2 * cpu-sa1100.c: clock scaling for the SA1100
4 * Copyright (C) 2000 2001, The Delft University of Technology
7 * - Johan Pouwelse (J.A.Pouwelse@its.tudelft.nl): initial version
8 * - Erik Mouw (J.A.K.Mouw@its.tudelft.nl):
9 * - major rewrite for linux-2.3.99
10 * - rewritten for the more generic power management scheme in
13 * This software has been developed while working on the LART
14 * computing board (http://www.lartmaker.nl/), which is
15 * sponsored by the Mobile Multi-media Communications
16 * (http://www.mobimedia.org/) and Ubiquitous Communications
17 * (http://www.ubicom.tudelft.nl/) projects.
19 * The authors can be reached at:
22 * Information and Communication Theory Group
23 * Faculty of Information Technology and Systems
24 * Delft University of Technology
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
35 * This program is distributed in the hope that it will be useful,
36 * but WITHOUT ANY WARRANTY; without even the implied warranty of
37 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
38 * GNU General Public License for more details.
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
45 * Theory of operations
46 * ====================
48 * Clock scaling can be used to lower the power consumption of the CPU
49 * core. This will give you a somewhat longer running time.
51 * The SA-1100 has a single register to change the core clock speed:
53 * PPCR 0x90020014 PLL config
55 * However, the DRAM timings are closely related to the core clock
56 * speed, so we need to change these, too. The used registers are:
58 * MDCNFG 0xA0000000 DRAM config
59 * MDCAS0 0xA0000004 Access waveform
60 * MDCAS1 0xA0000008 Access waveform
61 * MDCAS2 0xA000000C Access waveform
63 * Care must be taken to change the DRAM parameters the correct way,
64 * because otherwise the DRAM becomes unusable and the kernel will
67 * The simple solution to avoid a kernel crash is to put the actual
68 * clock change in ROM and jump to that code from the kernel. The main
69 * disadvantage is that the ROM has to be modified, which is not
70 * possible on all SA-1100 platforms. Another disadvantage is that
71 * jumping to ROM makes clock switching unnecessary complicated.
73 * The idea behind this driver is that the memory configuration can be
74 * changed while running from DRAM (even with interrupts turned on!)
75 * as long as all re-configuration steps yield a valid DRAM
76 * configuration. The advantages are clear: it will run on all SA-1100
77 * platforms, and the code is very simple.
79 * If you really want to understand what is going on in
80 * sa1100_update_dram_timings(), you'll have to read sections 8.2,
81 * 9.5.7.3, and 10.2 from the "Intel StrongARM SA-1100 Microprocessor
82 * Developers Manual" (available for free from Intel).
86 #include <linux/kernel.h>
87 #include <linux/types.h>
88 #include <linux/init.h>
89 #include <linux/cpufreq.h>
91 #include <asm/cputype.h>
93 #include <mach/hardware.h>
97 struct sa1100_dram_regs
{
106 static struct cpufreq_driver sa1100_driver
;
108 static struct sa1100_dram_regs sa1100_dram_settings
[] = {
109 /*speed, mdcnfg, mdcas0, mdcas1, mdcas2, clock freq */
110 { 59000, 0x00dc88a3, 0xcccccccf, 0xfffffffc, 0xffffffff},/* 59.0 MHz */
111 { 73700, 0x011490a3, 0xcccccccf, 0xfffffffc, 0xffffffff},/* 73.7 MHz */
112 { 88500, 0x014e90a3, 0xcccccccf, 0xfffffffc, 0xffffffff},/* 88.5 MHz */
113 {103200, 0x01889923, 0xcccccccf, 0xfffffffc, 0xffffffff},/* 103.2 MHz */
114 {118000, 0x01c29923, 0x9999998f, 0xfffffff9, 0xffffffff},/* 118.0 MHz */
115 {132700, 0x01fb2123, 0x9999998f, 0xfffffff9, 0xffffffff},/* 132.7 MHz */
116 {147500, 0x02352123, 0x3333330f, 0xfffffff3, 0xffffffff},/* 147.5 MHz */
117 {162200, 0x026b29a3, 0x38e38e1f, 0xfff8e38e, 0xffffffff},/* 162.2 MHz */
118 {176900, 0x02a329a3, 0x71c71c1f, 0xfff1c71c, 0xffffffff},/* 176.9 MHz */
119 {191700, 0x02dd31a3, 0xe38e383f, 0xffe38e38, 0xffffffff},/* 191.7 MHz */
120 {206400, 0x03153223, 0xc71c703f, 0xffc71c71, 0xffffffff},/* 206.4 MHz */
121 {221200, 0x034fba23, 0xc71c703f, 0xffc71c71, 0xffffffff},/* 221.2 MHz */
122 {235900, 0x03853a23, 0xe1e1e07f, 0xe1e1e1e1, 0xffffffe1},/* 235.9 MHz */
123 {250700, 0x03bf3aa3, 0xc3c3c07f, 0xc3c3c3c3, 0xffffffc3},/* 250.7 MHz */
124 {265400, 0x03f7c2a3, 0xc3c3c07f, 0xc3c3c3c3, 0xffffffc3},/* 265.4 MHz */
125 {280200, 0x0431c2a3, 0x878780ff, 0x87878787, 0xffffff87},/* 280.2 MHz */
126 { 0, 0, 0, 0, 0 } /* last entry */
129 static void sa1100_update_dram_timings(int current_speed
, int new_speed
)
131 struct sa1100_dram_regs
*settings
= sa1100_dram_settings
;
134 while (settings
->speed
!= 0) {
135 if (new_speed
== settings
->speed
)
141 if (settings
->speed
== 0) {
142 panic("%s: couldn't find dram setting for speed %d\n",
143 __func__
, new_speed
);
146 /* No risk, no fun: run with interrupts on! */
147 if (new_speed
> current_speed
) {
148 /* We're going FASTER, so first relax the memory
149 * timings before changing the core frequency
152 /* Half the memory access clock */
153 MDCNFG
|= MDCNFG_CDB2
;
155 /* The order of these statements IS important, keep 8
158 MDCAS2
= settings
->mdcas2
;
159 MDCAS1
= settings
->mdcas1
;
160 MDCAS0
= settings
->mdcas0
;
161 MDCNFG
= settings
->mdcnfg
;
163 /* We're going SLOWER: first decrease the core
164 * frequency and then tighten the memory settings.
167 /* Half the memory access clock */
168 MDCNFG
|= MDCNFG_CDB2
;
170 /* The order of these statements IS important, keep 8
173 MDCAS0
= settings
->mdcas0
;
174 MDCAS1
= settings
->mdcas1
;
175 MDCAS2
= settings
->mdcas2
;
176 MDCNFG
= settings
->mdcnfg
;
180 static int sa1100_target(struct cpufreq_policy
*policy
,
181 unsigned int target_freq
,
182 unsigned int relation
)
184 unsigned int cur
= sa11x0_getspeed(0);
185 unsigned int new_ppcr
;
186 struct cpufreq_freqs freqs
;
188 new_ppcr
= sa11x0_freq_to_ppcr(target_freq
);
190 case CPUFREQ_RELATION_L
:
191 if (sa11x0_ppcr_to_freq(new_ppcr
) > policy
->max
)
194 case CPUFREQ_RELATION_H
:
195 if ((sa11x0_ppcr_to_freq(new_ppcr
) > target_freq
) &&
196 (sa11x0_ppcr_to_freq(new_ppcr
- 1) >= policy
->min
))
202 freqs
.new = sa11x0_ppcr_to_freq(new_ppcr
);
205 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
208 sa1100_update_dram_timings(cur
, freqs
.new);
213 sa1100_update_dram_timings(cur
, freqs
.new);
215 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
220 static int __init
sa1100_cpu_init(struct cpufreq_policy
*policy
)
222 if (policy
->cpu
!= 0)
224 policy
->cur
= policy
->min
= policy
->max
= sa11x0_getspeed(0);
225 policy
->cpuinfo
.min_freq
= 59000;
226 policy
->cpuinfo
.max_freq
= 287000;
227 policy
->cpuinfo
.transition_latency
= CPUFREQ_ETERNAL
;
231 static struct cpufreq_driver sa1100_driver __refdata
= {
232 .flags
= CPUFREQ_STICKY
,
233 .verify
= sa11x0_verify_speed
,
234 .target
= sa1100_target
,
235 .get
= sa11x0_getspeed
,
236 .init
= sa1100_cpu_init
,
240 static int __init
sa1100_dram_init(void)
243 return cpufreq_register_driver(&sa1100_driver
);
248 arch_initcall(sa1100_dram_init
);