Minor documentation edits.
[zddfun.git] / dom.c
blob4e7d90d946f8400a2b2f7869136c1ed4f0cd75a6
1 // Solve a Dominosa puzzle.
2 #include <stdint.h>
3 #include <stdlib.h>
4 #include <stdio.h>
5 #include <string.h>
6 #include "inta.h"
7 #include "zdd.h"
9 #include <stdarg.h>
10 #include "io.h"
12 int main() {
13 zdd_init();
15 int n;
16 if (!scanf("%d\n", &n)) die("input error");
17 uint32_t rcount = n + 1, ccount = n + 2;
18 int board[rcount][ccount];
19 inta_t list[rcount][ccount];
21 for(int i = 0; i < rcount; i++) {
22 int c;
23 for(int j = 0; j < ccount; j++) {
24 inta_init(list[i][j]);
25 c = getchar();
26 if (c == EOF || c == '\n') die("input error");
27 int encode(char c) {
28 switch(c) {
29 case '0' ... '9':
30 return c - '0';
31 break;
32 case 'a' ... 'z':
33 return c - 'a' + 10;
34 break;
35 case 'A' ... 'Z':
36 return c - 'A' + 10;
37 break;
39 die("input error");
41 board[i][j] = encode(c);
43 c = getchar();
44 if (c != '\n') die("input error");
47 // n is useless as the highest number on a domino. Reuse it as
48 // the total number of dominoes.
49 n = rcount * ccount / 2;
50 inta_t tally[n];
51 for(int i = 0; i < n; i++) inta_init(tally[i]);
53 int geti(int a, int b) {
54 // Return canonical numbering for a given domino.
55 // Assumes a >= b.
56 return a * (a + 1) / 2 + b;
59 int v = 1;
60 for(int i = 0; i < rcount; i++) {
61 for(int j = 0; j < ccount; j++) {
62 int a, b, c;
63 if (j < ccount - 1) {
64 // Horizontal tiling constraint.
65 inta_append(list[i][j], v);
66 inta_append(list[i][j + 1], v);
67 a = board[i][j];
68 b = board[i][j + 1];
69 if (a < b) c = a, a = b, b = c;
70 // One domino per board constraint.
71 inta_append(tally[geti(a, b)], v);
72 v++;
75 if (i < rcount - 1) {
76 // Vertical tiling constraint.
77 inta_append(list[i][j], v);
78 inta_append(list[i + 1][j], v);
79 a = board[i][j];
80 b = board[i + 1][j];
81 if (a < b) c = a, a = b, b = c;
82 // One domino per board constraint.
83 inta_append(tally[geti(a, b)], v);
84 v++;
88 zdd_set_vmax(v - 1);
90 int todo = rcount - 1;
91 for(int i = 0; i < rcount; i++) {
92 for(int j = 0; j < ccount; j++) {
93 zdd_contains_exactly_1(inta_raw(list[i][j]), inta_count(list[i][j]));
94 if (j) zdd_intersection();
97 int n = i + 1;
98 while (!(n & 1)) {
99 n >>= 1;
100 zdd_intersection();
101 todo--;
104 while(todo--) zdd_intersection();
106 int compar(const void *a, const void *b) {
107 return inta_count((const inta_ptr) a) > inta_count((const inta_ptr) b);
109 qsort(tally, n, sizeof(inta_t), compar);
110 for(int i = 0; i < n; i++) {
111 //printf("%d/%d\n", i + 1, n);
112 zdd_contains_exactly_1(inta_raw(tally[i]), inta_count(tally[i]));
113 zdd_intersection();
116 // Print lexicographically largest solution, assuming it exists.
117 char pic[2 * rcount + 1][2 * ccount + 1];
118 for(int i = 0; i < rcount; i++) {
119 for(int j = 0; j < ccount; j++) {
120 pic[2 * i][2 * j] = board[i][j] + '0';
121 pic[2 * i][2 * j + 1] = '|';
122 pic[2 * i + 1][2 * j] = '-';
123 pic[2 * i + 1][2 * j + 1] = '+';
125 pic[2 * i][2 * ccount] = pic[2 * i + 1][2 * ccount] = '\0';
127 v = zdd_root();
128 while(v != 1) {
129 int i = zdd_v(v) / (rcount + ccount);
130 int j = zdd_v(v) % (rcount + ccount);
131 if (!j) {
132 pic[2 * i - 1][2 * (ccount - 1)] = ' ';
133 } else if (rcount - 1 == i) {
134 pic[2 * i][2 * j - 1] = ' ';
135 } else {
136 if (j & 1) {
137 pic[2 * i][j] = ' ';
138 } else {
139 pic[2 * i + 1][j - 2] = ' ';
142 v = zdd_hi(v);
144 for(int i = 0; i < 2 * rcount; i++) {
145 puts(pic[i]);
147 return 0;