spi-topcliff-pch: Fix issue for transmitting over 4KByte
[zen-stable.git] / arch / sparc / kernel / process_64.c
blob39d8b05201a23bd83eb6866d05477f3b34664957
1 /* arch/sparc64/kernel/process.c
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
8 /*
9 * This file handles the architecture-dependent parts of process handling..
12 #include <stdarg.h>
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/sysrq.h>
32 #include <linux/nmi.h>
34 #include <asm/uaccess.h>
35 #include <asm/system.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
52 #include "kstack.h"
54 static void sparc64_yield(int cpu)
56 if (tlb_type != hypervisor) {
57 touch_nmi_watchdog();
58 return;
61 clear_thread_flag(TIF_POLLING_NRFLAG);
62 smp_mb__after_clear_bit();
64 while (!need_resched() && !cpu_is_offline(cpu)) {
65 unsigned long pstate;
67 /* Disable interrupts. */
68 __asm__ __volatile__(
69 "rdpr %%pstate, %0\n\t"
70 "andn %0, %1, %0\n\t"
71 "wrpr %0, %%g0, %%pstate"
72 : "=&r" (pstate)
73 : "i" (PSTATE_IE));
75 if (!need_resched() && !cpu_is_offline(cpu))
76 sun4v_cpu_yield();
78 /* Re-enable interrupts. */
79 __asm__ __volatile__(
80 "rdpr %%pstate, %0\n\t"
81 "or %0, %1, %0\n\t"
82 "wrpr %0, %%g0, %%pstate"
83 : "=&r" (pstate)
84 : "i" (PSTATE_IE));
87 set_thread_flag(TIF_POLLING_NRFLAG);
90 /* The idle loop on sparc64. */
91 void cpu_idle(void)
93 int cpu = smp_processor_id();
95 set_thread_flag(TIF_POLLING_NRFLAG);
97 while(1) {
98 tick_nohz_idle_enter();
99 rcu_idle_enter();
101 while (!need_resched() && !cpu_is_offline(cpu))
102 sparc64_yield(cpu);
104 rcu_idle_exit();
105 tick_nohz_idle_exit();
107 preempt_enable_no_resched();
109 #ifdef CONFIG_HOTPLUG_CPU
110 if (cpu_is_offline(cpu))
111 cpu_play_dead();
112 #endif
114 schedule();
115 preempt_disable();
119 #ifdef CONFIG_COMPAT
120 static void show_regwindow32(struct pt_regs *regs)
122 struct reg_window32 __user *rw;
123 struct reg_window32 r_w;
124 mm_segment_t old_fs;
126 __asm__ __volatile__ ("flushw");
127 rw = compat_ptr((unsigned)regs->u_regs[14]);
128 old_fs = get_fs();
129 set_fs (USER_DS);
130 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
131 set_fs (old_fs);
132 return;
135 set_fs (old_fs);
136 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
137 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
138 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
139 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
140 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
141 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
142 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
143 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
145 #else
146 #define show_regwindow32(regs) do { } while (0)
147 #endif
149 static void show_regwindow(struct pt_regs *regs)
151 struct reg_window __user *rw;
152 struct reg_window *rwk;
153 struct reg_window r_w;
154 mm_segment_t old_fs;
156 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
157 __asm__ __volatile__ ("flushw");
158 rw = (struct reg_window __user *)
159 (regs->u_regs[14] + STACK_BIAS);
160 rwk = (struct reg_window *)
161 (regs->u_regs[14] + STACK_BIAS);
162 if (!(regs->tstate & TSTATE_PRIV)) {
163 old_fs = get_fs();
164 set_fs (USER_DS);
165 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
166 set_fs (old_fs);
167 return;
169 rwk = &r_w;
170 set_fs (old_fs);
172 } else {
173 show_regwindow32(regs);
174 return;
176 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
177 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
178 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
179 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
180 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
181 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
182 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
183 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
184 if (regs->tstate & TSTATE_PRIV)
185 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
188 void show_regs(struct pt_regs *regs)
190 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
191 regs->tpc, regs->tnpc, regs->y, print_tainted());
192 printk("TPC: <%pS>\n", (void *) regs->tpc);
193 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
194 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
195 regs->u_regs[3]);
196 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
197 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
198 regs->u_regs[7]);
199 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
200 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
201 regs->u_regs[11]);
202 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
203 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
204 regs->u_regs[15]);
205 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
206 show_regwindow(regs);
207 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
210 struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
211 static DEFINE_SPINLOCK(global_reg_snapshot_lock);
213 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
214 int this_cpu)
216 flushw_all();
218 global_reg_snapshot[this_cpu].tstate = regs->tstate;
219 global_reg_snapshot[this_cpu].tpc = regs->tpc;
220 global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
221 global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
223 if (regs->tstate & TSTATE_PRIV) {
224 struct reg_window *rw;
226 rw = (struct reg_window *)
227 (regs->u_regs[UREG_FP] + STACK_BIAS);
228 if (kstack_valid(tp, (unsigned long) rw)) {
229 global_reg_snapshot[this_cpu].i7 = rw->ins[7];
230 rw = (struct reg_window *)
231 (rw->ins[6] + STACK_BIAS);
232 if (kstack_valid(tp, (unsigned long) rw))
233 global_reg_snapshot[this_cpu].rpc = rw->ins[7];
235 } else {
236 global_reg_snapshot[this_cpu].i7 = 0;
237 global_reg_snapshot[this_cpu].rpc = 0;
239 global_reg_snapshot[this_cpu].thread = tp;
242 /* In order to avoid hangs we do not try to synchronize with the
243 * global register dump client cpus. The last store they make is to
244 * the thread pointer, so do a short poll waiting for that to become
245 * non-NULL.
247 static void __global_reg_poll(struct global_reg_snapshot *gp)
249 int limit = 0;
251 while (!gp->thread && ++limit < 100) {
252 barrier();
253 udelay(1);
257 void arch_trigger_all_cpu_backtrace(void)
259 struct thread_info *tp = current_thread_info();
260 struct pt_regs *regs = get_irq_regs();
261 unsigned long flags;
262 int this_cpu, cpu;
264 if (!regs)
265 regs = tp->kregs;
267 spin_lock_irqsave(&global_reg_snapshot_lock, flags);
269 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
271 this_cpu = raw_smp_processor_id();
273 __global_reg_self(tp, regs, this_cpu);
275 smp_fetch_global_regs();
277 for_each_online_cpu(cpu) {
278 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
280 __global_reg_poll(gp);
282 tp = gp->thread;
283 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
284 (cpu == this_cpu ? '*' : ' '), cpu,
285 gp->tstate, gp->tpc, gp->tnpc,
286 ((tp && tp->task) ? tp->task->comm : "NULL"),
287 ((tp && tp->task) ? tp->task->pid : -1));
289 if (gp->tstate & TSTATE_PRIV) {
290 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
291 (void *) gp->tpc,
292 (void *) gp->o7,
293 (void *) gp->i7,
294 (void *) gp->rpc);
295 } else {
296 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
297 gp->tpc, gp->o7, gp->i7, gp->rpc);
301 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
303 spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
306 #ifdef CONFIG_MAGIC_SYSRQ
308 static void sysrq_handle_globreg(int key)
310 arch_trigger_all_cpu_backtrace();
313 static struct sysrq_key_op sparc_globalreg_op = {
314 .handler = sysrq_handle_globreg,
315 .help_msg = "Globalregs",
316 .action_msg = "Show Global CPU Regs",
319 static int __init sparc_globreg_init(void)
321 return register_sysrq_key('y', &sparc_globalreg_op);
324 core_initcall(sparc_globreg_init);
326 #endif
328 unsigned long thread_saved_pc(struct task_struct *tsk)
330 struct thread_info *ti = task_thread_info(tsk);
331 unsigned long ret = 0xdeadbeefUL;
333 if (ti && ti->ksp) {
334 unsigned long *sp;
335 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
336 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
337 sp[14]) {
338 unsigned long *fp;
339 fp = (unsigned long *)(sp[14] + STACK_BIAS);
340 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
341 ret = fp[15];
344 return ret;
347 /* Free current thread data structures etc.. */
348 void exit_thread(void)
350 struct thread_info *t = current_thread_info();
352 if (t->utraps) {
353 if (t->utraps[0] < 2)
354 kfree (t->utraps);
355 else
356 t->utraps[0]--;
360 void flush_thread(void)
362 struct thread_info *t = current_thread_info();
363 struct mm_struct *mm;
365 mm = t->task->mm;
366 if (mm)
367 tsb_context_switch(mm);
369 set_thread_wsaved(0);
371 /* Clear FPU register state. */
372 t->fpsaved[0] = 0;
375 /* It's a bit more tricky when 64-bit tasks are involved... */
376 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
378 unsigned long fp, distance, rval;
380 if (!(test_thread_flag(TIF_32BIT))) {
381 csp += STACK_BIAS;
382 psp += STACK_BIAS;
383 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
384 fp += STACK_BIAS;
385 } else
386 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
388 /* Now align the stack as this is mandatory in the Sparc ABI
389 * due to how register windows work. This hides the
390 * restriction from thread libraries etc.
392 csp &= ~15UL;
394 distance = fp - psp;
395 rval = (csp - distance);
396 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
397 rval = 0;
398 else if (test_thread_flag(TIF_32BIT)) {
399 if (put_user(((u32)csp),
400 &(((struct reg_window32 __user *)rval)->ins[6])))
401 rval = 0;
402 } else {
403 if (put_user(((u64)csp - STACK_BIAS),
404 &(((struct reg_window __user *)rval)->ins[6])))
405 rval = 0;
406 else
407 rval = rval - STACK_BIAS;
410 return rval;
413 /* Standard stuff. */
414 static inline void shift_window_buffer(int first_win, int last_win,
415 struct thread_info *t)
417 int i;
419 for (i = first_win; i < last_win; i++) {
420 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
421 memcpy(&t->reg_window[i], &t->reg_window[i+1],
422 sizeof(struct reg_window));
426 void synchronize_user_stack(void)
428 struct thread_info *t = current_thread_info();
429 unsigned long window;
431 flush_user_windows();
432 if ((window = get_thread_wsaved()) != 0) {
433 int winsize = sizeof(struct reg_window);
434 int bias = 0;
436 if (test_thread_flag(TIF_32BIT))
437 winsize = sizeof(struct reg_window32);
438 else
439 bias = STACK_BIAS;
441 window -= 1;
442 do {
443 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
444 struct reg_window *rwin = &t->reg_window[window];
446 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
447 shift_window_buffer(window, get_thread_wsaved() - 1, t);
448 set_thread_wsaved(get_thread_wsaved() - 1);
450 } while (window--);
454 static void stack_unaligned(unsigned long sp)
456 siginfo_t info;
458 info.si_signo = SIGBUS;
459 info.si_errno = 0;
460 info.si_code = BUS_ADRALN;
461 info.si_addr = (void __user *) sp;
462 info.si_trapno = 0;
463 force_sig_info(SIGBUS, &info, current);
466 void fault_in_user_windows(void)
468 struct thread_info *t = current_thread_info();
469 unsigned long window;
470 int winsize = sizeof(struct reg_window);
471 int bias = 0;
473 if (test_thread_flag(TIF_32BIT))
474 winsize = sizeof(struct reg_window32);
475 else
476 bias = STACK_BIAS;
478 flush_user_windows();
479 window = get_thread_wsaved();
481 if (likely(window != 0)) {
482 window -= 1;
483 do {
484 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
485 struct reg_window *rwin = &t->reg_window[window];
487 if (unlikely(sp & 0x7UL))
488 stack_unaligned(sp);
490 if (unlikely(copy_to_user((char __user *)sp,
491 rwin, winsize)))
492 goto barf;
493 } while (window--);
495 set_thread_wsaved(0);
496 return;
498 barf:
499 set_thread_wsaved(window + 1);
500 do_exit(SIGILL);
503 asmlinkage long sparc_do_fork(unsigned long clone_flags,
504 unsigned long stack_start,
505 struct pt_regs *regs,
506 unsigned long stack_size)
508 int __user *parent_tid_ptr, *child_tid_ptr;
509 unsigned long orig_i1 = regs->u_regs[UREG_I1];
510 long ret;
512 #ifdef CONFIG_COMPAT
513 if (test_thread_flag(TIF_32BIT)) {
514 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
515 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
516 } else
517 #endif
519 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
520 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
523 ret = do_fork(clone_flags, stack_start,
524 regs, stack_size,
525 parent_tid_ptr, child_tid_ptr);
527 /* If we get an error and potentially restart the system
528 * call, we're screwed because copy_thread() clobbered
529 * the parent's %o1. So detect that case and restore it
530 * here.
532 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
533 regs->u_regs[UREG_I1] = orig_i1;
535 return ret;
538 /* Copy a Sparc thread. The fork() return value conventions
539 * under SunOS are nothing short of bletcherous:
540 * Parent --> %o0 == childs pid, %o1 == 0
541 * Child --> %o0 == parents pid, %o1 == 1
543 int copy_thread(unsigned long clone_flags, unsigned long sp,
544 unsigned long unused,
545 struct task_struct *p, struct pt_regs *regs)
547 struct thread_info *t = task_thread_info(p);
548 struct sparc_stackf *parent_sf;
549 unsigned long child_stack_sz;
550 char *child_trap_frame;
551 int kernel_thread;
553 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
554 parent_sf = ((struct sparc_stackf *) regs) - 1;
556 /* Calculate offset to stack_frame & pt_regs */
557 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
558 (kernel_thread ? STACKFRAME_SZ : 0));
559 child_trap_frame = (task_stack_page(p) +
560 (THREAD_SIZE - child_stack_sz));
561 memcpy(child_trap_frame, parent_sf, child_stack_sz);
563 t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
564 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
565 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
566 t->new_child = 1;
567 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
568 t->kregs = (struct pt_regs *) (child_trap_frame +
569 sizeof(struct sparc_stackf));
570 t->fpsaved[0] = 0;
572 if (kernel_thread) {
573 struct sparc_stackf *child_sf = (struct sparc_stackf *)
574 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
576 /* Zero terminate the stack backtrace. */
577 child_sf->fp = NULL;
578 t->kregs->u_regs[UREG_FP] =
579 ((unsigned long) child_sf) - STACK_BIAS;
581 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
582 t->kregs->u_regs[UREG_G6] = (unsigned long) t;
583 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
584 } else {
585 if (t->flags & _TIF_32BIT) {
586 sp &= 0x00000000ffffffffUL;
587 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
589 t->kregs->u_regs[UREG_FP] = sp;
590 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
591 if (sp != regs->u_regs[UREG_FP]) {
592 unsigned long csp;
594 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
595 if (!csp)
596 return -EFAULT;
597 t->kregs->u_regs[UREG_FP] = csp;
599 if (t->utraps)
600 t->utraps[0]++;
603 /* Set the return value for the child. */
604 t->kregs->u_regs[UREG_I0] = current->pid;
605 t->kregs->u_regs[UREG_I1] = 1;
607 /* Set the second return value for the parent. */
608 regs->u_regs[UREG_I1] = 0;
610 if (clone_flags & CLONE_SETTLS)
611 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
613 return 0;
617 * This is the mechanism for creating a new kernel thread.
619 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
620 * who haven't done an "execve()") should use this: it will work within
621 * a system call from a "real" process, but the process memory space will
622 * not be freed until both the parent and the child have exited.
624 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
626 long retval;
628 /* If the parent runs before fn(arg) is called by the child,
629 * the input registers of this function can be clobbered.
630 * So we stash 'fn' and 'arg' into global registers which
631 * will not be modified by the parent.
633 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
634 "mov %5, %%g3\n\t" /* Save ARG into global */
635 "mov %1, %%g1\n\t" /* Clone syscall nr. */
636 "mov %2, %%o0\n\t" /* Clone flags. */
637 "mov 0, %%o1\n\t" /* usp arg == 0 */
638 "t 0x6d\n\t" /* Linux/Sparc clone(). */
639 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
640 " mov %%o0, %0\n\t"
641 "jmpl %%g2, %%o7\n\t" /* Call the function. */
642 " mov %%g3, %%o0\n\t" /* Set arg in delay. */
643 "mov %3, %%g1\n\t"
644 "t 0x6d\n\t" /* Linux/Sparc exit(). */
645 /* Notreached by child. */
646 "1:" :
647 "=r" (retval) :
648 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
649 "i" (__NR_exit), "r" (fn), "r" (arg) :
650 "g1", "g2", "g3", "o0", "o1", "memory", "cc");
651 return retval;
653 EXPORT_SYMBOL(kernel_thread);
655 typedef struct {
656 union {
657 unsigned int pr_regs[32];
658 unsigned long pr_dregs[16];
659 } pr_fr;
660 unsigned int __unused;
661 unsigned int pr_fsr;
662 unsigned char pr_qcnt;
663 unsigned char pr_q_entrysize;
664 unsigned char pr_en;
665 unsigned int pr_q[64];
666 } elf_fpregset_t32;
669 * fill in the fpu structure for a core dump.
671 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
673 unsigned long *kfpregs = current_thread_info()->fpregs;
674 unsigned long fprs = current_thread_info()->fpsaved[0];
676 if (test_thread_flag(TIF_32BIT)) {
677 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
679 if (fprs & FPRS_DL)
680 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
681 sizeof(unsigned int) * 32);
682 else
683 memset(&fpregs32->pr_fr.pr_regs[0], 0,
684 sizeof(unsigned int) * 32);
685 fpregs32->pr_qcnt = 0;
686 fpregs32->pr_q_entrysize = 8;
687 memset(&fpregs32->pr_q[0], 0,
688 (sizeof(unsigned int) * 64));
689 if (fprs & FPRS_FEF) {
690 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
691 fpregs32->pr_en = 1;
692 } else {
693 fpregs32->pr_fsr = 0;
694 fpregs32->pr_en = 0;
696 } else {
697 if(fprs & FPRS_DL)
698 memcpy(&fpregs->pr_regs[0], kfpregs,
699 sizeof(unsigned int) * 32);
700 else
701 memset(&fpregs->pr_regs[0], 0,
702 sizeof(unsigned int) * 32);
703 if(fprs & FPRS_DU)
704 memcpy(&fpregs->pr_regs[16], kfpregs+16,
705 sizeof(unsigned int) * 32);
706 else
707 memset(&fpregs->pr_regs[16], 0,
708 sizeof(unsigned int) * 32);
709 if(fprs & FPRS_FEF) {
710 fpregs->pr_fsr = current_thread_info()->xfsr[0];
711 fpregs->pr_gsr = current_thread_info()->gsr[0];
712 } else {
713 fpregs->pr_fsr = fpregs->pr_gsr = 0;
715 fpregs->pr_fprs = fprs;
717 return 1;
719 EXPORT_SYMBOL(dump_fpu);
722 * sparc_execve() executes a new program after the asm stub has set
723 * things up for us. This should basically do what I want it to.
725 asmlinkage int sparc_execve(struct pt_regs *regs)
727 int error, base = 0;
728 char *filename;
730 /* User register window flush is done by entry.S */
732 /* Check for indirect call. */
733 if (regs->u_regs[UREG_G1] == 0)
734 base = 1;
736 filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
737 error = PTR_ERR(filename);
738 if (IS_ERR(filename))
739 goto out;
740 error = do_execve(filename,
741 (const char __user *const __user *)
742 regs->u_regs[base + UREG_I1],
743 (const char __user *const __user *)
744 regs->u_regs[base + UREG_I2], regs);
745 putname(filename);
746 if (!error) {
747 fprs_write(0);
748 current_thread_info()->xfsr[0] = 0;
749 current_thread_info()->fpsaved[0] = 0;
750 regs->tstate &= ~TSTATE_PEF;
752 out:
753 return error;
756 unsigned long get_wchan(struct task_struct *task)
758 unsigned long pc, fp, bias = 0;
759 struct thread_info *tp;
760 struct reg_window *rw;
761 unsigned long ret = 0;
762 int count = 0;
764 if (!task || task == current ||
765 task->state == TASK_RUNNING)
766 goto out;
768 tp = task_thread_info(task);
769 bias = STACK_BIAS;
770 fp = task_thread_info(task)->ksp + bias;
772 do {
773 if (!kstack_valid(tp, fp))
774 break;
775 rw = (struct reg_window *) fp;
776 pc = rw->ins[7];
777 if (!in_sched_functions(pc)) {
778 ret = pc;
779 goto out;
781 fp = rw->ins[6] + bias;
782 } while (++count < 16);
784 out:
785 return ret;