2 * EDMA3 support for DaVinci
4 * Copyright (C) 2006-2009 Texas Instruments.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/platform_device.h>
26 #include <linux/slab.h>
28 #include <mach/edma.h>
30 /* Offsets matching "struct edmacc_param" */
33 #define PARM_A_B_CNT 0x08
35 #define PARM_SRC_DST_BIDX 0x10
36 #define PARM_LINK_BCNTRLD 0x14
37 #define PARM_SRC_DST_CIDX 0x18
38 #define PARM_CCNT 0x1c
40 #define PARM_SIZE 0x20
42 /* Offsets for EDMA CC global channel registers and their shadows */
43 #define SH_ER 0x00 /* 64 bits */
44 #define SH_ECR 0x08 /* 64 bits */
45 #define SH_ESR 0x10 /* 64 bits */
46 #define SH_CER 0x18 /* 64 bits */
47 #define SH_EER 0x20 /* 64 bits */
48 #define SH_EECR 0x28 /* 64 bits */
49 #define SH_EESR 0x30 /* 64 bits */
50 #define SH_SER 0x38 /* 64 bits */
51 #define SH_SECR 0x40 /* 64 bits */
52 #define SH_IER 0x50 /* 64 bits */
53 #define SH_IECR 0x58 /* 64 bits */
54 #define SH_IESR 0x60 /* 64 bits */
55 #define SH_IPR 0x68 /* 64 bits */
56 #define SH_ICR 0x70 /* 64 bits */
66 /* Offsets for EDMA CC global registers */
67 #define EDMA_REV 0x0000
68 #define EDMA_CCCFG 0x0004
69 #define EDMA_QCHMAP 0x0200 /* 8 registers */
70 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
71 #define EDMA_QDMAQNUM 0x0260
72 #define EDMA_QUETCMAP 0x0280
73 #define EDMA_QUEPRI 0x0284
74 #define EDMA_EMR 0x0300 /* 64 bits */
75 #define EDMA_EMCR 0x0308 /* 64 bits */
76 #define EDMA_QEMR 0x0310
77 #define EDMA_QEMCR 0x0314
78 #define EDMA_CCERR 0x0318
79 #define EDMA_CCERRCLR 0x031c
80 #define EDMA_EEVAL 0x0320
81 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
82 #define EDMA_QRAE 0x0380 /* 4 registers */
83 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
84 #define EDMA_QSTAT 0x0600 /* 2 registers */
85 #define EDMA_QWMTHRA 0x0620
86 #define EDMA_QWMTHRB 0x0624
87 #define EDMA_CCSTAT 0x0640
89 #define EDMA_M 0x1000 /* global channel registers */
90 #define EDMA_ECR 0x1008
91 #define EDMA_ECRH 0x100C
92 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
93 #define EDMA_PARM 0x4000 /* 128 param entries */
95 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
97 #define EDMA_DCHMAP 0x0100 /* 64 registers */
98 #define CHMAP_EXIST BIT(24)
100 #define EDMA_MAX_DMACH 64
101 #define EDMA_MAX_PARAMENTRY 512
103 /*****************************************************************************/
105 static void __iomem
*edmacc_regs_base
[EDMA_MAX_CC
];
107 static inline unsigned int edma_read(unsigned ctlr
, int offset
)
109 return (unsigned int)__raw_readl(edmacc_regs_base
[ctlr
] + offset
);
112 static inline void edma_write(unsigned ctlr
, int offset
, int val
)
114 __raw_writel(val
, edmacc_regs_base
[ctlr
] + offset
);
116 static inline void edma_modify(unsigned ctlr
, int offset
, unsigned and,
119 unsigned val
= edma_read(ctlr
, offset
);
122 edma_write(ctlr
, offset
, val
);
124 static inline void edma_and(unsigned ctlr
, int offset
, unsigned and)
126 unsigned val
= edma_read(ctlr
, offset
);
128 edma_write(ctlr
, offset
, val
);
130 static inline void edma_or(unsigned ctlr
, int offset
, unsigned or)
132 unsigned val
= edma_read(ctlr
, offset
);
134 edma_write(ctlr
, offset
, val
);
136 static inline unsigned int edma_read_array(unsigned ctlr
, int offset
, int i
)
138 return edma_read(ctlr
, offset
+ (i
<< 2));
140 static inline void edma_write_array(unsigned ctlr
, int offset
, int i
,
143 edma_write(ctlr
, offset
+ (i
<< 2), val
);
145 static inline void edma_modify_array(unsigned ctlr
, int offset
, int i
,
146 unsigned and, unsigned or)
148 edma_modify(ctlr
, offset
+ (i
<< 2), and, or);
150 static inline void edma_or_array(unsigned ctlr
, int offset
, int i
, unsigned or)
152 edma_or(ctlr
, offset
+ (i
<< 2), or);
154 static inline void edma_or_array2(unsigned ctlr
, int offset
, int i
, int j
,
157 edma_or(ctlr
, offset
+ ((i
*2 + j
) << 2), or);
159 static inline void edma_write_array2(unsigned ctlr
, int offset
, int i
, int j
,
162 edma_write(ctlr
, offset
+ ((i
*2 + j
) << 2), val
);
164 static inline unsigned int edma_shadow0_read(unsigned ctlr
, int offset
)
166 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
);
168 static inline unsigned int edma_shadow0_read_array(unsigned ctlr
, int offset
,
171 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2));
173 static inline void edma_shadow0_write(unsigned ctlr
, int offset
, unsigned val
)
175 edma_write(ctlr
, EDMA_SHADOW0
+ offset
, val
);
177 static inline void edma_shadow0_write_array(unsigned ctlr
, int offset
, int i
,
180 edma_write(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2), val
);
182 static inline unsigned int edma_parm_read(unsigned ctlr
, int offset
,
185 return edma_read(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5));
187 static inline void edma_parm_write(unsigned ctlr
, int offset
, int param_no
,
190 edma_write(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), val
);
192 static inline void edma_parm_modify(unsigned ctlr
, int offset
, int param_no
,
193 unsigned and, unsigned or)
195 edma_modify(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and, or);
197 static inline void edma_parm_and(unsigned ctlr
, int offset
, int param_no
,
200 edma_and(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and);
202 static inline void edma_parm_or(unsigned ctlr
, int offset
, int param_no
,
205 edma_or(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), or);
208 static inline void set_bits(int offset
, int len
, unsigned long *p
)
210 for (; len
> 0; len
--)
211 set_bit(offset
+ (len
- 1), p
);
214 static inline void clear_bits(int offset
, int len
, unsigned long *p
)
216 for (; len
> 0; len
--)
217 clear_bit(offset
+ (len
- 1), p
);
220 /*****************************************************************************/
222 /* actual number of DMA channels and slots on this silicon */
224 /* how many dma resources of each type */
225 unsigned num_channels
;
230 enum dma_event_q default_queue
;
232 /* list of channels with no even trigger; terminated by "-1" */
235 /* The edma_inuse bit for each PaRAM slot is clear unless the
236 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
238 DECLARE_BITMAP(edma_inuse
, EDMA_MAX_PARAMENTRY
);
240 /* The edma_unused bit for each channel is clear unless
241 * it is not being used on this platform. It uses a bit
242 * of SOC-specific initialization code.
244 DECLARE_BITMAP(edma_unused
, EDMA_MAX_DMACH
);
246 unsigned irq_res_start
;
247 unsigned irq_res_end
;
249 struct dma_interrupt_data
{
250 void (*callback
)(unsigned channel
, unsigned short ch_status
,
253 } intr_data
[EDMA_MAX_DMACH
];
256 static struct edma
*edma_cc
[EDMA_MAX_CC
];
257 static int arch_num_cc
;
259 /* dummy param set used to (re)initialize parameter RAM slots */
260 static const struct edmacc_param dummy_paramset
= {
261 .link_bcntrld
= 0xffff,
265 /*****************************************************************************/
267 static void map_dmach_queue(unsigned ctlr
, unsigned ch_no
,
268 enum dma_event_q queue_no
)
270 int bit
= (ch_no
& 0x7) * 4;
272 /* default to low priority queue */
273 if (queue_no
== EVENTQ_DEFAULT
)
274 queue_no
= edma_cc
[ctlr
]->default_queue
;
277 edma_modify_array(ctlr
, EDMA_DMAQNUM
, (ch_no
>> 3),
278 ~(0x7 << bit
), queue_no
<< bit
);
281 static void __init
map_queue_tc(unsigned ctlr
, int queue_no
, int tc_no
)
283 int bit
= queue_no
* 4;
284 edma_modify(ctlr
, EDMA_QUETCMAP
, ~(0x7 << bit
), ((tc_no
& 0x7) << bit
));
287 static void __init
assign_priority_to_queue(unsigned ctlr
, int queue_no
,
290 int bit
= queue_no
* 4;
291 edma_modify(ctlr
, EDMA_QUEPRI
, ~(0x7 << bit
),
292 ((priority
& 0x7) << bit
));
296 * map_dmach_param - Maps channel number to param entry number
298 * This maps the dma channel number to param entry numberter. In
299 * other words using the DMA channel mapping registers a param entry
300 * can be mapped to any channel
302 * Callers are responsible for ensuring the channel mapping logic is
303 * included in that particular EDMA variant (Eg : dm646x)
306 static void __init
map_dmach_param(unsigned ctlr
)
309 for (i
= 0; i
< EDMA_MAX_DMACH
; i
++)
310 edma_write_array(ctlr
, EDMA_DCHMAP
, i
, (i
<< 5));
314 setup_dma_interrupt(unsigned lch
,
315 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
320 ctlr
= EDMA_CTLR(lch
);
321 lch
= EDMA_CHAN_SLOT(lch
);
324 edma_shadow0_write_array(ctlr
, SH_IECR
, lch
>> 5,
327 edma_cc
[ctlr
]->intr_data
[lch
].callback
= callback
;
328 edma_cc
[ctlr
]->intr_data
[lch
].data
= data
;
331 edma_shadow0_write_array(ctlr
, SH_ICR
, lch
>> 5,
333 edma_shadow0_write_array(ctlr
, SH_IESR
, lch
>> 5,
338 static int irq2ctlr(int irq
)
340 if (irq
>= edma_cc
[0]->irq_res_start
&& irq
<= edma_cc
[0]->irq_res_end
)
342 else if (irq
>= edma_cc
[1]->irq_res_start
&&
343 irq
<= edma_cc
[1]->irq_res_end
)
349 /******************************************************************************
351 * DMA interrupt handler
353 *****************************************************************************/
354 static irqreturn_t
dma_irq_handler(int irq
, void *data
)
358 unsigned int cnt
= 0;
360 ctlr
= irq2ctlr(irq
);
364 dev_dbg(data
, "dma_irq_handler\n");
366 if ((edma_shadow0_read_array(ctlr
, SH_IPR
, 0) == 0) &&
367 (edma_shadow0_read_array(ctlr
, SH_IPR
, 1) == 0))
372 if (edma_shadow0_read_array(ctlr
, SH_IPR
, 0) &
373 edma_shadow0_read_array(ctlr
, SH_IER
, 0))
375 else if (edma_shadow0_read_array(ctlr
, SH_IPR
, 1) &
376 edma_shadow0_read_array(ctlr
, SH_IER
, 1))
380 dev_dbg(data
, "IPR%d %08x\n", j
,
381 edma_shadow0_read_array(ctlr
, SH_IPR
, j
));
382 for (i
= 0; i
< 32; i
++) {
383 int k
= (j
<< 5) + i
;
384 if ((edma_shadow0_read_array(ctlr
, SH_IPR
, j
) & BIT(i
))
385 && (edma_shadow0_read_array(ctlr
,
386 SH_IER
, j
) & BIT(i
))) {
387 /* Clear the corresponding IPR bits */
388 edma_shadow0_write_array(ctlr
, SH_ICR
, j
,
390 if (edma_cc
[ctlr
]->intr_data
[k
].callback
)
391 edma_cc
[ctlr
]->intr_data
[k
].callback(
393 edma_cc
[ctlr
]->intr_data
[k
].
401 edma_shadow0_write(ctlr
, SH_IEVAL
, 1);
405 /******************************************************************************
407 * DMA error interrupt handler
409 *****************************************************************************/
410 static irqreturn_t
dma_ccerr_handler(int irq
, void *data
)
414 unsigned int cnt
= 0;
416 ctlr
= irq2ctlr(irq
);
420 dev_dbg(data
, "dma_ccerr_handler\n");
422 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0) &&
423 (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0) &&
424 (edma_read(ctlr
, EDMA_QEMR
) == 0) &&
425 (edma_read(ctlr
, EDMA_CCERR
) == 0))
430 if (edma_read_array(ctlr
, EDMA_EMR
, 0))
432 else if (edma_read_array(ctlr
, EDMA_EMR
, 1))
435 dev_dbg(data
, "EMR%d %08x\n", j
,
436 edma_read_array(ctlr
, EDMA_EMR
, j
));
437 for (i
= 0; i
< 32; i
++) {
438 int k
= (j
<< 5) + i
;
439 if (edma_read_array(ctlr
, EDMA_EMR
, j
) &
441 /* Clear the corresponding EMR bits */
442 edma_write_array(ctlr
, EDMA_EMCR
, j
,
445 edma_shadow0_write_array(ctlr
, SH_SECR
,
447 if (edma_cc
[ctlr
]->intr_data
[k
].
449 edma_cc
[ctlr
]->intr_data
[k
].
452 edma_cc
[ctlr
]->intr_data
457 } else if (edma_read(ctlr
, EDMA_QEMR
)) {
458 dev_dbg(data
, "QEMR %02x\n",
459 edma_read(ctlr
, EDMA_QEMR
));
460 for (i
= 0; i
< 8; i
++) {
461 if (edma_read(ctlr
, EDMA_QEMR
) & BIT(i
)) {
462 /* Clear the corresponding IPR bits */
463 edma_write(ctlr
, EDMA_QEMCR
, BIT(i
));
464 edma_shadow0_write(ctlr
, SH_QSECR
,
467 /* NOTE: not reported!! */
470 } else if (edma_read(ctlr
, EDMA_CCERR
)) {
471 dev_dbg(data
, "CCERR %08x\n",
472 edma_read(ctlr
, EDMA_CCERR
));
473 /* FIXME: CCERR.BIT(16) ignored! much better
474 * to just write CCERRCLR with CCERR value...
476 for (i
= 0; i
< 8; i
++) {
477 if (edma_read(ctlr
, EDMA_CCERR
) & BIT(i
)) {
478 /* Clear the corresponding IPR bits */
479 edma_write(ctlr
, EDMA_CCERRCLR
, BIT(i
));
481 /* NOTE: not reported!! */
485 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0) &&
486 (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0) &&
487 (edma_read(ctlr
, EDMA_QEMR
) == 0) &&
488 (edma_read(ctlr
, EDMA_CCERR
) == 0))
494 edma_write(ctlr
, EDMA_EEVAL
, 1);
498 /******************************************************************************
500 * Transfer controller error interrupt handlers
502 *****************************************************************************/
504 #define tc_errs_handled false /* disabled as long as they're NOPs */
506 static irqreturn_t
dma_tc0err_handler(int irq
, void *data
)
508 dev_dbg(data
, "dma_tc0err_handler\n");
512 static irqreturn_t
dma_tc1err_handler(int irq
, void *data
)
514 dev_dbg(data
, "dma_tc1err_handler\n");
518 static int reserve_contiguous_slots(int ctlr
, unsigned int id
,
519 unsigned int num_slots
,
520 unsigned int start_slot
)
523 unsigned int count
= num_slots
;
524 int stop_slot
= start_slot
;
525 DECLARE_BITMAP(tmp_inuse
, EDMA_MAX_PARAMENTRY
);
527 for (i
= start_slot
; i
< edma_cc
[ctlr
]->num_slots
; ++i
) {
528 j
= EDMA_CHAN_SLOT(i
);
529 if (!test_and_set_bit(j
, edma_cc
[ctlr
]->edma_inuse
)) {
530 /* Record our current beginning slot */
531 if (count
== num_slots
)
535 set_bit(j
, tmp_inuse
);
540 clear_bit(j
, tmp_inuse
);
542 if (id
== EDMA_CONT_PARAMS_FIXED_EXACT
) {
552 * We have to clear any bits that we set
553 * if we run out parameter RAM slots, i.e we do find a set
554 * of contiguous parameter RAM slots but do not find the exact number
555 * requested as we may reach the total number of parameter RAM slots
557 if (i
== edma_cc
[ctlr
]->num_slots
)
560 for (j
= start_slot
; j
< stop_slot
; j
++)
561 if (test_bit(j
, tmp_inuse
))
562 clear_bit(j
, edma_cc
[ctlr
]->edma_inuse
);
567 for (j
= i
- num_slots
+ 1; j
<= i
; ++j
)
568 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(j
),
569 &dummy_paramset
, PARM_SIZE
);
571 return EDMA_CTLR_CHAN(ctlr
, i
- num_slots
+ 1);
574 static int prepare_unused_channel_list(struct device
*dev
, void *data
)
576 struct platform_device
*pdev
= to_platform_device(dev
);
579 for (i
= 0; i
< pdev
->num_resources
; i
++) {
580 if ((pdev
->resource
[i
].flags
& IORESOURCE_DMA
) &&
581 (int)pdev
->resource
[i
].start
>= 0) {
582 ctlr
= EDMA_CTLR(pdev
->resource
[i
].start
);
583 clear_bit(EDMA_CHAN_SLOT(pdev
->resource
[i
].start
),
584 edma_cc
[ctlr
]->edma_unused
);
591 /*-----------------------------------------------------------------------*/
593 static bool unused_chan_list_done
;
595 /* Resource alloc/free: dma channels, parameter RAM slots */
598 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
599 * @channel: specific channel to allocate; negative for "any unmapped channel"
600 * @callback: optional; to be issued on DMA completion or errors
601 * @data: passed to callback
602 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
603 * Controller (TC) executes requests using this channel. Use
604 * EVENTQ_DEFAULT unless you really need a high priority queue.
606 * This allocates a DMA channel and its associated parameter RAM slot.
607 * The parameter RAM is initialized to hold a dummy transfer.
609 * Normal use is to pass a specific channel number as @channel, to make
610 * use of hardware events mapped to that channel. When the channel will
611 * be used only for software triggering or event chaining, channels not
612 * mapped to hardware events (or mapped to unused events) are preferable.
614 * DMA transfers start from a channel using edma_start(), or by
615 * chaining. When the transfer described in that channel's parameter RAM
616 * slot completes, that slot's data may be reloaded through a link.
618 * DMA errors are only reported to the @callback associated with the
619 * channel driving that transfer, but transfer completion callbacks can
620 * be sent to another channel under control of the TCC field in
621 * the option word of the transfer's parameter RAM set. Drivers must not
622 * use DMA transfer completion callbacks for channels they did not allocate.
623 * (The same applies to TCC codes used in transfer chaining.)
625 * Returns the number of the channel, else negative errno.
627 int edma_alloc_channel(int channel
,
628 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
630 enum dma_event_q eventq_no
)
632 unsigned i
, done
= 0, ctlr
= 0;
635 if (!unused_chan_list_done
) {
637 * Scan all the platform devices to find out the EDMA channels
638 * used and clear them in the unused list, making the rest
639 * available for ARM usage.
641 ret
= bus_for_each_dev(&platform_bus_type
, NULL
, NULL
,
642 prepare_unused_channel_list
);
646 unused_chan_list_done
= true;
650 ctlr
= EDMA_CTLR(channel
);
651 channel
= EDMA_CHAN_SLOT(channel
);
655 for (i
= 0; i
< arch_num_cc
; i
++) {
658 channel
= find_next_bit(edma_cc
[i
]->edma_unused
,
659 edma_cc
[i
]->num_channels
,
661 if (channel
== edma_cc
[i
]->num_channels
)
663 if (!test_and_set_bit(channel
,
664 edma_cc
[i
]->edma_inuse
)) {
676 } else if (channel
>= edma_cc
[ctlr
]->num_channels
) {
678 } else if (test_and_set_bit(channel
, edma_cc
[ctlr
]->edma_inuse
)) {
682 /* ensure access through shadow region 0 */
683 edma_or_array2(ctlr
, EDMA_DRAE
, 0, channel
>> 5, BIT(channel
& 0x1f));
685 /* ensure no events are pending */
686 edma_stop(EDMA_CTLR_CHAN(ctlr
, channel
));
687 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
688 &dummy_paramset
, PARM_SIZE
);
691 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr
, channel
),
694 map_dmach_queue(ctlr
, channel
, eventq_no
);
696 return EDMA_CTLR_CHAN(ctlr
, channel
);
698 EXPORT_SYMBOL(edma_alloc_channel
);
702 * edma_free_channel - deallocate DMA channel
703 * @channel: dma channel returned from edma_alloc_channel()
705 * This deallocates the DMA channel and associated parameter RAM slot
706 * allocated by edma_alloc_channel().
708 * Callers are responsible for ensuring the channel is inactive, and
709 * will not be reactivated by linking, chaining, or software calls to
712 void edma_free_channel(unsigned channel
)
716 ctlr
= EDMA_CTLR(channel
);
717 channel
= EDMA_CHAN_SLOT(channel
);
719 if (channel
>= edma_cc
[ctlr
]->num_channels
)
722 setup_dma_interrupt(channel
, NULL
, NULL
);
723 /* REVISIT should probably take out of shadow region 0 */
725 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
726 &dummy_paramset
, PARM_SIZE
);
727 clear_bit(channel
, edma_cc
[ctlr
]->edma_inuse
);
729 EXPORT_SYMBOL(edma_free_channel
);
732 * edma_alloc_slot - allocate DMA parameter RAM
733 * @slot: specific slot to allocate; negative for "any unused slot"
735 * This allocates a parameter RAM slot, initializing it to hold a
736 * dummy transfer. Slots allocated using this routine have not been
737 * mapped to a hardware DMA channel, and will normally be used by
738 * linking to them from a slot associated with a DMA channel.
740 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
741 * slots may be allocated on behalf of DSP firmware.
743 * Returns the number of the slot, else negative errno.
745 int edma_alloc_slot(unsigned ctlr
, int slot
)
748 slot
= EDMA_CHAN_SLOT(slot
);
751 slot
= edma_cc
[ctlr
]->num_channels
;
753 slot
= find_next_zero_bit(edma_cc
[ctlr
]->edma_inuse
,
754 edma_cc
[ctlr
]->num_slots
, slot
);
755 if (slot
== edma_cc
[ctlr
]->num_slots
)
757 if (!test_and_set_bit(slot
, edma_cc
[ctlr
]->edma_inuse
))
760 } else if (slot
< edma_cc
[ctlr
]->num_channels
||
761 slot
>= edma_cc
[ctlr
]->num_slots
) {
763 } else if (test_and_set_bit(slot
, edma_cc
[ctlr
]->edma_inuse
)) {
767 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
768 &dummy_paramset
, PARM_SIZE
);
770 return EDMA_CTLR_CHAN(ctlr
, slot
);
772 EXPORT_SYMBOL(edma_alloc_slot
);
775 * edma_free_slot - deallocate DMA parameter RAM
776 * @slot: parameter RAM slot returned from edma_alloc_slot()
778 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
779 * Callers are responsible for ensuring the slot is inactive, and will
782 void edma_free_slot(unsigned slot
)
786 ctlr
= EDMA_CTLR(slot
);
787 slot
= EDMA_CHAN_SLOT(slot
);
789 if (slot
< edma_cc
[ctlr
]->num_channels
||
790 slot
>= edma_cc
[ctlr
]->num_slots
)
793 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
794 &dummy_paramset
, PARM_SIZE
);
795 clear_bit(slot
, edma_cc
[ctlr
]->edma_inuse
);
797 EXPORT_SYMBOL(edma_free_slot
);
801 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
802 * The API will return the starting point of a set of
803 * contiguous parameter RAM slots that have been requested
805 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
806 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
807 * @count: number of contiguous Paramter RAM slots
808 * @slot - the start value of Parameter RAM slot that should be passed if id
809 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
811 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
812 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
813 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
815 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
816 * set of contiguous parameter RAM slots from the "slot" that is passed as an
817 * argument to the API.
819 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
820 * starts looking for a set of contiguous parameter RAMs from the "slot"
821 * that is passed as an argument to the API. On failure the API will try to
822 * find a set of contiguous Parameter RAM slots from the remaining Parameter
825 int edma_alloc_cont_slots(unsigned ctlr
, unsigned int id
, int slot
, int count
)
828 * The start slot requested should be greater than
829 * the number of channels and lesser than the total number
832 if ((id
!= EDMA_CONT_PARAMS_ANY
) &&
833 (slot
< edma_cc
[ctlr
]->num_channels
||
834 slot
>= edma_cc
[ctlr
]->num_slots
))
838 * The number of parameter RAM slots requested cannot be less than 1
839 * and cannot be more than the number of slots minus the number of
842 if (count
< 1 || count
>
843 (edma_cc
[ctlr
]->num_slots
- edma_cc
[ctlr
]->num_channels
))
847 case EDMA_CONT_PARAMS_ANY
:
848 return reserve_contiguous_slots(ctlr
, id
, count
,
849 edma_cc
[ctlr
]->num_channels
);
850 case EDMA_CONT_PARAMS_FIXED_EXACT
:
851 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT
:
852 return reserve_contiguous_slots(ctlr
, id
, count
, slot
);
858 EXPORT_SYMBOL(edma_alloc_cont_slots
);
861 * edma_free_cont_slots - deallocate DMA parameter RAM slots
862 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
863 * @count: the number of contiguous parameter RAM slots to be freed
865 * This deallocates the parameter RAM slots allocated by
866 * edma_alloc_cont_slots.
867 * Callers/applications need to keep track of sets of contiguous
868 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
870 * Callers are responsible for ensuring the slots are inactive, and will
873 int edma_free_cont_slots(unsigned slot
, int count
)
875 unsigned ctlr
, slot_to_free
;
878 ctlr
= EDMA_CTLR(slot
);
879 slot
= EDMA_CHAN_SLOT(slot
);
881 if (slot
< edma_cc
[ctlr
]->num_channels
||
882 slot
>= edma_cc
[ctlr
]->num_slots
||
886 for (i
= slot
; i
< slot
+ count
; ++i
) {
888 slot_to_free
= EDMA_CHAN_SLOT(i
);
890 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot_to_free
),
891 &dummy_paramset
, PARM_SIZE
);
892 clear_bit(slot_to_free
, edma_cc
[ctlr
]->edma_inuse
);
897 EXPORT_SYMBOL(edma_free_cont_slots
);
899 /*-----------------------------------------------------------------------*/
901 /* Parameter RAM operations (i) -- read/write partial slots */
904 * edma_set_src - set initial DMA source address in parameter RAM slot
905 * @slot: parameter RAM slot being configured
906 * @src_port: physical address of source (memory, controller FIFO, etc)
907 * @addressMode: INCR, except in very rare cases
908 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
909 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
911 * Note that the source address is modified during the DMA transfer
912 * according to edma_set_src_index().
914 void edma_set_src(unsigned slot
, dma_addr_t src_port
,
915 enum address_mode mode
, enum fifo_width width
)
919 ctlr
= EDMA_CTLR(slot
);
920 slot
= EDMA_CHAN_SLOT(slot
);
922 if (slot
< edma_cc
[ctlr
]->num_slots
) {
923 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
926 /* set SAM and program FWID */
927 i
= (i
& ~(EDMA_FWID
)) | (SAM
| ((width
& 0x7) << 8));
932 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
934 /* set the source port address
935 in source register of param structure */
936 edma_parm_write(ctlr
, PARM_SRC
, slot
, src_port
);
939 EXPORT_SYMBOL(edma_set_src
);
942 * edma_set_dest - set initial DMA destination address in parameter RAM slot
943 * @slot: parameter RAM slot being configured
944 * @dest_port: physical address of destination (memory, controller FIFO, etc)
945 * @addressMode: INCR, except in very rare cases
946 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
947 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
949 * Note that the destination address is modified during the DMA transfer
950 * according to edma_set_dest_index().
952 void edma_set_dest(unsigned slot
, dma_addr_t dest_port
,
953 enum address_mode mode
, enum fifo_width width
)
957 ctlr
= EDMA_CTLR(slot
);
958 slot
= EDMA_CHAN_SLOT(slot
);
960 if (slot
< edma_cc
[ctlr
]->num_slots
) {
961 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
964 /* set DAM and program FWID */
965 i
= (i
& ~(EDMA_FWID
)) | (DAM
| ((width
& 0x7) << 8));
970 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
971 /* set the destination port address
972 in dest register of param structure */
973 edma_parm_write(ctlr
, PARM_DST
, slot
, dest_port
);
976 EXPORT_SYMBOL(edma_set_dest
);
979 * edma_get_position - returns the current transfer points
980 * @slot: parameter RAM slot being examined
981 * @src: pointer to source port position
982 * @dst: pointer to destination port position
984 * Returns current source and destination addresses for a particular
985 * parameter RAM slot. Its channel should not be active when this is called.
987 void edma_get_position(unsigned slot
, dma_addr_t
*src
, dma_addr_t
*dst
)
989 struct edmacc_param temp
;
992 ctlr
= EDMA_CTLR(slot
);
993 slot
= EDMA_CHAN_SLOT(slot
);
995 edma_read_slot(EDMA_CTLR_CHAN(ctlr
, slot
), &temp
);
1001 EXPORT_SYMBOL(edma_get_position
);
1004 * edma_set_src_index - configure DMA source address indexing
1005 * @slot: parameter RAM slot being configured
1006 * @src_bidx: byte offset between source arrays in a frame
1007 * @src_cidx: byte offset between source frames in a block
1009 * Offsets are specified to support either contiguous or discontiguous
1010 * memory transfers, or repeated access to a hardware register, as needed.
1011 * When accessing hardware registers, both offsets are normally zero.
1013 void edma_set_src_index(unsigned slot
, s16 src_bidx
, s16 src_cidx
)
1017 ctlr
= EDMA_CTLR(slot
);
1018 slot
= EDMA_CHAN_SLOT(slot
);
1020 if (slot
< edma_cc
[ctlr
]->num_slots
) {
1021 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
1022 0xffff0000, src_bidx
);
1023 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
1024 0xffff0000, src_cidx
);
1027 EXPORT_SYMBOL(edma_set_src_index
);
1030 * edma_set_dest_index - configure DMA destination address indexing
1031 * @slot: parameter RAM slot being configured
1032 * @dest_bidx: byte offset between destination arrays in a frame
1033 * @dest_cidx: byte offset between destination frames in a block
1035 * Offsets are specified to support either contiguous or discontiguous
1036 * memory transfers, or repeated access to a hardware register, as needed.
1037 * When accessing hardware registers, both offsets are normally zero.
1039 void edma_set_dest_index(unsigned slot
, s16 dest_bidx
, s16 dest_cidx
)
1043 ctlr
= EDMA_CTLR(slot
);
1044 slot
= EDMA_CHAN_SLOT(slot
);
1046 if (slot
< edma_cc
[ctlr
]->num_slots
) {
1047 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
1048 0x0000ffff, dest_bidx
<< 16);
1049 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
1050 0x0000ffff, dest_cidx
<< 16);
1053 EXPORT_SYMBOL(edma_set_dest_index
);
1056 * edma_set_transfer_params - configure DMA transfer parameters
1057 * @slot: parameter RAM slot being configured
1058 * @acnt: how many bytes per array (at least one)
1059 * @bcnt: how many arrays per frame (at least one)
1060 * @ccnt: how many frames per block (at least one)
1061 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1062 * the value to reload into bcnt when it decrements to zero
1063 * @sync_mode: ASYNC or ABSYNC
1065 * See the EDMA3 documentation to understand how to configure and link
1066 * transfers using the fields in PaRAM slots. If you are not doing it
1067 * all at once with edma_write_slot(), you will use this routine
1068 * plus two calls each for source and destination, setting the initial
1069 * address and saying how to index that address.
1071 * An example of an A-Synchronized transfer is a serial link using a
1072 * single word shift register. In that case, @acnt would be equal to
1073 * that word size; the serial controller issues a DMA synchronization
1074 * event to transfer each word, and memory access by the DMA transfer
1075 * controller will be word-at-a-time.
1077 * An example of an AB-Synchronized transfer is a device using a FIFO.
1078 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1079 * The controller with the FIFO issues DMA synchronization events when
1080 * the FIFO threshold is reached, and the DMA transfer controller will
1081 * transfer one frame to (or from) the FIFO. It will probably use
1082 * efficient burst modes to access memory.
1084 void edma_set_transfer_params(unsigned slot
,
1085 u16 acnt
, u16 bcnt
, u16 ccnt
,
1086 u16 bcnt_rld
, enum sync_dimension sync_mode
)
1090 ctlr
= EDMA_CTLR(slot
);
1091 slot
= EDMA_CHAN_SLOT(slot
);
1093 if (slot
< edma_cc
[ctlr
]->num_slots
) {
1094 edma_parm_modify(ctlr
, PARM_LINK_BCNTRLD
, slot
,
1095 0x0000ffff, bcnt_rld
<< 16);
1096 if (sync_mode
== ASYNC
)
1097 edma_parm_and(ctlr
, PARM_OPT
, slot
, ~SYNCDIM
);
1099 edma_parm_or(ctlr
, PARM_OPT
, slot
, SYNCDIM
);
1100 /* Set the acount, bcount, ccount registers */
1101 edma_parm_write(ctlr
, PARM_A_B_CNT
, slot
, (bcnt
<< 16) | acnt
);
1102 edma_parm_write(ctlr
, PARM_CCNT
, slot
, ccnt
);
1105 EXPORT_SYMBOL(edma_set_transfer_params
);
1108 * edma_link - link one parameter RAM slot to another
1109 * @from: parameter RAM slot originating the link
1110 * @to: parameter RAM slot which is the link target
1112 * The originating slot should not be part of any active DMA transfer.
1114 void edma_link(unsigned from
, unsigned to
)
1116 unsigned ctlr_from
, ctlr_to
;
1118 ctlr_from
= EDMA_CTLR(from
);
1119 from
= EDMA_CHAN_SLOT(from
);
1120 ctlr_to
= EDMA_CTLR(to
);
1121 to
= EDMA_CHAN_SLOT(to
);
1123 if (from
>= edma_cc
[ctlr_from
]->num_slots
)
1125 if (to
>= edma_cc
[ctlr_to
]->num_slots
)
1127 edma_parm_modify(ctlr_from
, PARM_LINK_BCNTRLD
, from
, 0xffff0000,
1130 EXPORT_SYMBOL(edma_link
);
1133 * edma_unlink - cut link from one parameter RAM slot
1134 * @from: parameter RAM slot originating the link
1136 * The originating slot should not be part of any active DMA transfer.
1137 * Its link is set to 0xffff.
1139 void edma_unlink(unsigned from
)
1143 ctlr
= EDMA_CTLR(from
);
1144 from
= EDMA_CHAN_SLOT(from
);
1146 if (from
>= edma_cc
[ctlr
]->num_slots
)
1148 edma_parm_or(ctlr
, PARM_LINK_BCNTRLD
, from
, 0xffff);
1150 EXPORT_SYMBOL(edma_unlink
);
1152 /*-----------------------------------------------------------------------*/
1154 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1157 * edma_write_slot - write parameter RAM data for slot
1158 * @slot: number of parameter RAM slot being modified
1159 * @param: data to be written into parameter RAM slot
1161 * Use this to assign all parameters of a transfer at once. This
1162 * allows more efficient setup of transfers than issuing multiple
1163 * calls to set up those parameters in small pieces, and provides
1164 * complete control over all transfer options.
1166 void edma_write_slot(unsigned slot
, const struct edmacc_param
*param
)
1170 ctlr
= EDMA_CTLR(slot
);
1171 slot
= EDMA_CHAN_SLOT(slot
);
1173 if (slot
>= edma_cc
[ctlr
]->num_slots
)
1175 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
), param
,
1178 EXPORT_SYMBOL(edma_write_slot
);
1181 * edma_read_slot - read parameter RAM data from slot
1182 * @slot: number of parameter RAM slot being copied
1183 * @param: where to store copy of parameter RAM data
1185 * Use this to read data from a parameter RAM slot, perhaps to
1186 * save them as a template for later reuse.
1188 void edma_read_slot(unsigned slot
, struct edmacc_param
*param
)
1192 ctlr
= EDMA_CTLR(slot
);
1193 slot
= EDMA_CHAN_SLOT(slot
);
1195 if (slot
>= edma_cc
[ctlr
]->num_slots
)
1197 memcpy_fromio(param
, edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
1200 EXPORT_SYMBOL(edma_read_slot
);
1202 /*-----------------------------------------------------------------------*/
1204 /* Various EDMA channel control operations */
1207 * edma_pause - pause dma on a channel
1208 * @channel: on which edma_start() has been called
1210 * This temporarily disables EDMA hardware events on the specified channel,
1211 * preventing them from triggering new transfers on its behalf
1213 void edma_pause(unsigned channel
)
1217 ctlr
= EDMA_CTLR(channel
);
1218 channel
= EDMA_CHAN_SLOT(channel
);
1220 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1221 unsigned int mask
= BIT(channel
& 0x1f);
1223 edma_shadow0_write_array(ctlr
, SH_EECR
, channel
>> 5, mask
);
1226 EXPORT_SYMBOL(edma_pause
);
1229 * edma_resume - resumes dma on a paused channel
1230 * @channel: on which edma_pause() has been called
1232 * This re-enables EDMA hardware events on the specified channel.
1234 void edma_resume(unsigned channel
)
1238 ctlr
= EDMA_CTLR(channel
);
1239 channel
= EDMA_CHAN_SLOT(channel
);
1241 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1242 unsigned int mask
= BIT(channel
& 0x1f);
1244 edma_shadow0_write_array(ctlr
, SH_EESR
, channel
>> 5, mask
);
1247 EXPORT_SYMBOL(edma_resume
);
1250 * edma_start - start dma on a channel
1251 * @channel: channel being activated
1253 * Channels with event associations will be triggered by their hardware
1254 * events, and channels without such associations will be triggered by
1255 * software. (At this writing there is no interface for using software
1256 * triggers except with channels that don't support hardware triggers.)
1258 * Returns zero on success, else negative errno.
1260 int edma_start(unsigned channel
)
1264 ctlr
= EDMA_CTLR(channel
);
1265 channel
= EDMA_CHAN_SLOT(channel
);
1267 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1268 int j
= channel
>> 5;
1269 unsigned int mask
= BIT(channel
& 0x1f);
1271 /* EDMA channels without event association */
1272 if (test_bit(channel
, edma_cc
[ctlr
]->edma_unused
)) {
1273 pr_debug("EDMA: ESR%d %08x\n", j
,
1274 edma_shadow0_read_array(ctlr
, SH_ESR
, j
));
1275 edma_shadow0_write_array(ctlr
, SH_ESR
, j
, mask
);
1279 /* EDMA channel with event association */
1280 pr_debug("EDMA: ER%d %08x\n", j
,
1281 edma_shadow0_read_array(ctlr
, SH_ER
, j
));
1282 /* Clear any pending event or error */
1283 edma_write_array(ctlr
, EDMA_ECR
, j
, mask
);
1284 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1286 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1287 edma_shadow0_write_array(ctlr
, SH_EESR
, j
, mask
);
1288 pr_debug("EDMA: EER%d %08x\n", j
,
1289 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1295 EXPORT_SYMBOL(edma_start
);
1298 * edma_stop - stops dma on the channel passed
1299 * @channel: channel being deactivated
1301 * When @lch is a channel, any active transfer is paused and
1302 * all pending hardware events are cleared. The current transfer
1303 * may not be resumed, and the channel's Parameter RAM should be
1304 * reinitialized before being reused.
1306 void edma_stop(unsigned channel
)
1310 ctlr
= EDMA_CTLR(channel
);
1311 channel
= EDMA_CHAN_SLOT(channel
);
1313 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1314 int j
= channel
>> 5;
1315 unsigned int mask
= BIT(channel
& 0x1f);
1317 edma_shadow0_write_array(ctlr
, SH_EECR
, j
, mask
);
1318 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1319 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1320 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1322 pr_debug("EDMA: EER%d %08x\n", j
,
1323 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1325 /* REVISIT: consider guarding against inappropriate event
1326 * chaining by overwriting with dummy_paramset.
1330 EXPORT_SYMBOL(edma_stop
);
1332 /******************************************************************************
1334 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1335 * been removed before EDMA has finished.It is usedful for removable media.
1337 * ch_no - channel no
1339 * Return: zero on success, or corresponding error no on failure
1341 * FIXME this should not be needed ... edma_stop() should suffice.
1343 *****************************************************************************/
1345 void edma_clean_channel(unsigned channel
)
1349 ctlr
= EDMA_CTLR(channel
);
1350 channel
= EDMA_CHAN_SLOT(channel
);
1352 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1353 int j
= (channel
>> 5);
1354 unsigned int mask
= BIT(channel
& 0x1f);
1356 pr_debug("EDMA: EMR%d %08x\n", j
,
1357 edma_read_array(ctlr
, EDMA_EMR
, j
));
1358 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1359 /* Clear the corresponding EMR bits */
1360 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1362 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1363 edma_write(ctlr
, EDMA_CCERRCLR
, BIT(16) | BIT(1) | BIT(0));
1366 EXPORT_SYMBOL(edma_clean_channel
);
1369 * edma_clear_event - clear an outstanding event on the DMA channel
1371 * channel - channel number
1373 void edma_clear_event(unsigned channel
)
1377 ctlr
= EDMA_CTLR(channel
);
1378 channel
= EDMA_CHAN_SLOT(channel
);
1380 if (channel
>= edma_cc
[ctlr
]->num_channels
)
1383 edma_write(ctlr
, EDMA_ECR
, BIT(channel
));
1385 edma_write(ctlr
, EDMA_ECRH
, BIT(channel
- 32));
1387 EXPORT_SYMBOL(edma_clear_event
);
1389 /*-----------------------------------------------------------------------*/
1391 static int __init
edma_probe(struct platform_device
*pdev
)
1393 struct edma_soc_info
**info
= pdev
->dev
.platform_data
;
1394 const s8 (*queue_priority_mapping
)[2];
1395 const s8 (*queue_tc_mapping
)[2];
1396 int i
, j
, off
, ln
, found
= 0;
1398 const s16 (*rsv_chans
)[2];
1399 const s16 (*rsv_slots
)[2];
1400 int irq
[EDMA_MAX_CC
] = {0, 0};
1401 int err_irq
[EDMA_MAX_CC
] = {0, 0};
1402 struct resource
*r
[EDMA_MAX_CC
] = {NULL
};
1403 resource_size_t len
[EDMA_MAX_CC
];
1410 for (j
= 0; j
< EDMA_MAX_CC
; j
++) {
1411 sprintf(res_name
, "edma_cc%d", j
);
1412 r
[j
] = platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
1414 if (!r
[j
] || !info
[j
]) {
1423 len
[j
] = resource_size(r
[j
]);
1425 r
[j
] = request_mem_region(r
[j
]->start
, len
[j
],
1426 dev_name(&pdev
->dev
));
1432 edmacc_regs_base
[j
] = ioremap(r
[j
]->start
, len
[j
]);
1433 if (!edmacc_regs_base
[j
]) {
1438 edma_cc
[j
] = kzalloc(sizeof(struct edma
), GFP_KERNEL
);
1444 edma_cc
[j
]->num_channels
= min_t(unsigned, info
[j
]->n_channel
,
1446 edma_cc
[j
]->num_slots
= min_t(unsigned, info
[j
]->n_slot
,
1447 EDMA_MAX_PARAMENTRY
);
1448 edma_cc
[j
]->num_cc
= min_t(unsigned, info
[j
]->n_cc
,
1451 edma_cc
[j
]->default_queue
= info
[j
]->default_queue
;
1453 dev_dbg(&pdev
->dev
, "DMA REG BASE ADDR=%p\n",
1454 edmacc_regs_base
[j
]);
1456 for (i
= 0; i
< edma_cc
[j
]->num_slots
; i
++)
1457 memcpy_toio(edmacc_regs_base
[j
] + PARM_OFFSET(i
),
1458 &dummy_paramset
, PARM_SIZE
);
1460 /* Mark all channels as unused */
1461 memset(edma_cc
[j
]->edma_unused
, 0xff,
1462 sizeof(edma_cc
[j
]->edma_unused
));
1466 /* Clear the reserved channels in unused list */
1467 rsv_chans
= info
[j
]->rsv
->rsv_chans
;
1469 for (i
= 0; rsv_chans
[i
][0] != -1; i
++) {
1470 off
= rsv_chans
[i
][0];
1471 ln
= rsv_chans
[i
][1];
1473 edma_cc
[j
]->edma_unused
);
1477 /* Set the reserved slots in inuse list */
1478 rsv_slots
= info
[j
]->rsv
->rsv_slots
;
1480 for (i
= 0; rsv_slots
[i
][0] != -1; i
++) {
1481 off
= rsv_slots
[i
][0];
1482 ln
= rsv_slots
[i
][1];
1484 edma_cc
[j
]->edma_inuse
);
1489 sprintf(irq_name
, "edma%d", j
);
1490 irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1491 edma_cc
[j
]->irq_res_start
= irq
[j
];
1492 status
= request_irq(irq
[j
], dma_irq_handler
, 0, "edma",
1495 dev_dbg(&pdev
->dev
, "request_irq %d failed --> %d\n",
1500 sprintf(irq_name
, "edma%d_err", j
);
1501 err_irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1502 edma_cc
[j
]->irq_res_end
= err_irq
[j
];
1503 status
= request_irq(err_irq
[j
], dma_ccerr_handler
, 0,
1504 "edma_error", &pdev
->dev
);
1506 dev_dbg(&pdev
->dev
, "request_irq %d failed --> %d\n",
1507 err_irq
[j
], status
);
1511 /* Everything lives on transfer controller 1 until otherwise
1512 * specified. This way, long transfers on the low priority queue
1513 * started by the codec engine will not cause audio defects.
1515 for (i
= 0; i
< edma_cc
[j
]->num_channels
; i
++)
1516 map_dmach_queue(j
, i
, EVENTQ_1
);
1518 queue_tc_mapping
= info
[j
]->queue_tc_mapping
;
1519 queue_priority_mapping
= info
[j
]->queue_priority_mapping
;
1521 /* Event queue to TC mapping */
1522 for (i
= 0; queue_tc_mapping
[i
][0] != -1; i
++)
1523 map_queue_tc(j
, queue_tc_mapping
[i
][0],
1524 queue_tc_mapping
[i
][1]);
1526 /* Event queue priority mapping */
1527 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
1528 assign_priority_to_queue(j
,
1529 queue_priority_mapping
[i
][0],
1530 queue_priority_mapping
[i
][1]);
1532 /* Map the channel to param entry if channel mapping logic
1535 if (edma_read(j
, EDMA_CCCFG
) & CHMAP_EXIST
)
1538 for (i
= 0; i
< info
[j
]->n_region
; i
++) {
1539 edma_write_array2(j
, EDMA_DRAE
, i
, 0, 0x0);
1540 edma_write_array2(j
, EDMA_DRAE
, i
, 1, 0x0);
1541 edma_write_array(j
, EDMA_QRAE
, i
, 0x0);
1546 if (tc_errs_handled
) {
1547 status
= request_irq(IRQ_TCERRINT0
, dma_tc0err_handler
, 0,
1548 "edma_tc0", &pdev
->dev
);
1550 dev_dbg(&pdev
->dev
, "request_irq %d failed --> %d\n",
1551 IRQ_TCERRINT0
, status
);
1554 status
= request_irq(IRQ_TCERRINT
, dma_tc1err_handler
, 0,
1555 "edma_tc1", &pdev
->dev
);
1557 dev_dbg(&pdev
->dev
, "request_irq %d --> %d\n",
1558 IRQ_TCERRINT
, status
);
1566 for (i
= 0; i
< EDMA_MAX_CC
; i
++) {
1568 free_irq(err_irq
[i
], &pdev
->dev
);
1570 free_irq(irq
[i
], &pdev
->dev
);
1573 for (i
= 0; i
< EDMA_MAX_CC
; i
++) {
1575 release_mem_region(r
[i
]->start
, len
[i
]);
1576 if (edmacc_regs_base
[i
])
1577 iounmap(edmacc_regs_base
[i
]);
1584 static struct platform_driver edma_driver
= {
1585 .driver
.name
= "edma",
1588 static int __init
edma_init(void)
1590 return platform_driver_probe(&edma_driver
, edma_probe
);
1592 arch_initcall(edma_init
);