spi-topcliff-pch: Fix issue for transmitting over 4KByte
[zen-stable.git] / Documentation / video4linux / v4l2-framework.txt
blob659b2ba12a4fd69297073c0e68c69ec992d83b1f
1 Overview of the V4L2 driver framework
2 =====================================
4 This text documents the various structures provided by the V4L2 framework and
5 their relationships.
8 Introduction
9 ------------
11 The V4L2 drivers tend to be very complex due to the complexity of the
12 hardware: most devices have multiple ICs, export multiple device nodes in
13 /dev, and create also non-V4L2 devices such as DVB, ALSA, FB, I2C and input
14 (IR) devices.
16 Especially the fact that V4L2 drivers have to setup supporting ICs to
17 do audio/video muxing/encoding/decoding makes it more complex than most.
18 Usually these ICs are connected to the main bridge driver through one or
19 more I2C busses, but other busses can also be used. Such devices are
20 called 'sub-devices'.
22 For a long time the framework was limited to the video_device struct for
23 creating V4L device nodes and video_buf for handling the video buffers
24 (note that this document does not discuss the video_buf framework).
26 This meant that all drivers had to do the setup of device instances and
27 connecting to sub-devices themselves. Some of this is quite complicated
28 to do right and many drivers never did do it correctly.
30 There is also a lot of common code that could never be refactored due to
31 the lack of a framework.
33 So this framework sets up the basic building blocks that all drivers
34 need and this same framework should make it much easier to refactor
35 common code into utility functions shared by all drivers.
38 Structure of a driver
39 ---------------------
41 All drivers have the following structure:
43 1) A struct for each device instance containing the device state.
45 2) A way of initializing and commanding sub-devices (if any).
47 3) Creating V4L2 device nodes (/dev/videoX, /dev/vbiX and /dev/radioX)
48    and keeping track of device-node specific data.
50 4) Filehandle-specific structs containing per-filehandle data;
52 5) video buffer handling.
54 This is a rough schematic of how it all relates:
56     device instances
57       |
58       +-sub-device instances
59       |
60       \-V4L2 device nodes
61           |
62           \-filehandle instances
65 Structure of the framework
66 --------------------------
68 The framework closely resembles the driver structure: it has a v4l2_device
69 struct for the device instance data, a v4l2_subdev struct to refer to
70 sub-device instances, the video_device struct stores V4L2 device node data
71 and in the future a v4l2_fh struct will keep track of filehandle instances
72 (this is not yet implemented).
74 The V4L2 framework also optionally integrates with the media framework. If a
75 driver sets the struct v4l2_device mdev field, sub-devices and video nodes
76 will automatically appear in the media framework as entities.
79 struct v4l2_device
80 ------------------
82 Each device instance is represented by a struct v4l2_device (v4l2-device.h).
83 Very simple devices can just allocate this struct, but most of the time you
84 would embed this struct inside a larger struct.
86 You must register the device instance:
88         v4l2_device_register(struct device *dev, struct v4l2_device *v4l2_dev);
90 Registration will initialize the v4l2_device struct. If the dev->driver_data
91 field is NULL, it will be linked to v4l2_dev.
93 Drivers that want integration with the media device framework need to set
94 dev->driver_data manually to point to the driver-specific device structure
95 that embed the struct v4l2_device instance. This is achieved by a
96 dev_set_drvdata() call before registering the V4L2 device instance. They must
97 also set the struct v4l2_device mdev field to point to a properly initialized
98 and registered media_device instance.
100 If v4l2_dev->name is empty then it will be set to a value derived from dev
101 (driver name followed by the bus_id, to be precise). If you set it up before
102 calling v4l2_device_register then it will be untouched. If dev is NULL, then
103 you *must* setup v4l2_dev->name before calling v4l2_device_register.
105 You can use v4l2_device_set_name() to set the name based on a driver name and
106 a driver-global atomic_t instance. This will generate names like ivtv0, ivtv1,
107 etc. If the name ends with a digit, then it will insert a dash: cx18-0,
108 cx18-1, etc. This function returns the instance number.
110 The first 'dev' argument is normally the struct device pointer of a pci_dev,
111 usb_interface or platform_device. It is rare for dev to be NULL, but it happens
112 with ISA devices or when one device creates multiple PCI devices, thus making
113 it impossible to associate v4l2_dev with a particular parent.
115 You can also supply a notify() callback that can be called by sub-devices to
116 notify you of events. Whether you need to set this depends on the sub-device.
117 Any notifications a sub-device supports must be defined in a header in
118 include/media/<subdevice>.h.
120 You unregister with:
122         v4l2_device_unregister(struct v4l2_device *v4l2_dev);
124 If the dev->driver_data field points to v4l2_dev, it will be reset to NULL.
125 Unregistering will also automatically unregister all subdevs from the device.
127 If you have a hotpluggable device (e.g. a USB device), then when a disconnect
128 happens the parent device becomes invalid. Since v4l2_device has a pointer to
129 that parent device it has to be cleared as well to mark that the parent is
130 gone. To do this call:
132         v4l2_device_disconnect(struct v4l2_device *v4l2_dev);
134 This does *not* unregister the subdevs, so you still need to call the
135 v4l2_device_unregister() function for that. If your driver is not hotpluggable,
136 then there is no need to call v4l2_device_disconnect().
138 Sometimes you need to iterate over all devices registered by a specific
139 driver. This is usually the case if multiple device drivers use the same
140 hardware. E.g. the ivtvfb driver is a framebuffer driver that uses the ivtv
141 hardware. The same is true for alsa drivers for example.
143 You can iterate over all registered devices as follows:
145 static int callback(struct device *dev, void *p)
147         struct v4l2_device *v4l2_dev = dev_get_drvdata(dev);
149         /* test if this device was inited */
150         if (v4l2_dev == NULL)
151                 return 0;
152         ...
153         return 0;
156 int iterate(void *p)
158         struct device_driver *drv;
159         int err;
161         /* Find driver 'ivtv' on the PCI bus.
162            pci_bus_type is a global. For USB busses use usb_bus_type. */
163         drv = driver_find("ivtv", &pci_bus_type);
164         /* iterate over all ivtv device instances */
165         err = driver_for_each_device(drv, NULL, p, callback);
166         put_driver(drv);
167         return err;
170 Sometimes you need to keep a running counter of the device instance. This is
171 commonly used to map a device instance to an index of a module option array.
173 The recommended approach is as follows:
175 static atomic_t drv_instance = ATOMIC_INIT(0);
177 static int __devinit drv_probe(struct pci_dev *pdev,
178                                 const struct pci_device_id *pci_id)
180         ...
181         state->instance = atomic_inc_return(&drv_instance) - 1;
184 If you have multiple device nodes then it can be difficult to know when it is
185 safe to unregister v4l2_device. For this purpose v4l2_device has refcounting
186 support. The refcount is increased whenever video_register_device is called and
187 it is decreased whenever that device node is released. When the refcount reaches
188 zero, then the v4l2_device release() callback is called. You can do your final
189 cleanup there.
191 If other device nodes (e.g. ALSA) are created, then you can increase and
192 decrease the refcount manually as well by calling:
194 void v4l2_device_get(struct v4l2_device *v4l2_dev);
198 int v4l2_device_put(struct v4l2_device *v4l2_dev);
200 struct v4l2_subdev
201 ------------------
203 Many drivers need to communicate with sub-devices. These devices can do all
204 sort of tasks, but most commonly they handle audio and/or video muxing,
205 encoding or decoding. For webcams common sub-devices are sensors and camera
206 controllers.
208 Usually these are I2C devices, but not necessarily. In order to provide the
209 driver with a consistent interface to these sub-devices the v4l2_subdev struct
210 (v4l2-subdev.h) was created.
212 Each sub-device driver must have a v4l2_subdev struct. This struct can be
213 stand-alone for simple sub-devices or it might be embedded in a larger struct
214 if more state information needs to be stored. Usually there is a low-level
215 device struct (e.g. i2c_client) that contains the device data as setup
216 by the kernel. It is recommended to store that pointer in the private
217 data of v4l2_subdev using v4l2_set_subdevdata(). That makes it easy to go
218 from a v4l2_subdev to the actual low-level bus-specific device data.
220 You also need a way to go from the low-level struct to v4l2_subdev. For the
221 common i2c_client struct the i2c_set_clientdata() call is used to store a
222 v4l2_subdev pointer, for other busses you may have to use other methods.
224 Bridges might also need to store per-subdev private data, such as a pointer to
225 bridge-specific per-subdev private data. The v4l2_subdev structure provides
226 host private data for that purpose that can be accessed with
227 v4l2_get_subdev_hostdata() and v4l2_set_subdev_hostdata().
229 From the bridge driver perspective you load the sub-device module and somehow
230 obtain the v4l2_subdev pointer. For i2c devices this is easy: you call
231 i2c_get_clientdata(). For other busses something similar needs to be done.
232 Helper functions exists for sub-devices on an I2C bus that do most of this
233 tricky work for you.
235 Each v4l2_subdev contains function pointers that sub-device drivers can
236 implement (or leave NULL if it is not applicable). Since sub-devices can do
237 so many different things and you do not want to end up with a huge ops struct
238 of which only a handful of ops are commonly implemented, the function pointers
239 are sorted according to category and each category has its own ops struct.
241 The top-level ops struct contains pointers to the category ops structs, which
242 may be NULL if the subdev driver does not support anything from that category.
244 It looks like this:
246 struct v4l2_subdev_core_ops {
247         int (*g_chip_ident)(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip);
248         int (*log_status)(struct v4l2_subdev *sd);
249         int (*init)(struct v4l2_subdev *sd, u32 val);
250         ...
253 struct v4l2_subdev_tuner_ops {
254         ...
257 struct v4l2_subdev_audio_ops {
258         ...
261 struct v4l2_subdev_video_ops {
262         ...
265 struct v4l2_subdev_ops {
266         const struct v4l2_subdev_core_ops  *core;
267         const struct v4l2_subdev_tuner_ops *tuner;
268         const struct v4l2_subdev_audio_ops *audio;
269         const struct v4l2_subdev_video_ops *video;
272 The core ops are common to all subdevs, the other categories are implemented
273 depending on the sub-device. E.g. a video device is unlikely to support the
274 audio ops and vice versa.
276 This setup limits the number of function pointers while still making it easy
277 to add new ops and categories.
279 A sub-device driver initializes the v4l2_subdev struct using:
281         v4l2_subdev_init(sd, &ops);
283 Afterwards you need to initialize subdev->name with a unique name and set the
284 module owner. This is done for you if you use the i2c helper functions.
286 If integration with the media framework is needed, you must initialize the
287 media_entity struct embedded in the v4l2_subdev struct (entity field) by
288 calling media_entity_init():
290         struct media_pad *pads = &my_sd->pads;
291         int err;
293         err = media_entity_init(&sd->entity, npads, pads, 0);
295 The pads array must have been previously initialized. There is no need to
296 manually set the struct media_entity type and name fields, but the revision
297 field must be initialized if needed.
299 A reference to the entity will be automatically acquired/released when the
300 subdev device node (if any) is opened/closed.
302 Don't forget to cleanup the media entity before the sub-device is destroyed:
304         media_entity_cleanup(&sd->entity);
306 A device (bridge) driver needs to register the v4l2_subdev with the
307 v4l2_device:
309         int err = v4l2_device_register_subdev(v4l2_dev, sd);
311 This can fail if the subdev module disappeared before it could be registered.
312 After this function was called successfully the subdev->dev field points to
313 the v4l2_device.
315 If the v4l2_device parent device has a non-NULL mdev field, the sub-device
316 entity will be automatically registered with the media device.
318 You can unregister a sub-device using:
320         v4l2_device_unregister_subdev(sd);
322 Afterwards the subdev module can be unloaded and sd->dev == NULL.
324 You can call an ops function either directly:
326         err = sd->ops->core->g_chip_ident(sd, &chip);
328 but it is better and easier to use this macro:
330         err = v4l2_subdev_call(sd, core, g_chip_ident, &chip);
332 The macro will to the right NULL pointer checks and returns -ENODEV if subdev
333 is NULL, -ENOIOCTLCMD if either subdev->core or subdev->core->g_chip_ident is
334 NULL, or the actual result of the subdev->ops->core->g_chip_ident ops.
336 It is also possible to call all or a subset of the sub-devices:
338         v4l2_device_call_all(v4l2_dev, 0, core, g_chip_ident, &chip);
340 Any subdev that does not support this ops is skipped and error results are
341 ignored. If you want to check for errors use this:
343         err = v4l2_device_call_until_err(v4l2_dev, 0, core, g_chip_ident, &chip);
345 Any error except -ENOIOCTLCMD will exit the loop with that error. If no
346 errors (except -ENOIOCTLCMD) occurred, then 0 is returned.
348 The second argument to both calls is a group ID. If 0, then all subdevs are
349 called. If non-zero, then only those whose group ID match that value will
350 be called. Before a bridge driver registers a subdev it can set sd->grp_id
351 to whatever value it wants (it's 0 by default). This value is owned by the
352 bridge driver and the sub-device driver will never modify or use it.
354 The group ID gives the bridge driver more control how callbacks are called.
355 For example, there may be multiple audio chips on a board, each capable of
356 changing the volume. But usually only one will actually be used when the
357 user want to change the volume. You can set the group ID for that subdev to
358 e.g. AUDIO_CONTROLLER and specify that as the group ID value when calling
359 v4l2_device_call_all(). That ensures that it will only go to the subdev
360 that needs it.
362 If the sub-device needs to notify its v4l2_device parent of an event, then
363 it can call v4l2_subdev_notify(sd, notification, arg). This macro checks
364 whether there is a notify() callback defined and returns -ENODEV if not.
365 Otherwise the result of the notify() call is returned.
367 The advantage of using v4l2_subdev is that it is a generic struct and does
368 not contain any knowledge about the underlying hardware. So a driver might
369 contain several subdevs that use an I2C bus, but also a subdev that is
370 controlled through GPIO pins. This distinction is only relevant when setting
371 up the device, but once the subdev is registered it is completely transparent.
374 V4L2 sub-device userspace API
375 -----------------------------
377 Beside exposing a kernel API through the v4l2_subdev_ops structure, V4L2
378 sub-devices can also be controlled directly by userspace applications.
380 Device nodes named v4l-subdevX can be created in /dev to access sub-devices
381 directly. If a sub-device supports direct userspace configuration it must set
382 the V4L2_SUBDEV_FL_HAS_DEVNODE flag before being registered.
384 After registering sub-devices, the v4l2_device driver can create device nodes
385 for all registered sub-devices marked with V4L2_SUBDEV_FL_HAS_DEVNODE by calling
386 v4l2_device_register_subdev_nodes(). Those device nodes will be automatically
387 removed when sub-devices are unregistered.
389 The device node handles a subset of the V4L2 API.
391 VIDIOC_QUERYCTRL
392 VIDIOC_QUERYMENU
393 VIDIOC_G_CTRL
394 VIDIOC_S_CTRL
395 VIDIOC_G_EXT_CTRLS
396 VIDIOC_S_EXT_CTRLS
397 VIDIOC_TRY_EXT_CTRLS
399         The controls ioctls are identical to the ones defined in V4L2. They
400         behave identically, with the only exception that they deal only with
401         controls implemented in the sub-device. Depending on the driver, those
402         controls can be also be accessed through one (or several) V4L2 device
403         nodes.
405 VIDIOC_DQEVENT
406 VIDIOC_SUBSCRIBE_EVENT
407 VIDIOC_UNSUBSCRIBE_EVENT
409         The events ioctls are identical to the ones defined in V4L2. They
410         behave identically, with the only exception that they deal only with
411         events generated by the sub-device. Depending on the driver, those
412         events can also be reported by one (or several) V4L2 device nodes.
414         Sub-device drivers that want to use events need to set the
415         V4L2_SUBDEV_USES_EVENTS v4l2_subdev::flags and initialize
416         v4l2_subdev::nevents to events queue depth before registering the
417         sub-device. After registration events can be queued as usual on the
418         v4l2_subdev::devnode device node.
420         To properly support events, the poll() file operation is also
421         implemented.
423 Private ioctls
425         All ioctls not in the above list are passed directly to the sub-device
426         driver through the core::ioctl operation.
429 I2C sub-device drivers
430 ----------------------
432 Since these drivers are so common, special helper functions are available to
433 ease the use of these drivers (v4l2-common.h).
435 The recommended method of adding v4l2_subdev support to an I2C driver is to
436 embed the v4l2_subdev struct into the state struct that is created for each
437 I2C device instance. Very simple devices have no state struct and in that case
438 you can just create a v4l2_subdev directly.
440 A typical state struct would look like this (where 'chipname' is replaced by
441 the name of the chip):
443 struct chipname_state {
444         struct v4l2_subdev sd;
445         ...  /* additional state fields */
448 Initialize the v4l2_subdev struct as follows:
450         v4l2_i2c_subdev_init(&state->sd, client, subdev_ops);
452 This function will fill in all the fields of v4l2_subdev and ensure that the
453 v4l2_subdev and i2c_client both point to one another.
455 You should also add a helper inline function to go from a v4l2_subdev pointer
456 to a chipname_state struct:
458 static inline struct chipname_state *to_state(struct v4l2_subdev *sd)
460         return container_of(sd, struct chipname_state, sd);
463 Use this to go from the v4l2_subdev struct to the i2c_client struct:
465         struct i2c_client *client = v4l2_get_subdevdata(sd);
467 And this to go from an i2c_client to a v4l2_subdev struct:
469         struct v4l2_subdev *sd = i2c_get_clientdata(client);
471 Make sure to call v4l2_device_unregister_subdev(sd) when the remove() callback
472 is called. This will unregister the sub-device from the bridge driver. It is
473 safe to call this even if the sub-device was never registered.
475 You need to do this because when the bridge driver destroys the i2c adapter
476 the remove() callbacks are called of the i2c devices on that adapter.
477 After that the corresponding v4l2_subdev structures are invalid, so they
478 have to be unregistered first. Calling v4l2_device_unregister_subdev(sd)
479 from the remove() callback ensures that this is always done correctly.
482 The bridge driver also has some helper functions it can use:
484 struct v4l2_subdev *sd = v4l2_i2c_new_subdev(v4l2_dev, adapter,
485                "module_foo", "chipid", 0x36, NULL);
487 This loads the given module (can be NULL if no module needs to be loaded) and
488 calls i2c_new_device() with the given i2c_adapter and chip/address arguments.
489 If all goes well, then it registers the subdev with the v4l2_device.
491 You can also use the last argument of v4l2_i2c_new_subdev() to pass an array
492 of possible I2C addresses that it should probe. These probe addresses are
493 only used if the previous argument is 0. A non-zero argument means that you
494 know the exact i2c address so in that case no probing will take place.
496 Both functions return NULL if something went wrong.
498 Note that the chipid you pass to v4l2_i2c_new_subdev() is usually
499 the same as the module name. It allows you to specify a chip variant, e.g.
500 "saa7114" or "saa7115". In general though the i2c driver autodetects this.
501 The use of chipid is something that needs to be looked at more closely at a
502 later date. It differs between i2c drivers and as such can be confusing.
503 To see which chip variants are supported you can look in the i2c driver code
504 for the i2c_device_id table. This lists all the possibilities.
506 There are two more helper functions:
508 v4l2_i2c_new_subdev_cfg: this function adds new irq and platform_data
509 arguments and has both 'addr' and 'probed_addrs' arguments: if addr is not
510 0 then that will be used (non-probing variant), otherwise the probed_addrs
511 are probed.
513 For example: this will probe for address 0x10:
515 struct v4l2_subdev *sd = v4l2_i2c_new_subdev_cfg(v4l2_dev, adapter,
516                "module_foo", "chipid", 0, NULL, 0, I2C_ADDRS(0x10));
518 v4l2_i2c_new_subdev_board uses an i2c_board_info struct which is passed
519 to the i2c driver and replaces the irq, platform_data and addr arguments.
521 If the subdev supports the s_config core ops, then that op is called with
522 the irq and platform_data arguments after the subdev was setup. The older
523 v4l2_i2c_new_(probed_)subdev functions will call s_config as well, but with
524 irq set to 0 and platform_data set to NULL.
526 struct video_device
527 -------------------
529 The actual device nodes in the /dev directory are created using the
530 video_device struct (v4l2-dev.h). This struct can either be allocated
531 dynamically or embedded in a larger struct.
533 To allocate it dynamically use:
535         struct video_device *vdev = video_device_alloc();
537         if (vdev == NULL)
538                 return -ENOMEM;
540         vdev->release = video_device_release;
542 If you embed it in a larger struct, then you must set the release()
543 callback to your own function:
545         struct video_device *vdev = &my_vdev->vdev;
547         vdev->release = my_vdev_release;
549 The release callback must be set and it is called when the last user
550 of the video device exits.
552 The default video_device_release() callback just calls kfree to free the
553 allocated memory.
555 You should also set these fields:
557 - v4l2_dev: set to the v4l2_device parent device.
558 - name: set to something descriptive and unique.
559 - fops: set to the v4l2_file_operations struct.
560 - ioctl_ops: if you use the v4l2_ioctl_ops to simplify ioctl maintenance
561   (highly recommended to use this and it might become compulsory in the
562   future!), then set this to your v4l2_ioctl_ops struct.
563 - lock: leave to NULL if you want to do all the locking in the driver.
564   Otherwise you give it a pointer to a struct mutex_lock and before any
565   of the v4l2_file_operations is called this lock will be taken by the
566   core and released afterwards.
567 - prio: keeps track of the priorities. Used to implement VIDIOC_G/S_PRIORITY.
568   If left to NULL, then it will use the struct v4l2_prio_state in v4l2_device.
569   If you want to have a separate priority state per (group of) device node(s),
570   then you can point it to your own struct v4l2_prio_state.
571 - parent: you only set this if v4l2_device was registered with NULL as
572   the parent device struct. This only happens in cases where one hardware
573   device has multiple PCI devices that all share the same v4l2_device core.
575   The cx88 driver is an example of this: one core v4l2_device struct, but
576   it is used by both an raw video PCI device (cx8800) and a MPEG PCI device
577   (cx8802). Since the v4l2_device cannot be associated with a particular
578   PCI device it is setup without a parent device. But when the struct
579   video_device is setup you do know which parent PCI device to use.
580 - flags: optional. Set to V4L2_FL_USE_FH_PRIO if you want to let the framework
581   handle the VIDIOC_G/S_PRIORITY ioctls. This requires that you use struct
582   v4l2_fh. Eventually this flag will disappear once all drivers use the core
583   priority handling. But for now it has to be set explicitly.
585 If you use v4l2_ioctl_ops, then you should set .unlocked_ioctl to video_ioctl2
586 in your v4l2_file_operations struct.
588 Do not use .ioctl! This is deprecated and will go away in the future.
590 The v4l2_file_operations struct is a subset of file_operations. The main
591 difference is that the inode argument is omitted since it is never used.
593 If integration with the media framework is needed, you must initialize the
594 media_entity struct embedded in the video_device struct (entity field) by
595 calling media_entity_init():
597         struct media_pad *pad = &my_vdev->pad;
598         int err;
600         err = media_entity_init(&vdev->entity, 1, pad, 0);
602 The pads array must have been previously initialized. There is no need to
603 manually set the struct media_entity type and name fields.
605 A reference to the entity will be automatically acquired/released when the
606 video device is opened/closed.
608 v4l2_file_operations and locking
609 --------------------------------
611 You can set a pointer to a mutex_lock in struct video_device. Usually this
612 will be either a top-level mutex or a mutex per device node. If you want
613 finer-grained locking then you have to set it to NULL and do you own locking.
615 It is up to the driver developer to decide which method to use. However, if
616 your driver has high-latency operations (for example, changing the exposure
617 of a USB webcam might take a long time), then you might be better off with
618 doing your own locking if you want to allow the user to do other things with
619 the device while waiting for the high-latency command to finish.
621 If a lock is specified then all file operations will be serialized on that
622 lock. If you use videobuf then you must pass the same lock to the videobuf
623 queue initialize function: if videobuf has to wait for a frame to arrive, then
624 it will temporarily unlock the lock and relock it afterwards. If your driver
625 also waits in the code, then you should do the same to allow other processes
626 to access the device node while the first process is waiting for something.
628 In the case of videobuf2 you will need to implement the wait_prepare and
629 wait_finish callbacks to unlock/lock if applicable. In particular, if you use
630 the lock in struct video_device then you must unlock/lock this mutex in
631 wait_prepare and wait_finish.
633 The implementation of a hotplug disconnect should also take the lock before
634 calling v4l2_device_disconnect.
636 video_device registration
637 -------------------------
639 Next you register the video device: this will create the character device
640 for you.
642         err = video_register_device(vdev, VFL_TYPE_GRABBER, -1);
643         if (err) {
644                 video_device_release(vdev); /* or kfree(my_vdev); */
645                 return err;
646         }
648 If the v4l2_device parent device has a non-NULL mdev field, the video device
649 entity will be automatically registered with the media device.
651 Which device is registered depends on the type argument. The following
652 types exist:
654 VFL_TYPE_GRABBER: videoX for video input/output devices
655 VFL_TYPE_VBI: vbiX for vertical blank data (i.e. closed captions, teletext)
656 VFL_TYPE_RADIO: radioX for radio tuners
658 The last argument gives you a certain amount of control over the device
659 device node number used (i.e. the X in videoX). Normally you will pass -1
660 to let the v4l2 framework pick the first free number. But sometimes users
661 want to select a specific node number. It is common that drivers allow
662 the user to select a specific device node number through a driver module
663 option. That number is then passed to this function and video_register_device
664 will attempt to select that device node number. If that number was already
665 in use, then the next free device node number will be selected and it
666 will send a warning to the kernel log.
668 Another use-case is if a driver creates many devices. In that case it can
669 be useful to place different video devices in separate ranges. For example,
670 video capture devices start at 0, video output devices start at 16.
671 So you can use the last argument to specify a minimum device node number
672 and the v4l2 framework will try to pick the first free number that is equal
673 or higher to what you passed. If that fails, then it will just pick the
674 first free number.
676 Since in this case you do not care about a warning about not being able
677 to select the specified device node number, you can call the function
678 video_register_device_no_warn() instead.
680 Whenever a device node is created some attributes are also created for you.
681 If you look in /sys/class/video4linux you see the devices. Go into e.g.
682 video0 and you will see 'name' and 'index' attributes. The 'name' attribute
683 is the 'name' field of the video_device struct.
685 The 'index' attribute is the index of the device node: for each call to
686 video_register_device() the index is just increased by 1. The first video
687 device node you register always starts with index 0.
689 Users can setup udev rules that utilize the index attribute to make fancy
690 device names (e.g. 'mpegX' for MPEG video capture device nodes).
692 After the device was successfully registered, then you can use these fields:
694 - vfl_type: the device type passed to video_register_device.
695 - minor: the assigned device minor number.
696 - num: the device node number (i.e. the X in videoX).
697 - index: the device index number.
699 If the registration failed, then you need to call video_device_release()
700 to free the allocated video_device struct, or free your own struct if the
701 video_device was embedded in it. The vdev->release() callback will never
702 be called if the registration failed, nor should you ever attempt to
703 unregister the device if the registration failed.
706 video_device cleanup
707 --------------------
709 When the video device nodes have to be removed, either during the unload
710 of the driver or because the USB device was disconnected, then you should
711 unregister them:
713         video_unregister_device(vdev);
715 This will remove the device nodes from sysfs (causing udev to remove them
716 from /dev).
718 After video_unregister_device() returns no new opens can be done. However,
719 in the case of USB devices some application might still have one of these
720 device nodes open. So after the unregister all file operations (except
721 release, of course) will return an error as well.
723 When the last user of the video device node exits, then the vdev->release()
724 callback is called and you can do the final cleanup there.
726 Don't forget to cleanup the media entity associated with the video device if
727 it has been initialized:
729         media_entity_cleanup(&vdev->entity);
731 This can be done from the release callback.
734 video_device helper functions
735 -----------------------------
737 There are a few useful helper functions:
739 - file/video_device private data
741 You can set/get driver private data in the video_device struct using:
743 void *video_get_drvdata(struct video_device *vdev);
744 void video_set_drvdata(struct video_device *vdev, void *data);
746 Note that you can safely call video_set_drvdata() before calling
747 video_register_device().
749 And this function:
751 struct video_device *video_devdata(struct file *file);
753 returns the video_device belonging to the file struct.
755 The video_drvdata function combines video_get_drvdata with video_devdata:
757 void *video_drvdata(struct file *file);
759 You can go from a video_device struct to the v4l2_device struct using:
761 struct v4l2_device *v4l2_dev = vdev->v4l2_dev;
763 - Device node name
765 The video_device node kernel name can be retrieved using
767 const char *video_device_node_name(struct video_device *vdev);
769 The name is used as a hint by userspace tools such as udev. The function
770 should be used where possible instead of accessing the video_device::num and
771 video_device::minor fields.
774 video buffer helper functions
775 -----------------------------
777 The v4l2 core API provides a set of standard methods (called "videobuf")
778 for dealing with video buffers. Those methods allow a driver to implement
779 read(), mmap() and overlay() in a consistent way.  There are currently
780 methods for using video buffers on devices that supports DMA with
781 scatter/gather method (videobuf-dma-sg), DMA with linear access
782 (videobuf-dma-contig), and vmalloced buffers, mostly used on USB drivers
783 (videobuf-vmalloc).
785 Please see Documentation/video4linux/videobuf for more information on how
786 to use the videobuf layer.
788 struct v4l2_fh
789 --------------
791 struct v4l2_fh provides a way to easily keep file handle specific data
792 that is used by the V4L2 framework. New drivers must use struct v4l2_fh
793 since it is also used to implement priority handling (VIDIOC_G/S_PRIORITY)
794 if the video_device flag V4L2_FL_USE_FH_PRIO is also set.
796 The users of v4l2_fh (in the V4L2 framework, not the driver) know
797 whether a driver uses v4l2_fh as its file->private_data pointer by
798 testing the V4L2_FL_USES_V4L2_FH bit in video_device->flags. This bit is
799 set whenever v4l2_fh_init() is called.
801 struct v4l2_fh is allocated as a part of the driver's own file handle
802 structure and file->private_data is set to it in the driver's open
803 function by the driver.
805 In many cases the struct v4l2_fh will be embedded in a larger structure.
806 In that case you should call v4l2_fh_init+v4l2_fh_add in open() and
807 v4l2_fh_del+v4l2_fh_exit in release().
809 Drivers can extract their own file handle structure by using the container_of
810 macro. Example:
812 struct my_fh {
813         int blah;
814         struct v4l2_fh fh;
819 int my_open(struct file *file)
821         struct my_fh *my_fh;
822         struct video_device *vfd;
823         int ret;
825         ...
827         my_fh = kzalloc(sizeof(*my_fh), GFP_KERNEL);
829         ...
831         v4l2_fh_init(&my_fh->fh, vfd);
833         ...
835         file->private_data = &my_fh->fh;
836         v4l2_fh_add(&my_fh->fh);
837         return 0;
840 int my_release(struct file *file)
842         struct v4l2_fh *fh = file->private_data;
843         struct my_fh *my_fh = container_of(fh, struct my_fh, fh);
845         ...
846         v4l2_fh_del(&my_fh->fh);
847         v4l2_fh_exit(&my_fh->fh);
848         kfree(my_fh);
849         return 0;
852 Below is a short description of the v4l2_fh functions used:
854 void v4l2_fh_init(struct v4l2_fh *fh, struct video_device *vdev)
856   Initialise the file handle. This *MUST* be performed in the driver's
857   v4l2_file_operations->open() handler.
859 void v4l2_fh_add(struct v4l2_fh *fh)
861   Add a v4l2_fh to video_device file handle list. Must be called once the
862   file handle is completely initialized.
864 void v4l2_fh_del(struct v4l2_fh *fh)
866   Unassociate the file handle from video_device(). The file handle
867   exit function may now be called.
869 void v4l2_fh_exit(struct v4l2_fh *fh)
871   Uninitialise the file handle. After uninitialisation the v4l2_fh
872   memory can be freed.
875 If struct v4l2_fh is not embedded, then you can use these helper functions:
877 int v4l2_fh_open(struct file *filp)
879   This allocates a struct v4l2_fh, initializes it and adds it to the struct
880   video_device associated with the file struct.
882 int v4l2_fh_release(struct file *filp)
884   This deletes it from the struct video_device associated with the file
885   struct, uninitialised the v4l2_fh and frees it.
887 These two functions can be plugged into the v4l2_file_operation's open() and
888 release() ops.
891 Several drivers need to do something when the first file handle is opened and
892 when the last file handle closes. Two helper functions were added to check
893 whether the v4l2_fh struct is the only open filehandle of the associated
894 device node:
896 int v4l2_fh_is_singular(struct v4l2_fh *fh)
898   Returns 1 if the file handle is the only open file handle, else 0.
900 int v4l2_fh_is_singular_file(struct file *filp)
902   Same, but it calls v4l2_fh_is_singular with filp->private_data.
905 V4L2 events
906 -----------
908 The V4L2 events provide a generic way to pass events to user space.
909 The driver must use v4l2_fh to be able to support V4L2 events.
911 Events are defined by a type and an optional ID. The ID may refer to a V4L2
912 object such as a control ID. If unused, then the ID is 0.
914 When the user subscribes to an event the driver will allocate a number of
915 kevent structs for that event. So every (type, ID) event tuple will have
916 its own set of kevent structs. This guarantees that if a driver is generating
917 lots of events of one type in a short time, then that will not overwrite
918 events of another type.
920 But if you get more events of one type than the number of kevents that were
921 reserved, then the oldest event will be dropped and the new one added.
923 Furthermore, the internal struct v4l2_subscribed_event has merge() and
924 replace() callbacks which drivers can set. These callbacks are called when
925 a new event is raised and there is no more room. The replace() callback
926 allows you to replace the payload of the old event with that of the new event,
927 merging any relevant data from the old payload into the new payload that
928 replaces it. It is called when this event type has only one kevent struct
929 allocated. The merge() callback allows you to merge the oldest event payload
930 into that of the second-oldest event payload. It is called when there are two
931 or more kevent structs allocated.
933 This way no status information is lost, just the intermediate steps leading
934 up to that state.
936 A good example of these replace/merge callbacks is in v4l2-event.c:
937 ctrls_replace() and ctrls_merge() callbacks for the control event.
939 Note: these callbacks can be called from interrupt context, so they must be
940 fast.
942 Useful functions:
944 - v4l2_event_queue()
946   Queue events to video device. The driver's only responsibility is to fill
947   in the type and the data fields. The other fields will be filled in by
948   V4L2.
950 - v4l2_event_subscribe()
952   The video_device->ioctl_ops->vidioc_subscribe_event must check the driver
953   is able to produce events with specified event id. Then it calls
954   v4l2_event_subscribe() to subscribe the event. The last argument is the
955   size of the event queue for this event. If it is 0, then the framework
956   will fill in a default value (this depends on the event type).
958 - v4l2_event_unsubscribe()
960   vidioc_unsubscribe_event in struct v4l2_ioctl_ops. A driver may use
961   v4l2_event_unsubscribe() directly unless it wants to be involved in
962   unsubscription process.
964   The special type V4L2_EVENT_ALL may be used to unsubscribe all events. The
965   drivers may want to handle this in a special way.
967 - v4l2_event_pending()
969   Returns the number of pending events. Useful when implementing poll.
971 Events are delivered to user space through the poll system call. The driver
972 can use v4l2_fh->wait (a wait_queue_head_t) as the argument for poll_wait().
974 There are standard and private events. New standard events must use the
975 smallest available event type. The drivers must allocate their events from
976 their own class starting from class base. Class base is
977 V4L2_EVENT_PRIVATE_START + n * 1000 where n is the lowest available number.
978 The first event type in the class is reserved for future use, so the first
979 available event type is 'class base + 1'.
981 An example on how the V4L2 events may be used can be found in the OMAP
982 3 ISP driver (drivers/media/video/omap3isp).