spi-topcliff-pch: Fix issue for transmitting over 4KByte
[zen-stable.git] / arch / m68k / math-emu / multi_arith.h
blob4b5eb3d85638e576346e535ea103d15a3b3bf2cc
1 /* multi_arith.h: multi-precision integer arithmetic functions, needed
2 to do extended-precision floating point.
4 (c) 1998 David Huggins-Daines.
6 Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
7 David Mosberger-Tang.
9 You may copy, modify, and redistribute this file under the terms of
10 the GNU General Public License, version 2, or any later version, at
11 your convenience. */
13 /* Note:
15 These are not general multi-precision math routines. Rather, they
16 implement the subset of integer arithmetic that we need in order to
17 multiply, divide, and normalize 128-bit unsigned mantissae. */
19 #ifndef MULTI_ARITH_H
20 #define MULTI_ARITH_H
22 static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt)
24 reg->exp += cnt;
26 switch (cnt) {
27 case 0 ... 8:
28 reg->lowmant = reg->mant.m32[1] << (8 - cnt);
29 reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
30 (reg->mant.m32[0] << (32 - cnt));
31 reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
32 break;
33 case 9 ... 32:
34 reg->lowmant = reg->mant.m32[1] >> (cnt - 8);
35 if (reg->mant.m32[1] << (40 - cnt))
36 reg->lowmant |= 1;
37 reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
38 (reg->mant.m32[0] << (32 - cnt));
39 reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
40 break;
41 case 33 ... 39:
42 asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant)
43 : "m" (reg->mant.m32[0]), "d" (64 - cnt));
44 if (reg->mant.m32[1] << (40 - cnt))
45 reg->lowmant |= 1;
46 reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
47 reg->mant.m32[0] = 0;
48 break;
49 case 40 ... 71:
50 reg->lowmant = reg->mant.m32[0] >> (cnt - 40);
51 if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1])
52 reg->lowmant |= 1;
53 reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
54 reg->mant.m32[0] = 0;
55 break;
56 default:
57 reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1];
58 reg->mant.m32[0] = 0;
59 reg->mant.m32[1] = 0;
60 break;
64 static inline int fp_overnormalize(struct fp_ext *reg)
66 int shift;
68 if (reg->mant.m32[0]) {
69 asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0]));
70 reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift));
71 reg->mant.m32[1] = (reg->mant.m32[1] << shift);
72 } else {
73 asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1]));
74 reg->mant.m32[0] = (reg->mant.m32[1] << shift);
75 reg->mant.m32[1] = 0;
76 shift += 32;
79 return shift;
82 static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src)
84 int carry;
86 /* we assume here, gcc only insert move and a clr instr */
87 asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant)
88 : "g,d" (src->lowmant), "0,0" (dest->lowmant));
89 asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1])
90 : "d" (src->mant.m32[1]), "0" (dest->mant.m32[1]));
91 asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0])
92 : "d" (src->mant.m32[0]), "0" (dest->mant.m32[0]));
93 asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0));
95 return carry;
98 static inline int fp_addcarry(struct fp_ext *reg)
100 if (++reg->exp == 0x7fff) {
101 if (reg->mant.m64)
102 fp_set_sr(FPSR_EXC_INEX2);
103 reg->mant.m64 = 0;
104 fp_set_sr(FPSR_EXC_OVFL);
105 return 0;
107 reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0);
108 reg->mant.m32[1] = (reg->mant.m32[1] >> 1) |
109 (reg->mant.m32[0] << 31);
110 reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000;
112 return 1;
115 static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1,
116 struct fp_ext *src2)
118 /* we assume here, gcc only insert move and a clr instr */
119 asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant)
120 : "g,d" (src2->lowmant), "0,0" (src1->lowmant));
121 asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1])
122 : "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1]));
123 asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0])
124 : "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0]));
127 #define fp_mul64(desth, destl, src1, src2) ({ \
128 asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth) \
129 : "dm" (src1), "0" (src2)); \
131 #define fp_div64(quot, rem, srch, srcl, div) \
132 asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem) \
133 : "dm" (div), "1" (srch), "0" (srcl))
134 #define fp_add64(dest1, dest2, src1, src2) ({ \
135 asm ("add.l %1,%0" : "=d,dm" (dest2) \
136 : "dm,d" (src2), "0,0" (dest2)); \
137 asm ("addx.l %1,%0" : "=d" (dest1) \
138 : "d" (src1), "0" (dest1)); \
140 #define fp_addx96(dest, src) ({ \
141 /* we assume here, gcc only insert move and a clr instr */ \
142 asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2]) \
143 : "g,d" (temp.m32[1]), "0,0" (dest->m32[2])); \
144 asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1]) \
145 : "d" (temp.m32[0]), "0" (dest->m32[1])); \
146 asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0]) \
147 : "d" (0), "0" (dest->m32[0])); \
149 #define fp_sub64(dest, src) ({ \
150 asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1]) \
151 : "dm,d" (src.m32[1]), "0,0" (dest.m32[1])); \
152 asm ("subx.l %1,%0" : "=d" (dest.m32[0]) \
153 : "d" (src.m32[0]), "0" (dest.m32[0])); \
155 #define fp_sub96c(dest, srch, srcm, srcl) ({ \
156 char carry; \
157 asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2]) \
158 : "dm,d" (srcl), "0,0" (dest.m32[2])); \
159 asm ("subx.l %1,%0" : "=d" (dest.m32[1]) \
160 : "d" (srcm), "0" (dest.m32[1])); \
161 asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0]) \
162 : "d" (srch), "1" (dest.m32[0])); \
163 carry; \
166 static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1,
167 struct fp_ext *src2)
169 union fp_mant64 temp;
171 fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]);
172 fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]);
174 fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]);
175 fp_addx96(dest, temp);
177 fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]);
178 fp_addx96(dest, temp);
181 static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src,
182 struct fp_ext *div)
184 union fp_mant128 tmp;
185 union fp_mant64 tmp64;
186 unsigned long *mantp = dest->m32;
187 unsigned long fix, rem, first, dummy;
188 int i;
190 /* the algorithm below requires dest to be smaller than div,
191 but both have the high bit set */
192 if (src->mant.m64 >= div->mant.m64) {
193 fp_sub64(src->mant, div->mant);
194 *mantp = 1;
195 } else
196 *mantp = 0;
197 mantp++;
199 /* basic idea behind this algorithm: we can't divide two 64bit numbers
200 (AB/CD) directly, but we can calculate AB/C0, but this means this
201 quotient is off by C0/CD, so we have to multiply the first result
202 to fix the result, after that we have nearly the correct result
203 and only a few corrections are needed. */
205 /* C0/CD can be precalculated, but it's an 64bit division again, but
206 we can make it a bit easier, by dividing first through C so we get
207 10/1D and now only a single shift and the value fits into 32bit. */
208 fix = 0x80000000;
209 dummy = div->mant.m32[1] / div->mant.m32[0] + 1;
210 dummy = (dummy >> 1) | fix;
211 fp_div64(fix, dummy, fix, 0, dummy);
212 fix--;
214 for (i = 0; i < 3; i++, mantp++) {
215 if (src->mant.m32[0] == div->mant.m32[0]) {
216 fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]);
218 fp_mul64(*mantp, dummy, first, fix);
219 *mantp += fix;
220 } else {
221 fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]);
223 fp_mul64(*mantp, dummy, first, fix);
226 fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp);
227 fp_add64(tmp.m32[0], tmp.m32[1], 0, rem);
228 tmp.m32[2] = 0;
230 fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]);
231 fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]);
233 src->mant.m32[0] = tmp.m32[1];
234 src->mant.m32[1] = tmp.m32[2];
236 while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) {
237 src->mant.m32[0] = tmp.m32[1];
238 src->mant.m32[1] = tmp.m32[2];
239 *mantp += 1;
244 static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src,
245 int shift)
247 unsigned long tmp;
249 switch (shift) {
250 case 0:
251 dest->mant.m64 = src->m64[0];
252 dest->lowmant = src->m32[2] >> 24;
253 if (src->m32[3] || (src->m32[2] << 8))
254 dest->lowmant |= 1;
255 break;
256 case 1:
257 asm volatile ("lsl.l #1,%0"
258 : "=d" (tmp) : "0" (src->m32[2]));
259 asm volatile ("roxl.l #1,%0"
260 : "=d" (dest->mant.m32[1]) : "0" (src->m32[1]));
261 asm volatile ("roxl.l #1,%0"
262 : "=d" (dest->mant.m32[0]) : "0" (src->m32[0]));
263 dest->lowmant = tmp >> 24;
264 if (src->m32[3] || (tmp << 8))
265 dest->lowmant |= 1;
266 break;
267 case 31:
268 asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
269 : "=d" (dest->mant.m32[0])
270 : "d" (src->m32[0]), "0" (src->m32[1]));
271 asm volatile ("roxr.l #1,%0"
272 : "=d" (dest->mant.m32[1]) : "0" (src->m32[2]));
273 asm volatile ("roxr.l #1,%0"
274 : "=d" (tmp) : "0" (src->m32[3]));
275 dest->lowmant = tmp >> 24;
276 if (src->m32[3] << 7)
277 dest->lowmant |= 1;
278 break;
279 case 32:
280 dest->mant.m32[0] = src->m32[1];
281 dest->mant.m32[1] = src->m32[2];
282 dest->lowmant = src->m32[3] >> 24;
283 if (src->m32[3] << 8)
284 dest->lowmant |= 1;
285 break;
289 #endif /* MULTI_ARITH_H */