20200903',
266 'timestamp': 1697805922,
267 'duration': 942,
268 'age_limit': 0,
269 'live_status': 'not_live',
270 'playable_in_embed': True,
271 'availability': 'unlisted',
272 'categories': ['People & Blogs'],
273 'tags': [],
274 'channel_follower_count': int,
275 'like_count': int,
276 'view_count': int,
277 'thumbnail': r're:^https?://.*\.(?:jpg|png|webp)',
278 'thumbnails': 'count:21',
279 'chapters': 'count:20',
281 'params': {
282 'skip_download': 'm3u8',
284 }, {
285 # /v3/ slides, .png only, service_name = yoda
286 'url': 'https://slideslive.com/38983994',
287 'info_dict': {
288 'id': '38983994',
289 'ext': 'mp4',
290 'title': 'Zero-Shot AutoML with Pretrained Models',
291 'timestamp': 1697826708,
292 'upload_date': '20231020',
293 'thumbnail': r're:^https?://.*\.(?:jpg|png)',
294 'thumbnails': 'count:23',
295 'chapters': 'count:22',
296 'duration': 295,
298 'params': {
299 'skip_download': 'm3u8',
301 }, {
302 # service_name = yoda
303 'url': 'https://slideslive.com/38903721/magic-a-scientific-resurrection-of-an-esoteric-legend',
304 'only_matching': True,
305 }, {
306 # dead link, service_name = url
307 'url': 'https://slideslive.com/38922070/learning-transferable-skills-1',
308 'only_matching': True,
309 }, {
310 # dead link, service_name = vimeo
311 'url': 'https://slideslive.com/38921896/retrospectives-a-venue-for-selfreflection-in-ml-research-3',
312 'only_matching': True,
315 _WEBPAGE_TESTS = [{
316 # only XML slides info
317 'url': 'https://iclr.cc/virtual_2020/poster_Hklr204Fvr.html',
318 'info_dict': {
319 'id': '38925850',
320 'ext': 'mp4',
321 'title': 'Towards a Deep Network Architecture for Structured Smoothness',
322 'thumbnail': r're:^https?://.*\.jpg',
323 'thumbnails': 'count:8',
324 'timestamp': 1697803109,
325 'upload_date': '20231020',
326 'chapters': 'count:7',
327 'duration': 326,
329 'params': {
330 'skip_download': 'm3u8',
334 @classmethod
335 def _extract_embed_urls(cls, url, webpage):
336 # Reference: https://slideslive.com/embed_presentation.js
337 for embed_id in re.findall(r'(?s)new\s+SlidesLiveEmbed\s*\([^)]+\bpresentationId:\s*["\'](\d+)["\']', webpage):
338 url_parsed = urllib.parse.urlparse(url)
339 origin = f'{url_parsed.scheme}://{url_parsed.netloc}'
340 yield update_url_query(
341 f'https://slideslive.com/embed/presentation/{embed_id}', {
342 'embed_parent_url': url,
343 'embed_container_origin': origin,
346 def _download_embed_webpage_handle(self, video_id, headers):
347 return self._download_webpage_handle(
348 f'https://slideslive.com/embed/presentation/{video_id}', video_id,
349 headers=headers, query=traverse_obj(headers, {
350 'embed_parent_url': 'Referer',
351 'embed_container_origin': 'Origin',
354 def _extract_custom_m3u8_info(self, m3u8_data):
355 m3u8_dict = {}
357 lookup = {
358 'PRESENTATION-TITLE': 'title',
359 'PRESENTATION-UPDATED-AT': 'timestamp',
360 'PRESENTATION-THUMBNAIL': 'thumbnail',
361 'PLAYLIST-TYPE': 'playlist_type',
362 'VOD-VIDEO-SERVICE-NAME': 'service_name',
363 'VOD-VIDEO-ID': 'service_id',
364 'VOD-VIDEO-SERVERS': 'video_servers',
365 'VOD-SUBTITLES': 'subtitles',
366 'VOD-SLIDES-JSON-URL': 'slides_json_url',
367 'VOD-SLIDES-XML-URL': 'slides_xml_url',
370 for line in m3u8_data.splitlines():
371 if not line.startswith('#EXT-SL-'):
372 continue
373 tag, _, value = line.partition(':')
374 key = lookup.get(tag[8:])
375 if not key:
376 continue
377 m3u8_dict[key] = value
379 # Some values are stringified JSON arrays
380 for key in ('video_servers', 'subtitles'):
381 if key in m3u8_dict:
382 m3u8_dict[key] = self._parse_json(m3u8_dict[key], None, fatal=False) or []
384 return m3u8_dict
386 def _extract_formats_and_duration(self, cdn_hostname, path, video_id, skip_duration=False):
387 formats, duration = [], None
389 hls_formats = self._extract_m3u8_formats(
390 f'https://{cdn_hostname}/{path}/master.m3u8',
391 video_id, 'mp4', m3u8_id='hls', fatal=False, live=True)
392 if hls_formats:
393 if not skip_duration:
394 duration = self._extract_m3u8_vod_duration(
395 hls_formats[0]['url'], video_id, note='Extracting duration from HLS manifest')
396 formats.extend(hls_formats)
398 dash_formats = self._extract_mpd_formats(
399 f'https://{cdn_hostname}/{path}/master.mpd', video_id, mpd_id='dash', fatal=False)
400 if dash_formats:
401 if not duration and not skip_duration:
402 duration = self._extract_mpd_vod_duration(
403 f'https://{cdn_hostname}/{path}/master.mpd', video_id,
404 note='Extracting duration from DASH manifest')
405 formats.extend(dash_formats)
407 return formats, duration
409 def _real_extract(self, url):
410 video_id = self._match_id(url)
411 webpage, urlh = self._download_embed_webpage_handle(
412 video_id, headers=traverse_obj(parse_qs(url), {
413 'Referer': ('embed_parent_url', -1),
414 'Origin': ('embed_container_origin', -1)}))
415 redirect_url = urlh.url
416 if 'domain_not_allowed' in redirect_url:
417 domain = traverse_obj(parse_qs(redirect_url), ('allowed_domains[]', ...), get_all=False)
418 if not domain:
419 raise ExtractorError(
420 'This is an embed-only presentation. Try passing --referer', expected=True)
421 webpage, _ = self._download_embed_webpage_handle(video_id, headers={
422 'Referer': f'https://{domain}/',
423 'Origin': f'https://{domain}',
426 player_token = self._search_regex(r'data-player-token="([^"]+)"', webpage, 'player token')
427 player_data = self._download_webpage(
428 f'https://ben.slideslive.com/player/{video_id}', video_id,
429 note='Downloading player info', query={'player_token': player_token})
430 player_info = self._extract_custom_m3u8_info(player_data)
432 service_name = player_info['service_name'].lower()
433 assert service_name in ('url', 'yoda', 'vimeo', 'youtube')
434 service_id = player_info['service_id']
436 slide_url_template = 'https://slides.slideslive.com/%s/slides/original/%s%s'
437 slides, slides_info = {}, []
439 if player_info.get('slides_json_url'):
440 slides = self._download_json(
441 player_info['slides_json_url'], video_id, fatal=False,
442 note='Downloading slides JSON', errnote=False) or {}
443 slide_ext_default = '.png'
444 slide_quality = traverse_obj(slides, ('slide_qualities', 0))
445 if slide_quality:
446 slide_ext_default = '.jpg'
447 slide_url_template = f'https://cdn.slideslive.com/data/presentations/%s/slides/{slide_quality}/%s%s'
448 for slide_id, slide in enumerate(traverse_obj(slides, ('slides', ...), expected_type=dict), 1):
449 slides_info.append((
450 slide_id, traverse_obj(slide, ('image', 'name')),
451 traverse_obj(slide, ('image', 'extname'), default=slide_ext_default),
452 int_or_none(slide.get('time'), scale=1000)))
454 if not slides and player_info.get('slides_xml_url'):
455 slides = self._download_xml(
456 player_info['slides_xml_url'], video_id, fatal=False,
457 note='Downloading slides XML', errnote='Failed to download slides info')
458 if isinstance(slides, xml.etree.ElementTree.Element):
459 slide_url_template = 'https://cdn.slideslive.com/data/presentations/%s/slides/big/%s%s'
460 for slide_id, slide in enumerate(slides.findall('./slide')):
461 slides_info.append((
462 slide_id, xpath_text(slide, './slideName', 'name'), '.jpg',
463 int_or_none(xpath_text(slide, './timeSec', 'time'))))
465 chapters, thumbnails = [], []
466 if url_or_none(player_info.get('thumbnail')):
467 thumbnails.append({'id': 'cover', 'url': player_info['thumbnail']})
468 for slide_id, slide_path, slide_ext, start_time in slides_info:
469 if slide_path:
470 thumbnails.append({
471 'id': f'{slide_id:03d}',
472 'url': slide_url_template % (video_id, slide_path, slide_ext),
474 chapters.append({
475 'title': f'Slide {slide_id:03d}',
476 'start_time': start_time,
479 subtitles = {}
480 for sub in traverse_obj(player_info, ('subtitles', ...), expected_type=dict):
481 webvtt_url = url_or_none(sub.get('webvtt_url'))
482 if not webvtt_url:
483 continue
484 subtitles.setdefault(sub.get('language') or 'en', []).append({
485 'url': webvtt_url,
486 'ext': 'vtt',
489 info = {
490 'id': video_id,
491 'title': player_info.get('title') or self._html_search_meta('title', webpage, default=''),
492 'timestamp': unified_timestamp(player_info.get('timestamp')),
493 'is_live': player_info.get('playlist_type') != 'vod',
494 'thumbnails': thumbnails,
495 'chapters': chapters,
496 'subtitles': subtitles,
499 if service_name == 'url':
500 info['url'] = service_id
501 elif service_name == 'yoda':
502 formats, duration = self._extract_formats_and_duration(
503 player_info['video_servers'][0], service_id, video_id)
504 info.update({
505 'duration': duration,
506 'formats': formats,
508 else:
509 info.update({
510 '_type': 'url_transparent',
511 'url': service_id,
512 'ie_key': service_name.capitalize(),
513 'display_id': video_id,
515 if service_name == 'vimeo':
516 info['url'] = smuggle_url(
517 f'https://player.vimeo.com/video/{service_id}',
518 {'referer': url})
520 video_slides = traverse_obj(slides, ('slides', ..., 'video', 'id'))
521 if not video_slides:
522 return info
524 def entries():
525 yield info
527 service_data = self._download_json(
528 f'https://ben.slideslive.com/player/{video_id}/slides_video_service_data',
529 video_id, fatal=False, query={
530 'player_token': player_token,
531 'videos': ','.join(video_slides),
532 }, note='Downloading video slides info', errnote='Failed to download video slides info') or {}
534 for slide_id, slide in enumerate(traverse_obj(slides, ('slides', ...)), 1):
535 if traverse_obj(slide, ('video', 'service')) != 'yoda':
536 continue
537 video_path = traverse_obj(slide, ('video', 'id'))
538 cdn_hostname = traverse_obj(service_data, (
539 video_path, 'video_servers', ...), get_all=False)
540 if not cdn_hostname or not video_path:
541 continue
542 formats, _ = self._extract_formats_and_duration(
543 cdn_hostname, video_path, video_id, skip_duration=True)
544 if not formats:
545 continue
546 yield {
547 'id': f'{video_id}-{slide_id:03d}',
548 'title': f'{info["title"]} - Slide {slide_id:03d}',
549 'timestamp': info['timestamp'],
550 'duration': int_or_none(traverse_obj(slide, ('video', 'duration_ms')), scale=1000),
551 'formats': formats,
554 return self.playlist_result(entries(), f'{video_id}-playlist', info['title'])