spi-topcliff-pch: Fix issue for transmitting over 4KByte
[zen-stable.git] / arch / tile / kernel / single_step.c
blobb7a8795040863bc76727d61bd48debd15bdc0f63
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
14 * A code-rewriter that enables instruction single-stepping.
15 * Derived from iLib's single-stepping code.
18 #ifndef __tilegx__ /* Hardware support for single step unavailable. */
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <arch/abi.h>
29 #include <arch/opcode.h>
31 #define signExtend17(val) sign_extend((val), 17)
32 #define TILE_X1_MASK (0xffffffffULL << 31)
34 int unaligned_printk;
36 static int __init setup_unaligned_printk(char *str)
38 long val;
39 if (strict_strtol(str, 0, &val) != 0)
40 return 0;
41 unaligned_printk = val;
42 pr_info("Printk for each unaligned data accesses is %s\n",
43 unaligned_printk ? "enabled" : "disabled");
44 return 1;
46 __setup("unaligned_printk=", setup_unaligned_printk);
48 unsigned int unaligned_fixup_count;
50 enum mem_op {
51 MEMOP_NONE,
52 MEMOP_LOAD,
53 MEMOP_STORE,
54 MEMOP_LOAD_POSTINCR,
55 MEMOP_STORE_POSTINCR
58 static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset)
60 tile_bundle_bits result;
62 /* mask out the old offset */
63 tile_bundle_bits mask = create_BrOff_X1(-1);
64 result = n & (~mask);
66 /* or in the new offset */
67 result |= create_BrOff_X1(offset);
69 return result;
72 static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
74 tile_bundle_bits result;
75 tile_bundle_bits op;
77 result = n & (~TILE_X1_MASK);
79 op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
80 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
81 create_Dest_X1(dest) |
82 create_SrcB_X1(TREG_ZERO) |
83 create_SrcA_X1(src) ;
85 result |= op;
86 return result;
89 static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
91 return move_X1(n, TREG_ZERO, TREG_ZERO);
94 static inline tile_bundle_bits addi_X1(
95 tile_bundle_bits n, int dest, int src, int imm)
97 n &= ~TILE_X1_MASK;
99 n |= (create_SrcA_X1(src) |
100 create_Dest_X1(dest) |
101 create_Imm8_X1(imm) |
102 create_S_X1(0) |
103 create_Opcode_X1(IMM_0_OPCODE_X1) |
104 create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
106 return n;
109 static tile_bundle_bits rewrite_load_store_unaligned(
110 struct single_step_state *state,
111 tile_bundle_bits bundle,
112 struct pt_regs *regs,
113 enum mem_op mem_op,
114 int size, int sign_ext)
116 unsigned char __user *addr;
117 int val_reg, addr_reg, err, val;
119 /* Get address and value registers */
120 if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
121 addr_reg = get_SrcA_Y2(bundle);
122 val_reg = get_SrcBDest_Y2(bundle);
123 } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
124 addr_reg = get_SrcA_X1(bundle);
125 val_reg = get_Dest_X1(bundle);
126 } else {
127 addr_reg = get_SrcA_X1(bundle);
128 val_reg = get_SrcB_X1(bundle);
132 * If registers are not GPRs, don't try to handle it.
134 * FIXME: we could handle non-GPR loads by getting the real value
135 * from memory, writing it to the single step buffer, using a
136 * temp_reg to hold a pointer to that memory, then executing that
137 * instruction and resetting temp_reg. For non-GPR stores, it's a
138 * little trickier; we could use the single step buffer for that
139 * too, but we'd have to add some more state bits so that we could
140 * call back in here to copy that value to the real target. For
141 * now, we just handle the simple case.
143 if ((val_reg >= PTREGS_NR_GPRS &&
144 (val_reg != TREG_ZERO ||
145 mem_op == MEMOP_LOAD ||
146 mem_op == MEMOP_LOAD_POSTINCR)) ||
147 addr_reg >= PTREGS_NR_GPRS)
148 return bundle;
150 /* If it's aligned, don't handle it specially */
151 addr = (void __user *)regs->regs[addr_reg];
152 if (((unsigned long)addr % size) == 0)
153 return bundle;
155 #ifndef __LITTLE_ENDIAN
156 # error We assume little-endian representation with copy_xx_user size 2 here
157 #endif
158 /* Handle unaligned load/store */
159 if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
160 unsigned short val_16;
161 switch (size) {
162 case 2:
163 err = copy_from_user(&val_16, addr, sizeof(val_16));
164 val = sign_ext ? ((short)val_16) : val_16;
165 break;
166 case 4:
167 err = copy_from_user(&val, addr, sizeof(val));
168 break;
169 default:
170 BUG();
172 if (err == 0) {
173 state->update_reg = val_reg;
174 state->update_value = val;
175 state->update = 1;
177 } else {
178 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
179 err = copy_to_user(addr, &val, size);
182 if (err) {
183 siginfo_t info = {
184 .si_signo = SIGSEGV,
185 .si_code = SEGV_MAPERR,
186 .si_addr = addr
188 trace_unhandled_signal("segfault", regs,
189 (unsigned long)addr, SIGSEGV);
190 force_sig_info(info.si_signo, &info, current);
191 return (tile_bundle_bits) 0;
194 if (unaligned_fixup == 0) {
195 siginfo_t info = {
196 .si_signo = SIGBUS,
197 .si_code = BUS_ADRALN,
198 .si_addr = addr
200 trace_unhandled_signal("unaligned trap", regs,
201 (unsigned long)addr, SIGBUS);
202 force_sig_info(info.si_signo, &info, current);
203 return (tile_bundle_bits) 0;
206 if (unaligned_printk || unaligned_fixup_count == 0) {
207 pr_info("Process %d/%s: PC %#lx: Fixup of"
208 " unaligned %s at %#lx.\n",
209 current->pid, current->comm, regs->pc,
210 (mem_op == MEMOP_LOAD ||
211 mem_op == MEMOP_LOAD_POSTINCR) ?
212 "load" : "store",
213 (unsigned long)addr);
214 if (!unaligned_printk) {
215 #define P pr_info
216 P("\n");
217 P("Unaligned fixups in the kernel will slow your application considerably.\n");
218 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
219 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
220 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
221 P("access will become a SIGBUS you can debug. No further warnings will be\n");
222 P("shown so as to avoid additional slowdown, but you can track the number\n");
223 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
224 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
225 P("\n");
226 #undef P
229 ++unaligned_fixup_count;
231 if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
232 /* Convert the Y2 instruction to a prefetch. */
233 bundle &= ~(create_SrcBDest_Y2(-1) |
234 create_Opcode_Y2(-1));
235 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
236 create_Opcode_Y2(LW_OPCODE_Y2));
237 /* Replace the load postincr with an addi */
238 } else if (mem_op == MEMOP_LOAD_POSTINCR) {
239 bundle = addi_X1(bundle, addr_reg, addr_reg,
240 get_Imm8_X1(bundle));
241 /* Replace the store postincr with an addi */
242 } else if (mem_op == MEMOP_STORE_POSTINCR) {
243 bundle = addi_X1(bundle, addr_reg, addr_reg,
244 get_Dest_Imm8_X1(bundle));
245 } else {
246 /* Convert the X1 instruction to a nop. */
247 bundle &= ~(create_Opcode_X1(-1) |
248 create_UnShOpcodeExtension_X1(-1) |
249 create_UnOpcodeExtension_X1(-1));
250 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
251 create_UnShOpcodeExtension_X1(
252 UN_0_SHUN_0_OPCODE_X1) |
253 create_UnOpcodeExtension_X1(
254 NOP_UN_0_SHUN_0_OPCODE_X1));
257 return bundle;
261 * Called after execve() has started the new image. This allows us
262 * to reset the info state. Note that the the mmap'ed memory, if there
263 * was any, has already been unmapped by the exec.
265 void single_step_execve(void)
267 struct thread_info *ti = current_thread_info();
268 kfree(ti->step_state);
269 ti->step_state = NULL;
273 * single_step_once() - entry point when single stepping has been triggered.
274 * @regs: The machine register state
276 * When we arrive at this routine via a trampoline, the single step
277 * engine copies the executing bundle to the single step buffer.
278 * If the instruction is a condition branch, then the target is
279 * reset to one past the next instruction. If the instruction
280 * sets the lr, then that is noted. If the instruction is a jump
281 * or call, then the new target pc is preserved and the current
282 * bundle instruction set to null.
284 * The necessary post-single-step rewriting information is stored in
285 * single_step_state-> We use data segment values because the
286 * stack will be rewound when we run the rewritten single-stepped
287 * instruction.
289 void single_step_once(struct pt_regs *regs)
291 extern tile_bundle_bits __single_step_ill_insn;
292 extern tile_bundle_bits __single_step_j_insn;
293 extern tile_bundle_bits __single_step_addli_insn;
294 extern tile_bundle_bits __single_step_auli_insn;
295 struct thread_info *info = (void *)current_thread_info();
296 struct single_step_state *state = info->step_state;
297 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
298 tile_bundle_bits __user *buffer, *pc;
299 tile_bundle_bits bundle;
300 int temp_reg;
301 int target_reg = TREG_LR;
302 int err;
303 enum mem_op mem_op = MEMOP_NONE;
304 int size = 0, sign_ext = 0; /* happy compiler */
306 asm(
307 " .pushsection .rodata.single_step\n"
308 " .align 8\n"
309 " .globl __single_step_ill_insn\n"
310 "__single_step_ill_insn:\n"
311 " ill\n"
312 " .globl __single_step_addli_insn\n"
313 "__single_step_addli_insn:\n"
314 " { nop; addli r0, zero, 0 }\n"
315 " .globl __single_step_auli_insn\n"
316 "__single_step_auli_insn:\n"
317 " { nop; auli r0, r0, 0 }\n"
318 " .globl __single_step_j_insn\n"
319 "__single_step_j_insn:\n"
320 " j .\n"
321 " .popsection\n"
325 * Enable interrupts here to allow touching userspace and the like.
326 * The callers expect this: do_trap() already has interrupts
327 * enabled, and do_work_pending() handles functions that enable
328 * interrupts internally.
330 local_irq_enable();
332 if (state == NULL) {
333 /* allocate a page of writable, executable memory */
334 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
335 if (state == NULL) {
336 pr_err("Out of kernel memory trying to single-step\n");
337 return;
340 /* allocate a cache line of writable, executable memory */
341 down_write(&current->mm->mmap_sem);
342 buffer = (void __user *) do_mmap(NULL, 0, 64,
343 PROT_EXEC | PROT_READ | PROT_WRITE,
344 MAP_PRIVATE | MAP_ANONYMOUS,
346 up_write(&current->mm->mmap_sem);
348 if (IS_ERR((void __force *)buffer)) {
349 kfree(state);
350 pr_err("Out of kernel pages trying to single-step\n");
351 return;
354 state->buffer = buffer;
355 state->is_enabled = 0;
357 info->step_state = state;
359 /* Validate our stored instruction patterns */
360 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
361 ADDLI_OPCODE_X1);
362 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
363 AULI_OPCODE_X1);
364 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
365 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
366 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
370 * If we are returning from a syscall, we still haven't hit the
371 * "ill" for the swint1 instruction. So back the PC up to be
372 * pointing at the swint1, but we'll actually return directly
373 * back to the "ill" so we come back in via SIGILL as if we
374 * had "executed" the swint1 without ever being in kernel space.
376 if (regs->faultnum == INT_SWINT_1)
377 regs->pc -= 8;
379 pc = (tile_bundle_bits __user *)(regs->pc);
380 if (get_user(bundle, pc) != 0) {
381 pr_err("Couldn't read instruction at %p trying to step\n", pc);
382 return;
385 /* We'll follow the instruction with 2 ill op bundles */
386 state->orig_pc = (unsigned long)pc;
387 state->next_pc = (unsigned long)(pc + 1);
388 state->branch_next_pc = 0;
389 state->update = 0;
391 if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
392 /* two wide, check for control flow */
393 int opcode = get_Opcode_X1(bundle);
395 switch (opcode) {
396 /* branches */
397 case BRANCH_OPCODE_X1:
399 s32 offset = signExtend17(get_BrOff_X1(bundle));
402 * For branches, we use a rewriting trick to let the
403 * hardware evaluate whether the branch is taken or
404 * untaken. We record the target offset and then
405 * rewrite the branch instruction to target 1 insn
406 * ahead if the branch is taken. We then follow the
407 * rewritten branch with two bundles, each containing
408 * an "ill" instruction. The supervisor examines the
409 * pc after the single step code is executed, and if
410 * the pc is the first ill instruction, then the
411 * branch (if any) was not taken. If the pc is the
412 * second ill instruction, then the branch was
413 * taken. The new pc is computed for these cases, and
414 * inserted into the registers for the thread. If
415 * the pc is the start of the single step code, then
416 * an exception or interrupt was taken before the
417 * code started processing, and the same "original"
418 * pc is restored. This change, different from the
419 * original implementation, has the advantage of
420 * executing a single user instruction.
422 state->branch_next_pc = (unsigned long)(pc + offset);
424 /* rewrite branch offset to go forward one bundle */
425 bundle = set_BrOff_X1(bundle, 2);
427 break;
429 /* jumps */
430 case JALB_OPCODE_X1:
431 case JALF_OPCODE_X1:
432 state->update = 1;
433 state->next_pc =
434 (unsigned long) (pc + get_JOffLong_X1(bundle));
435 break;
437 case JB_OPCODE_X1:
438 case JF_OPCODE_X1:
439 state->next_pc =
440 (unsigned long) (pc + get_JOffLong_X1(bundle));
441 bundle = nop_X1(bundle);
442 break;
444 case SPECIAL_0_OPCODE_X1:
445 switch (get_RRROpcodeExtension_X1(bundle)) {
446 /* jump-register */
447 case JALRP_SPECIAL_0_OPCODE_X1:
448 case JALR_SPECIAL_0_OPCODE_X1:
449 state->update = 1;
450 state->next_pc =
451 regs->regs[get_SrcA_X1(bundle)];
452 break;
454 case JRP_SPECIAL_0_OPCODE_X1:
455 case JR_SPECIAL_0_OPCODE_X1:
456 state->next_pc =
457 regs->regs[get_SrcA_X1(bundle)];
458 bundle = nop_X1(bundle);
459 break;
461 case LNK_SPECIAL_0_OPCODE_X1:
462 state->update = 1;
463 target_reg = get_Dest_X1(bundle);
464 break;
466 /* stores */
467 case SH_SPECIAL_0_OPCODE_X1:
468 mem_op = MEMOP_STORE;
469 size = 2;
470 break;
472 case SW_SPECIAL_0_OPCODE_X1:
473 mem_op = MEMOP_STORE;
474 size = 4;
475 break;
477 break;
479 /* loads and iret */
480 case SHUN_0_OPCODE_X1:
481 if (get_UnShOpcodeExtension_X1(bundle) ==
482 UN_0_SHUN_0_OPCODE_X1) {
483 switch (get_UnOpcodeExtension_X1(bundle)) {
484 case LH_UN_0_SHUN_0_OPCODE_X1:
485 mem_op = MEMOP_LOAD;
486 size = 2;
487 sign_ext = 1;
488 break;
490 case LH_U_UN_0_SHUN_0_OPCODE_X1:
491 mem_op = MEMOP_LOAD;
492 size = 2;
493 sign_ext = 0;
494 break;
496 case LW_UN_0_SHUN_0_OPCODE_X1:
497 mem_op = MEMOP_LOAD;
498 size = 4;
499 break;
501 case IRET_UN_0_SHUN_0_OPCODE_X1:
503 unsigned long ex0_0 = __insn_mfspr(
504 SPR_EX_CONTEXT_0_0);
505 unsigned long ex0_1 = __insn_mfspr(
506 SPR_EX_CONTEXT_0_1);
508 * Special-case it if we're iret'ing
509 * to PL0 again. Otherwise just let
510 * it run and it will generate SIGILL.
512 if (EX1_PL(ex0_1) == USER_PL) {
513 state->next_pc = ex0_0;
514 regs->ex1 = ex0_1;
515 bundle = nop_X1(bundle);
520 break;
522 #if CHIP_HAS_WH64()
523 /* postincrement operations */
524 case IMM_0_OPCODE_X1:
525 switch (get_ImmOpcodeExtension_X1(bundle)) {
526 case LWADD_IMM_0_OPCODE_X1:
527 mem_op = MEMOP_LOAD_POSTINCR;
528 size = 4;
529 break;
531 case LHADD_IMM_0_OPCODE_X1:
532 mem_op = MEMOP_LOAD_POSTINCR;
533 size = 2;
534 sign_ext = 1;
535 break;
537 case LHADD_U_IMM_0_OPCODE_X1:
538 mem_op = MEMOP_LOAD_POSTINCR;
539 size = 2;
540 sign_ext = 0;
541 break;
543 case SWADD_IMM_0_OPCODE_X1:
544 mem_op = MEMOP_STORE_POSTINCR;
545 size = 4;
546 break;
548 case SHADD_IMM_0_OPCODE_X1:
549 mem_op = MEMOP_STORE_POSTINCR;
550 size = 2;
551 break;
553 default:
554 break;
556 break;
557 #endif /* CHIP_HAS_WH64() */
560 if (state->update) {
562 * Get an available register. We start with a
563 * bitmask with 1's for available registers.
564 * We truncate to the low 32 registers since
565 * we are guaranteed to have set bits in the
566 * low 32 bits, then use ctz to pick the first.
568 u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
569 (1ULL << get_SrcA_X0(bundle)) |
570 (1ULL << get_SrcB_X0(bundle)) |
571 (1ULL << target_reg));
572 temp_reg = __builtin_ctz(mask);
573 state->update_reg = temp_reg;
574 state->update_value = regs->regs[temp_reg];
575 regs->regs[temp_reg] = (unsigned long) (pc+1);
576 regs->flags |= PT_FLAGS_RESTORE_REGS;
577 bundle = move_X1(bundle, target_reg, temp_reg);
579 } else {
580 int opcode = get_Opcode_Y2(bundle);
582 switch (opcode) {
583 /* loads */
584 case LH_OPCODE_Y2:
585 mem_op = MEMOP_LOAD;
586 size = 2;
587 sign_ext = 1;
588 break;
590 case LH_U_OPCODE_Y2:
591 mem_op = MEMOP_LOAD;
592 size = 2;
593 sign_ext = 0;
594 break;
596 case LW_OPCODE_Y2:
597 mem_op = MEMOP_LOAD;
598 size = 4;
599 break;
601 /* stores */
602 case SH_OPCODE_Y2:
603 mem_op = MEMOP_STORE;
604 size = 2;
605 break;
607 case SW_OPCODE_Y2:
608 mem_op = MEMOP_STORE;
609 size = 4;
610 break;
615 * Check if we need to rewrite an unaligned load/store.
616 * Returning zero is a special value meaning we need to SIGSEGV.
618 if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
619 bundle = rewrite_load_store_unaligned(state, bundle, regs,
620 mem_op, size, sign_ext);
621 if (bundle == 0)
622 return;
625 /* write the bundle to our execution area */
626 buffer = state->buffer;
627 err = __put_user(bundle, buffer++);
630 * If we're really single-stepping, we take an INT_ILL after.
631 * If we're just handling an unaligned access, we can just
632 * jump directly back to where we were in user code.
634 if (is_single_step) {
635 err |= __put_user(__single_step_ill_insn, buffer++);
636 err |= __put_user(__single_step_ill_insn, buffer++);
637 } else {
638 long delta;
640 if (state->update) {
641 /* We have some state to update; do it inline */
642 int ha16;
643 bundle = __single_step_addli_insn;
644 bundle |= create_Dest_X1(state->update_reg);
645 bundle |= create_Imm16_X1(state->update_value);
646 err |= __put_user(bundle, buffer++);
647 bundle = __single_step_auli_insn;
648 bundle |= create_Dest_X1(state->update_reg);
649 bundle |= create_SrcA_X1(state->update_reg);
650 ha16 = (state->update_value + 0x8000) >> 16;
651 bundle |= create_Imm16_X1(ha16);
652 err |= __put_user(bundle, buffer++);
653 state->update = 0;
656 /* End with a jump back to the next instruction */
657 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
658 (unsigned long)buffer) >>
659 TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
660 bundle = __single_step_j_insn;
661 bundle |= create_JOffLong_X1(delta);
662 err |= __put_user(bundle, buffer++);
665 if (err) {
666 pr_err("Fault when writing to single-step buffer\n");
667 return;
671 * Flush the buffer.
672 * We do a local flush only, since this is a thread-specific buffer.
674 __flush_icache_range((unsigned long)state->buffer,
675 (unsigned long)buffer);
677 /* Indicate enabled */
678 state->is_enabled = is_single_step;
679 regs->pc = (unsigned long)state->buffer;
681 /* Fault immediately if we are coming back from a syscall. */
682 if (regs->faultnum == INT_SWINT_1)
683 regs->pc += 8;
686 #else
687 #include <linux/smp.h>
688 #include <linux/ptrace.h>
689 #include <arch/spr_def.h>
691 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
695 * Called directly on the occasion of an interrupt.
697 * If the process doesn't have single step set, then we use this as an
698 * opportunity to turn single step off.
700 * It has been mentioned that we could conditionally turn off single stepping
701 * on each entry into the kernel and rely on single_step_once to turn it
702 * on for the processes that matter (as we already do), but this
703 * implementation is somewhat more efficient in that we muck with registers
704 * once on a bum interrupt rather than on every entry into the kernel.
706 * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
707 * so we have to run through this process again before we can say that an
708 * instruction has executed.
710 * swint will set CANCELED, but it's a legitimate instruction. Fortunately
711 * it changes the PC. If it hasn't changed, then we know that the interrupt
712 * wasn't generated by swint and we'll need to run this process again before
713 * we can say an instruction has executed.
715 * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
716 * on with our lives.
719 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
721 unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
722 struct thread_info *info = (void *)current_thread_info();
723 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
724 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
726 if (is_single_step == 0) {
727 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
729 } else if ((*ss_pc != regs->pc) ||
730 (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
732 ptrace_notify(SIGTRAP);
733 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
734 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
735 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
741 * Called from need_singlestep. Set up the control registers and the enable
742 * register, then return back.
745 void single_step_once(struct pt_regs *regs)
747 unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
748 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
750 *ss_pc = regs->pc;
751 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
752 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
753 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
754 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
757 void single_step_execve(void)
759 /* Nothing */
762 #endif /* !__tilegx__ */