spi-topcliff-pch: Fix issue for transmitting over 4KByte
[zen-stable.git] / arch / hexagon / include / asm / pgtable.h
blobca619bf225ef3d5402c02fe0c5ce65b7843c8a7b
1 /*
2 * Page table support for the Hexagon architecture
4 * Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 and
8 * only version 2 as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18 * 02110-1301, USA.
21 #ifndef _ASM_PGTABLE_H
22 #define _ASM_PGTABLE_H
25 * Page table definitions for Qualcomm Hexagon processor.
27 #include <linux/swap.h>
28 #include <asm/page.h>
29 #include <asm-generic/pgtable-nopmd.h>
31 /* A handy thing to have if one has the RAM. Declared in head.S */
32 extern unsigned long empty_zero_page;
33 extern unsigned long zero_page_mask;
36 * The PTE model described here is that of the Hexagon Virtual Machine,
37 * which autonomously walks 2-level page tables. At a lower level, we
38 * also describe the RISCish software-loaded TLB entry structure of
39 * the underlying Hexagon processor. A kernel built to run on the
40 * virtual machine has no need to know about the underlying hardware.
42 #include <asm/vm_mmu.h>
45 * To maximize the comfort level for the PTE manipulation macros,
46 * define the "well known" architecture-specific bits.
48 #define _PAGE_READ __HVM_PTE_R
49 #define _PAGE_WRITE __HVM_PTE_W
50 #define _PAGE_EXECUTE __HVM_PTE_X
51 #define _PAGE_USER __HVM_PTE_U
54 * We have a total of 4 "soft" bits available in the abstract PTE.
55 * The two mandatory software bits are Dirty and Accessed.
56 * To make nonlinear swap work according to the more recent
57 * model, we want a low order "Present" bit to indicate whether
58 * the PTE describes MMU programming or swap space.
60 #define _PAGE_PRESENT (1<<0)
61 #define _PAGE_DIRTY (1<<1)
62 #define _PAGE_ACCESSED (1<<2)
65 * _PAGE_FILE is only meaningful if _PAGE_PRESENT is false, while
66 * _PAGE_DIRTY is only meaningful if _PAGE_PRESENT is true.
67 * So we can overload the bit...
69 #define _PAGE_FILE _PAGE_DIRTY /* set: pagecache, unset = swap */
72 * For now, let's say that Valid and Present are the same thing.
73 * Alternatively, we could say that it's the "or" of R, W, and X
74 * permissions.
76 #define _PAGE_VALID _PAGE_PRESENT
79 * We're not defining _PAGE_GLOBAL here, since there's no concept
80 * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
81 * and we want to use the same page table structures and macros in
82 * the native kernel as we do in the virtual machine kernel.
83 * So we'll put up with a bit of inefficiency for now...
87 * Top "FOURTH" level (pgd), which for the Hexagon VM is really
88 * only the second from the bottom, pgd and pud both being collapsed.
89 * Each entry represents 4MB of virtual address space, 4K of table
90 * thus maps the full 4GB.
92 #define PGDIR_SHIFT 22
93 #define PTRS_PER_PGD 1024
95 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
96 #define PGDIR_MASK (~(PGDIR_SIZE-1))
98 #ifdef CONFIG_PAGE_SIZE_4KB
99 #define PTRS_PER_PTE 1024
100 #endif
102 #ifdef CONFIG_PAGE_SIZE_16KB
103 #define PTRS_PER_PTE 256
104 #endif
106 #ifdef CONFIG_PAGE_SIZE_64KB
107 #define PTRS_PER_PTE 64
108 #endif
110 #ifdef CONFIG_PAGE_SIZE_256KB
111 #define PTRS_PER_PTE 16
112 #endif
114 #ifdef CONFIG_PAGE_SIZE_1MB
115 #define PTRS_PER_PTE 4
116 #endif
118 /* Any bigger and the PTE disappears. */
119 #define pgd_ERROR(e) \
120 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
121 pgd_val(e))
124 * Page Protection Constants. Includes (in this variant) cache attributes.
126 extern unsigned long _dflt_cache_att;
128 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \
129 _dflt_cache_att)
130 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \
131 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
132 #define PAGE_COPY PAGE_READONLY
133 #define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
134 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
135 #define PAGE_COPY_EXEC PAGE_EXEC
136 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
137 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
138 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \
139 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
143 * Aliases for mapping mmap() protection bits to page protections.
144 * These get used for static initialization, so using the _dflt_cache_att
145 * variable for the default cache attribute isn't workable. If the
146 * default gets changed at boot time, the boot option code has to
147 * update data structures like the protaction_map[] array.
149 #define CACHEDEF (CACHE_DEFAULT << 6)
151 /* Private (copy-on-write) page protections. */
152 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
153 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
154 #define __P010 __P000 /* Write-only copy-on-write */
155 #define __P011 __P001 /* Read/Write copy-on-write */
156 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
157 _PAGE_EXECUTE | CACHEDEF)
158 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
159 _PAGE_READ | CACHEDEF)
160 #define __P110 __P100 /* Write/execute copy-on-write */
161 #define __P111 __P101 /* Read/Write/Execute, copy-on-write */
163 /* Shared page protections. */
164 #define __S000 __P000
165 #define __S001 __P001
166 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
167 _PAGE_WRITE | CACHEDEF)
168 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
169 _PAGE_WRITE | CACHEDEF)
170 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
171 _PAGE_EXECUTE | CACHEDEF)
172 #define __S101 __P101
173 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
174 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
175 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
176 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
178 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */
180 /* Seems to be zero even in architectures where the zero page is firewalled? */
181 #define FIRST_USER_ADDRESS 0
182 #define pte_special(pte) 0
183 #define pte_mkspecial(pte) (pte)
185 /* HUGETLB not working currently */
186 #ifdef CONFIG_HUGETLB_PAGE
187 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
188 #endif
191 * For now, assume that higher-level code will do TLB/MMU invalidations
192 * and don't insert that overhead into this low-level function.
194 extern void sync_icache_dcache(pte_t pte);
196 #define pte_present_exec_user(pte) \
197 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
198 (_PAGE_EXECUTE | _PAGE_USER))
200 static inline void set_pte(pte_t *ptep, pte_t pteval)
202 /* should really be using pte_exec, if it weren't declared later. */
203 if (pte_present_exec_user(pteval))
204 sync_icache_dcache(pteval);
206 *ptep = pteval;
210 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
211 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
212 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7
213 * as a universal null entry, but some of those least significant bits
214 * are interpreted by software.
216 #define _NULL_PMD 0x7
217 #define _NULL_PTE 0x0
219 static inline void pmd_clear(pmd_t *pmd_entry_ptr)
221 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
225 * Conveniently, a null PTE value is invalid.
227 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
228 pte_t *ptep)
230 pte_val(*ptep) = _NULL_PTE;
233 #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
235 * pmd_index - returns the index of the entry in the PMD page
236 * which would control the given virtual address
238 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
240 #endif
243 * pgd_index - returns the index of the entry in the PGD page
244 * which would control the given virtual address
246 * This returns the *index* for the address in the pgd_t
248 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
251 * pgd_offset - find an offset in a page-table-directory
253 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
256 * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
258 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
261 * pmd_none - check if pmd_entry is mapped
262 * @pmd_entry: pmd entry
264 * MIPS checks it against that "invalid pte table" thing.
266 static inline int pmd_none(pmd_t pmd)
268 return pmd_val(pmd) == _NULL_PMD;
272 * pmd_present - is there a page table behind this?
273 * Essentially the inverse of pmd_none. We maybe
274 * save an inline instruction by defining it this
275 * way, instead of simply "!pmd_none".
277 static inline int pmd_present(pmd_t pmd)
279 return pmd_val(pmd) != (unsigned long)_NULL_PMD;
283 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
284 * As we have no known cause of badness, it's null, as it is for many
285 * architectures.
287 static inline int pmd_bad(pmd_t pmd)
289 return 0;
293 * pmd_page - converts a PMD entry to a page pointer
295 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
296 #define pmd_pgtable(pmd) pmd_page(pmd)
299 * pte_none - check if pte is mapped
300 * @pte: pte_t entry
302 static inline int pte_none(pte_t pte)
304 return pte_val(pte) == _NULL_PTE;
308 * pte_present - check if page is present
310 static inline int pte_present(pte_t pte)
312 return pte_val(pte) & _PAGE_PRESENT;
315 /* mk_pte - make a PTE out of a page pointer and protection bits */
316 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
318 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
319 #define pte_page(x) pfn_to_page(pte_pfn(x))
321 /* pte_mkold - mark PTE as not recently accessed */
322 static inline pte_t pte_mkold(pte_t pte)
324 pte_val(pte) &= ~_PAGE_ACCESSED;
325 return pte;
328 /* pte_mkyoung - mark PTE as recently accessed */
329 static inline pte_t pte_mkyoung(pte_t pte)
331 pte_val(pte) |= _PAGE_ACCESSED;
332 return pte;
335 /* pte_mkclean - mark page as in sync with backing store */
336 static inline pte_t pte_mkclean(pte_t pte)
338 pte_val(pte) &= ~_PAGE_DIRTY;
339 return pte;
342 /* pte_mkdirty - mark page as modified */
343 static inline pte_t pte_mkdirty(pte_t pte)
345 pte_val(pte) |= _PAGE_DIRTY;
346 return pte;
349 /* pte_young - "is PTE marked as accessed"? */
350 static inline int pte_young(pte_t pte)
352 return pte_val(pte) & _PAGE_ACCESSED;
355 /* pte_dirty - "is PTE dirty?" */
356 static inline int pte_dirty(pte_t pte)
358 return pte_val(pte) & _PAGE_DIRTY;
361 /* pte_modify - set protection bits on PTE */
362 static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
364 pte_val(pte) &= PAGE_MASK;
365 pte_val(pte) |= pgprot_val(prot);
366 return pte;
369 /* pte_wrprotect - mark page as not writable */
370 static inline pte_t pte_wrprotect(pte_t pte)
372 pte_val(pte) &= ~_PAGE_WRITE;
373 return pte;
376 /* pte_mkwrite - mark page as writable */
377 static inline pte_t pte_mkwrite(pte_t pte)
379 pte_val(pte) |= _PAGE_WRITE;
380 return pte;
383 /* pte_mkexec - mark PTE as executable */
384 static inline pte_t pte_mkexec(pte_t pte)
386 pte_val(pte) |= _PAGE_EXECUTE;
387 return pte;
390 /* pte_read - "is PTE marked as readable?" */
391 static inline int pte_read(pte_t pte)
393 return pte_val(pte) & _PAGE_READ;
396 /* pte_write - "is PTE marked as writable?" */
397 static inline int pte_write(pte_t pte)
399 return pte_val(pte) & _PAGE_WRITE;
403 /* pte_exec - "is PTE marked as executable?" */
404 static inline int pte_exec(pte_t pte)
406 return pte_val(pte) & _PAGE_EXECUTE;
409 /* __pte_to_swp_entry - extract swap entry from PTE */
410 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
412 /* __swp_entry_to_pte - extract PTE from swap entry */
413 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
415 /* pfn_pte - convert page number and protection value to page table entry */
416 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
418 /* pte_pfn - convert pte to page frame number */
419 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
420 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
423 * set_pte_at - update page table and do whatever magic may be
424 * necessary to make the underlying hardware/firmware take note.
426 * VM may require a virtual instruction to alert the MMU.
428 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
431 * May need to invoke the virtual machine as well...
433 #define pte_unmap(pte) do { } while (0)
434 #define pte_unmap_nested(pte) do { } while (0)
437 * pte_offset_map - returns the linear address of the page table entry
438 * corresponding to an address
440 #define pte_offset_map(dir, address) \
441 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
443 #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
445 /* pte_offset_kernel - kernel version of pte_offset */
446 #define pte_offset_kernel(dir, address) \
447 ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
448 + __pte_offset(address))
450 /* ZERO_PAGE - returns the globally shared zero page */
451 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
453 #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
455 /* Nothing special about IO remapping at this point */
456 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
457 remap_pfn_range(vma, vaddr, pfn, size, prot)
459 /* I think this is in case we have page table caches; needed by init/main.c */
460 #define pgtable_cache_init() do { } while (0)
463 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the
464 * PTE is interpreted as swap information. Depending on the _PAGE_FILE
465 * bit, the remaining free bits are eitehr interpreted as a file offset
466 * or a swap type/offset tuple. Rather than have the TLB fill handler
467 * test _PAGE_PRESENT, we're going to reserve the permissions bits
468 * and set them to all zeros for swap entries, which speeds up the
469 * miss handler at the cost of 3 bits of offset. That trade-off can
470 * be revisited if necessary, but Hexagon processor architecture and
471 * target applications suggest a lot of TLB misses and not much swap space.
473 * Format of swap PTE:
474 * bit 0: Present (zero)
475 * bit 1: _PAGE_FILE (zero)
476 * bits 2-6: swap type (arch independent layer uses 5 bits max)
477 * bits 7-9: bits 2:0 of offset
478 * bits 10-12: effectively _PAGE_PROTNONE (all zero)
479 * bits 13-31: bits 21:3 of swap offset
481 * Format of file PTE:
482 * bit 0: Present (zero)
483 * bit 1: _PAGE_FILE (zero)
484 * bits 2-9: bits 7:0 of offset
485 * bits 10-12: effectively _PAGE_PROTNONE (all zero)
486 * bits 13-31: bits 26:8 of swap offset
488 * The split offset makes some of the following macros a little gnarly,
489 * but there's plenty of precedent for this sort of thing.
491 #define PTE_FILE_MAX_BITS 27
493 /* Used for swap PTEs */
494 #define __swp_type(swp_pte) (((swp_pte).val >> 2) & 0x1f)
496 #define __swp_offset(swp_pte) \
497 ((((swp_pte).val >> 7) & 0x7) | (((swp_pte).val >> 10) & 0x003ffff8))
499 #define __swp_entry(type, offset) \
500 ((swp_entry_t) { \
501 ((type << 2) | \
502 ((offset & 0x3ffff8) << 10) | ((offset & 0x7) << 7)) })
504 /* Used for file PTEs */
505 #define pte_file(pte) \
506 ((pte_val(pte) & (_PAGE_FILE | _PAGE_PRESENT)) == _PAGE_FILE)
508 #define pte_to_pgoff(pte) \
509 (((pte_val(pte) >> 2) & 0xff) | ((pte_val(pte) >> 5) & 0x07ffff00))
511 #define pgoff_to_pte(off) \
512 ((pte_t) { ((((off) & 0x7ffff00) << 5) | (((off) & 0xff) << 2)\
513 | _PAGE_FILE) })
515 /* Oh boy. There are a lot of possible arch overrides found in this file. */
516 #include <asm-generic/pgtable.h>
518 #endif