2 * linux/arch/arm/vfp/vfpmodule.c
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/types.h>
12 #include <linux/cpu.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/hardirq.h>
15 #include <linux/kernel.h>
16 #include <linux/notifier.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
22 #include <asm/cputype.h>
23 #include <asm/thread_notify.h>
30 * Our undef handlers (in entry.S)
32 void vfp_testing_entry(void);
33 void vfp_support_entry(void);
34 void vfp_null_entry(void);
36 void (*vfp_vector
)(void) = vfp_null_entry
;
40 * Used in startup: set to non-zero if VFP checks fail
41 * After startup, holds VFP architecture
43 unsigned int VFP_arch
;
46 * The pointer to the vfpstate structure of the thread which currently
47 * owns the context held in the VFP hardware, or NULL if the hardware
50 * For UP, this is sufficient to tell which thread owns the VFP context.
51 * However, for SMP, we also need to check the CPU number stored in the
52 * saved state too to catch migrations.
54 union vfp_state
*vfp_current_hw_state
[NR_CPUS
];
57 * Is 'thread's most up to date state stored in this CPUs hardware?
58 * Must be called from non-preemptible context.
60 static bool vfp_state_in_hw(unsigned int cpu
, struct thread_info
*thread
)
63 if (thread
->vfpstate
.hard
.cpu
!= cpu
)
66 return vfp_current_hw_state
[cpu
] == &thread
->vfpstate
;
70 * Force a reload of the VFP context from the thread structure. We do
71 * this by ensuring that access to the VFP hardware is disabled, and
72 * clear vfp_current_hw_state. Must be called from non-preemptible context.
74 static void vfp_force_reload(unsigned int cpu
, struct thread_info
*thread
)
76 if (vfp_state_in_hw(cpu
, thread
)) {
77 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
78 vfp_current_hw_state
[cpu
] = NULL
;
81 thread
->vfpstate
.hard
.cpu
= NR_CPUS
;
86 * Per-thread VFP initialization.
88 static void vfp_thread_flush(struct thread_info
*thread
)
90 union vfp_state
*vfp
= &thread
->vfpstate
;
94 * Disable VFP to ensure we initialize it first. We must ensure
95 * that the modification of vfp_current_hw_state[] and hardware
96 * disable are done for the same CPU and without preemption.
98 * Do this first to ensure that preemption won't overwrite our
99 * state saving should access to the VFP be enabled at this point.
102 if (vfp_current_hw_state
[cpu
] == vfp
)
103 vfp_current_hw_state
[cpu
] = NULL
;
104 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
107 memset(vfp
, 0, sizeof(union vfp_state
));
109 vfp
->hard
.fpexc
= FPEXC_EN
;
110 vfp
->hard
.fpscr
= FPSCR_ROUND_NEAREST
;
112 vfp
->hard
.cpu
= NR_CPUS
;
116 static void vfp_thread_exit(struct thread_info
*thread
)
118 /* release case: Per-thread VFP cleanup. */
119 union vfp_state
*vfp
= &thread
->vfpstate
;
120 unsigned int cpu
= get_cpu();
122 if (vfp_current_hw_state
[cpu
] == vfp
)
123 vfp_current_hw_state
[cpu
] = NULL
;
127 static void vfp_thread_copy(struct thread_info
*thread
)
129 struct thread_info
*parent
= current_thread_info();
131 vfp_sync_hwstate(parent
);
132 thread
->vfpstate
= parent
->vfpstate
;
134 thread
->vfpstate
.hard
.cpu
= NR_CPUS
;
139 * When this function is called with the following 'cmd's, the following
140 * is true while this function is being run:
141 * THREAD_NOFTIFY_SWTICH:
142 * - the previously running thread will not be scheduled onto another CPU.
143 * - the next thread to be run (v) will not be running on another CPU.
144 * - thread->cpu is the local CPU number
145 * - not preemptible as we're called in the middle of a thread switch
146 * THREAD_NOTIFY_FLUSH:
147 * - the thread (v) will be running on the local CPU, so
148 * v === current_thread_info()
149 * - thread->cpu is the local CPU number at the time it is accessed,
150 * but may change at any time.
151 * - we could be preempted if tree preempt rcu is enabled, so
152 * it is unsafe to use thread->cpu.
154 * - the thread (v) will be running on the local CPU, so
155 * v === current_thread_info()
156 * - thread->cpu is the local CPU number at the time it is accessed,
157 * but may change at any time.
158 * - we could be preempted if tree preempt rcu is enabled, so
159 * it is unsafe to use thread->cpu.
161 static int vfp_notifier(struct notifier_block
*self
, unsigned long cmd
, void *v
)
163 struct thread_info
*thread
= v
;
170 case THREAD_NOTIFY_SWITCH
:
177 * On SMP, if VFP is enabled, save the old state in
178 * case the thread migrates to a different CPU. The
179 * restoring is done lazily.
181 if ((fpexc
& FPEXC_EN
) && vfp_current_hw_state
[cpu
])
182 vfp_save_state(vfp_current_hw_state
[cpu
], fpexc
);
186 * Always disable VFP so we can lazily save/restore the
189 fmxr(FPEXC
, fpexc
& ~FPEXC_EN
);
192 case THREAD_NOTIFY_FLUSH
:
193 vfp_thread_flush(thread
);
196 case THREAD_NOTIFY_EXIT
:
197 vfp_thread_exit(thread
);
200 case THREAD_NOTIFY_COPY
:
201 vfp_thread_copy(thread
);
208 static struct notifier_block vfp_notifier_block
= {
209 .notifier_call
= vfp_notifier
,
213 * Raise a SIGFPE for the current process.
214 * sicode describes the signal being raised.
216 static void vfp_raise_sigfpe(unsigned int sicode
, struct pt_regs
*regs
)
220 memset(&info
, 0, sizeof(info
));
222 info
.si_signo
= SIGFPE
;
223 info
.si_code
= sicode
;
224 info
.si_addr
= (void __user
*)(instruction_pointer(regs
) - 4);
227 * This is the same as NWFPE, because it's not clear what
230 current
->thread
.error_code
= 0;
231 current
->thread
.trap_no
= 6;
233 send_sig_info(SIGFPE
, &info
, current
);
236 static void vfp_panic(char *reason
, u32 inst
)
240 printk(KERN_ERR
"VFP: Error: %s\n", reason
);
241 printk(KERN_ERR
"VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
242 fmrx(FPEXC
), fmrx(FPSCR
), inst
);
243 for (i
= 0; i
< 32; i
+= 2)
244 printk(KERN_ERR
"VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
245 i
, vfp_get_float(i
), i
+1, vfp_get_float(i
+1));
249 * Process bitmask of exception conditions.
251 static void vfp_raise_exceptions(u32 exceptions
, u32 inst
, u32 fpscr
, struct pt_regs
*regs
)
255 pr_debug("VFP: raising exceptions %08x\n", exceptions
);
257 if (exceptions
== VFP_EXCEPTION_ERROR
) {
258 vfp_panic("unhandled bounce", inst
);
259 vfp_raise_sigfpe(0, regs
);
264 * If any of the status flags are set, update the FPSCR.
265 * Comparison instructions always return at least one of
268 if (exceptions
& (FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
))
269 fpscr
&= ~(FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
);
275 #define RAISE(stat,en,sig) \
276 if (exceptions & stat && fpscr & en) \
280 * These are arranged in priority order, least to highest.
282 RAISE(FPSCR_DZC
, FPSCR_DZE
, FPE_FLTDIV
);
283 RAISE(FPSCR_IXC
, FPSCR_IXE
, FPE_FLTRES
);
284 RAISE(FPSCR_UFC
, FPSCR_UFE
, FPE_FLTUND
);
285 RAISE(FPSCR_OFC
, FPSCR_OFE
, FPE_FLTOVF
);
286 RAISE(FPSCR_IOC
, FPSCR_IOE
, FPE_FLTINV
);
289 vfp_raise_sigfpe(si_code
, regs
);
293 * Emulate a VFP instruction.
295 static u32
vfp_emulate_instruction(u32 inst
, u32 fpscr
, struct pt_regs
*regs
)
297 u32 exceptions
= VFP_EXCEPTION_ERROR
;
299 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst
, fpscr
);
301 if (INST_CPRTDO(inst
)) {
302 if (!INST_CPRT(inst
)) {
306 if (vfp_single(inst
)) {
307 exceptions
= vfp_single_cpdo(inst
, fpscr
);
309 exceptions
= vfp_double_cpdo(inst
, fpscr
);
313 * A CPRT instruction can not appear in FPINST2, nor
314 * can it cause an exception. Therefore, we do not
315 * have to emulate it.
320 * A CPDT instruction can not appear in FPINST2, nor can
321 * it cause an exception. Therefore, we do not have to
325 return exceptions
& ~VFP_NAN_FLAG
;
329 * Package up a bounce condition.
331 void VFP_bounce(u32 trigger
, u32 fpexc
, struct pt_regs
*regs
)
333 u32 fpscr
, orig_fpscr
, fpsid
, exceptions
;
335 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger
, fpexc
);
338 * At this point, FPEXC can have the following configuration:
341 * 0 1 x - synchronous exception
342 * 1 x 0 - asynchronous exception
343 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
344 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
345 * implementation), undefined otherwise
347 * Clear various bits and enable access to the VFP so we can
350 fmxr(FPEXC
, fpexc
& ~(FPEXC_EX
|FPEXC_DEX
|FPEXC_FP2V
|FPEXC_VV
|FPEXC_TRAP_MASK
));
353 orig_fpscr
= fpscr
= fmrx(FPSCR
);
356 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
358 if ((fpsid
& FPSID_ARCH_MASK
) == (1 << FPSID_ARCH_BIT
)
359 && (fpscr
& FPSCR_IXE
)) {
361 * Synchronous exception, emulate the trigger instruction
366 if (fpexc
& FPEXC_EX
) {
367 #ifndef CONFIG_CPU_FEROCEON
369 * Asynchronous exception. The instruction is read from FPINST
370 * and the interrupted instruction has to be restarted.
372 trigger
= fmrx(FPINST
);
375 } else if (!(fpexc
& FPEXC_DEX
)) {
377 * Illegal combination of bits. It can be caused by an
378 * unallocated VFP instruction but with FPSCR.IXE set and not
381 vfp_raise_exceptions(VFP_EXCEPTION_ERROR
, trigger
, fpscr
, regs
);
386 * Modify fpscr to indicate the number of iterations remaining.
387 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
388 * whether FPEXC.VECITR or FPSCR.LEN is used.
390 if (fpexc
& (FPEXC_EX
| FPEXC_VV
)) {
393 len
= fpexc
+ (1 << FPEXC_LENGTH_BIT
);
395 fpscr
&= ~FPSCR_LENGTH_MASK
;
396 fpscr
|= (len
& FPEXC_LENGTH_MASK
) << (FPSCR_LENGTH_BIT
- FPEXC_LENGTH_BIT
);
400 * Handle the first FP instruction. We used to take note of the
401 * FPEXC bounce reason, but this appears to be unreliable.
402 * Emulate the bounced instruction instead.
404 exceptions
= vfp_emulate_instruction(trigger
, fpscr
, regs
);
406 vfp_raise_exceptions(exceptions
, trigger
, orig_fpscr
, regs
);
409 * If there isn't a second FP instruction, exit now. Note that
410 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
412 if (fpexc
^ (FPEXC_EX
| FPEXC_FP2V
))
416 * The barrier() here prevents fpinst2 being read
417 * before the condition above.
420 trigger
= fmrx(FPINST2
);
423 exceptions
= vfp_emulate_instruction(trigger
, orig_fpscr
, regs
);
425 vfp_raise_exceptions(exceptions
, trigger
, orig_fpscr
, regs
);
430 static void vfp_enable(void *unused
)
434 BUG_ON(preemptible());
435 access
= get_copro_access();
438 * Enable full access to VFP (cp10 and cp11)
440 set_copro_access(access
| CPACC_FULL(10) | CPACC_FULL(11));
444 static int vfp_pm_suspend(void)
446 struct thread_info
*ti
= current_thread_info();
447 u32 fpexc
= fmrx(FPEXC
);
449 /* if vfp is on, then save state for resumption */
450 if (fpexc
& FPEXC_EN
) {
451 printk(KERN_DEBUG
"%s: saving vfp state\n", __func__
);
452 vfp_save_state(&ti
->vfpstate
, fpexc
);
454 /* disable, just in case */
455 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
458 /* clear any information we had about last context state */
459 memset(vfp_current_hw_state
, 0, sizeof(vfp_current_hw_state
));
464 static void vfp_pm_resume(void)
466 /* ensure we have access to the vfp */
469 /* and disable it to ensure the next usage restores the state */
470 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
473 static int vfp_cpu_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
480 case CPU_PM_ENTER_FAILED
:
488 static struct notifier_block vfp_cpu_pm_notifier_block
= {
489 .notifier_call
= vfp_cpu_pm_notifier
,
492 static void vfp_pm_init(void)
494 cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block
);
498 static inline void vfp_pm_init(void) { }
499 #endif /* CONFIG_CPU_PM */
502 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
503 * with the hardware state.
505 void vfp_sync_hwstate(struct thread_info
*thread
)
507 unsigned int cpu
= get_cpu();
509 if (vfp_state_in_hw(cpu
, thread
)) {
510 u32 fpexc
= fmrx(FPEXC
);
513 * Save the last VFP state on this CPU.
515 fmxr(FPEXC
, fpexc
| FPEXC_EN
);
516 vfp_save_state(&thread
->vfpstate
, fpexc
| FPEXC_EN
);
523 /* Ensure that the thread reloads the hardware VFP state on the next use. */
524 void vfp_flush_hwstate(struct thread_info
*thread
)
526 unsigned int cpu
= get_cpu();
528 vfp_force_reload(cpu
, thread
);
534 * VFP hardware can lose all context when a CPU goes offline.
535 * As we will be running in SMP mode with CPU hotplug, we will save the
536 * hardware state at every thread switch. We clear our held state when
537 * a CPU has been killed, indicating that the VFP hardware doesn't contain
538 * a threads VFP state. When a CPU starts up, we re-enable access to the
541 * Both CPU_DYING and CPU_STARTING are called on the CPU which
542 * is being offlined/onlined.
544 static int vfp_hotplug(struct notifier_block
*b
, unsigned long action
,
547 if (action
== CPU_DYING
|| action
== CPU_DYING_FROZEN
) {
548 vfp_force_reload((long)hcpu
, current_thread_info());
549 } else if (action
== CPU_STARTING
|| action
== CPU_STARTING_FROZEN
)
555 * VFP support code initialisation.
557 static int __init
vfp_init(void)
560 unsigned int cpu_arch
= cpu_architecture();
562 if (cpu_arch
>= CPU_ARCH_ARMv6
)
563 on_each_cpu(vfp_enable
, NULL
, 1);
566 * First check that there is a VFP that we can use.
567 * The handler is already setup to just log calls, so
568 * we just need to read the VFPSID register.
570 vfp_vector
= vfp_testing_entry
;
572 vfpsid
= fmrx(FPSID
);
574 vfp_vector
= vfp_null_entry
;
576 printk(KERN_INFO
"VFP support v0.3: ");
578 printk("not present\n");
579 else if (vfpsid
& FPSID_NODOUBLE
) {
580 printk("no double precision support\n");
582 hotcpu_notifier(vfp_hotplug
, 0);
584 VFP_arch
= (vfpsid
& FPSID_ARCH_MASK
) >> FPSID_ARCH_BIT
; /* Extract the architecture version */
585 printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
586 (vfpsid
& FPSID_IMPLEMENTER_MASK
) >> FPSID_IMPLEMENTER_BIT
,
587 (vfpsid
& FPSID_ARCH_MASK
) >> FPSID_ARCH_BIT
,
588 (vfpsid
& FPSID_PART_MASK
) >> FPSID_PART_BIT
,
589 (vfpsid
& FPSID_VARIANT_MASK
) >> FPSID_VARIANT_BIT
,
590 (vfpsid
& FPSID_REV_MASK
) >> FPSID_REV_BIT
);
592 vfp_vector
= vfp_support_entry
;
594 thread_register_notifier(&vfp_notifier_block
);
598 * We detected VFP, and the support code is
599 * in place; report VFP support to userspace.
601 elf_hwcap
|= HWCAP_VFP
;
604 elf_hwcap
|= HWCAP_VFPv3
;
607 * Check for VFPv3 D16. CPUs in this configuration
608 * only have 16 x 64bit registers.
610 if (((fmrx(MVFR0
) & MVFR0_A_SIMD_MASK
)) == 1)
611 elf_hwcap
|= HWCAP_VFPv3D16
;
615 * Check for the presence of the Advanced SIMD
616 * load/store instructions, integer and single
617 * precision floating point operations. Only check
618 * for NEON if the hardware has the MVFR registers.
620 if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
622 if ((fmrx(MVFR1
) & 0x000fff00) == 0x00011100)
623 elf_hwcap
|= HWCAP_NEON
;
625 if ((fmrx(MVFR1
) & 0xf0000000) == 0x10000000)
626 elf_hwcap
|= HWCAP_VFPv4
;
632 late_initcall(vfp_init
);